You are viewing the site in preview mode

Skip to main content

Table 6 Training epochs per model (average of five rounds and standard deviation)

From: Hybrid natural language processing tool for semantic annotation of medical texts in Spanish

Model

UMLS

Medication

Temporal

Negation/

Miscellaneous

Experiencer/

 

entities

data

entities

Speculation

entities

Temporality

Bi-LSTM-CRF

95.60

68.40

68.20

80.60

78.80

71.20

 

(± 5.37)

(± 7.47)

(± 7.29)

(± 15.07)

(± 9.44)

(± 7.73)

RoBERTa EHR

17.00

14.20

14.00

10.80

16.80

10.80

 

(± 2.83)

(± 3.63)

(± 2.24)

(± 1.92)

(± 3.56)

(± 4.09)

EriBERTa

15.50

10.40

12.80

17.25

15.60

16.40

 

(± 4.12)

(± 3.78)

(± 6.72)

(± 5.50)

(± 6.07)

(± 3.36)

CLIN-X-ES

17.00

14.60

13.60

21.80

19.40

16.40

 

(± 2.83)

(± 3.65)

(± 4.22)

(± 5.36)

(± 6.07)

(± 4.83)

mBERT

14.75

11.40

14.00

16.00

18.20

11.60

 

(± 6.18)

(± 5.22)

(± 5.61)

(± 6.16)

(± 2.49)

(± 2.07)

mDeBERTa vs 3

17.80

11.60

9.80

15.00

18.00

11.60

 

(± 4.92)

(± 5.68)

(± 2.28)

(± 6.93)

(± 2.74)

(± 4.83)