You are viewing the site in preview mode

Skip to main content

Table 5 Results on regression tasks

From: Can large language models understand molecules?

Dataset

FreeSolv

Lipophilicity

ESOL

# Compounds

642

4200

1128

Models

RMSE

R\(^2\)

RMSE

R\(^2\)

RMSE

R\(^2\)

Morgan FP

0.534 ± 0.101

0.712 ± 0.101

0.817 ± 0.025

0.331 ± 0.025

0.703 ± 0.020

0.502 ± 0.020

BERT

0.425 ± 0.031

0.816 ± 0.031

0.752 ± 0.013

0.434 ± 0.013

0.382 ± 0.015

0.854 ± 0.015

ChemBERTa

0.331 ± 0.034

0.888 ± 0.034

0.716 ± 0.022

0.486 ± 0.022

0.365 ± 0.007

0.866 ± 0.007

MolFormer-XL

0.545 ± 0.047

0.690 ± 0.047

0.740 ± 0.012

0.451 ± 0.012

0.493 ± 0.027

0.754 ± 0.027

GPT

0.567 ± 0.087

0.675 ± 0.087

0.852 ± 0.010

0.273 ± 0.010

0.562 ± 0.030

0.681 ± 0.030

LLaMA

0.483 ± 0.036

0.758 ± 0.036

0.785 ± 0.015

0.382 ± 0.015

0.425 ± 0.013

0.818 ± 0.013

LLaMA2

0.422 ± 0.051

0.814 ± 0.051

0.790 ± 0.026

0.375 ± 0.026

0.420 ± 0.023

0.821 ± 0.023

  1. The reported performance metrics are the mean and standard deviation of the RMSE and R\(^2\), calculated across the five-folds. The Best Performance is Highlighted in Bold