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Abstract
Background: Tumors have been hypothesized to be the result of a mixture of oncogenic
events, some of which will be reflected in the gene expression of the tumor. Based on this
hypothesis a variety of data-driven methods have been employed to decompose tumor
expression profiles into component profiles, hypothetically linked to these events. Interpretation
of the resulting data-driven components is often done by post-hoc comparison to, for instance,
functional groupings of genes into gene sets. None of the data-driven methods allow the
incorporation of that type of knowledge directly into the decomposition.

Results: We present a linear model which uses knowledge driven, pre-defined components to
perform the decomposition. We solve this decomposition model in a constrained linear least
squares fashion. From a variety of options, a lasso-based solution to the model performs best in
linking single gene perturbation data to mouse data. Moreover, we show the decomposition of
expression profiles from human breast cancer samples into single gene perturbation profiles and
gene sets that are linked to the hallmarks of cancer. For these breast cancer samples we were
able to discern several links between clinical parameters, and the decomposition weights,
providing new insights into the biology of these tumors. Lastly, we show that the order in which
the Lasso regularization shrinks the weights, unveils consensus patterns within clinical subgroups
of the breast cancer samples.

Conclusion: The proposed lasso-based constrained least squares decomposition provides a
stable and relevant relation between samples and knowledge-based components, and is thus a
viable alternative to data-driven methods. In addition, the consensus order of component
importance within clinical subgroups provides a better molecular characterization of the
subtypes.
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Background
Gene expression data from tumors reflects many impor-
tant clinical characteristics. For example, methodologies
have been developed that can differentiate subtypes [1,2],
predict disease outcome [3], and predict response to ther-
apy [4]. Most of these aspects will also have a genetic
basis, which is often unknown, and is typically not
unveiled by purely data-driven techniques. Knowing the
underlying molecular mechanisms is important if tar-
geted therapies still need to be developed, and to deter-
mine whether a particular therapy is likely to be effective
[5].

Based on the idea that tumors must be the result of an
underlying mixture of oncogenic events [6,7], several
attempts have been undertaken to decompose the gene
expression profiles of tumors into components represent-
ing these oncogenic events. The components identified in
these decompositions might then provide further leads
towards understanding tumorigenesis. For example,
Teschendorff et al. [8] have used Independent Compo-
nent Analysis (ICA), and Principal Component Analysis
(PCA), to decompose gene expression data from breast
cancer samples. These methods are purely data-driven,
and thus have the disadvantage that they do not employ
any prior knowledge. For this type of decomposition, the
relation between the components is pre-defined, e.g. they
are required to be orthogonal/independent. In order to
apply these methods a collection of tumor expression pro-
files is required. The choice of the number of components
is typically based on the cumulative amount of variance
explained by a set of components, which is largely arbi-
trary.

On a similar note, Brunet et al. [9] have used Non-nega-
tive Matrix Factorization (NMF) to decompose different
leukemia subtypes. Similar to ICA/PCA, this method is
data-driven, which makes the interpretation afterwards
complicated. The main difference is that it places con-
straints on the decomposition: both the components vec-
tors and weights are required to be non-negative.

Interpretation of the components/weights that are
obtained using data-driven decomposition strategies is
still very difficult. For example, the results can be com-
pared to existing functional databases in order to attach
an interpretation to the obtained components [8].

We would like to use the knowledge about relevant com-
ponents directly in the decomposition. More specifically,
we would like to use this knowledge by pre-defining the
components used in the decomposition, rather than per-
forming a post-hoc analysis of a fully data-driven result.
Using this type of framework, i.e. employing components
with a clear biological meaning, might result in a more

meaningful decomposition and ease the interpretation
afterwards.

Bild et al. [10], Acharya et al. [11], and Anders et al. [12]
have used information about genetic perturbations to
construct classifiers for perturbed vs wild type status. For
every perturbation that was tested, they created a separate
classifier, thus, they did not model possible interactions
between these perturbations. Here, we use the expression
profiles of a set of perturbed cell lines, and assume a linear
model for their interaction, i.e. we model combinations of
perturbations as a linear combination of the expression
profiles. Thereby, we can include this type of knowledge
directly into the decomposition. As opposed to post-hoc
analyses of fully data-driven results (e.g. Teschendorff et
al. [8]), several approaches have been developed to
include information about pathways (e.g. GO [13] or
KEGG [14]) as prior information into the analysis. For
instance, Segal et al. [15] derived activity scores for gene
sets by employing the hypergeometric distribution. Such
an approach requires discretization of the expression data,
which we preferably avoid since this might lead to a loss
of information. Similarly, Chuang et al. [16] derived activ-
ity scores for subnetworks of a protein-protein interaction
network by summing the Z-scores of the genes in such a
subnetwork. A related approach is Gene Set Enrichment
Analysis (GSEA), which was developed by Mootha et al.
[17] and Subramanian et al. [18]. Later on, this approach
was adjusted to allow the computation of the activity of a
gene set in a single sample (Lamb et al. [19]). A common
denominator among these approaches is that they treat
each gene set separately, in the sense that the activity of a
gene set in a particular sample is solved independently of
the other gene sets. In contrast, we represent the expres-
sion of a given sample as the linear combination of the
gene memberships of a predefined collection of gene sets.

We present a mathematical model (Constrained Least
Squares Decomposition) that allows us to include knowl-
edge driven components in the decomposition. More spe-
cifically, we model the expression profile of a single tumor
as a weighted linear combination of a set of components.
For these components, we use two sources of knowledge.
First, we use the expression data from cell lines in which
cancer associated genes have been perturbed, and second,
we use gene sets that are representative of the six hall-
marks defined by Hanahan et al. [6]. In order to keep the
weights produced by the decomposition in an interpreta-
ble range, the process needs to be regularized. We do this
by adding constraints on the weights, and introduce a
Lasso regularization parameter [20].

We use the proposed model and the expression profiles of
cell lines in which cancer associated genes were activated
to decompose the gene expression profiles of genetically
Page 2 of 12
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S20 http://www.biomedcentral.com/1471-2105/10/S1/S20
manipulated mice. Since the mutation status of these
mice is known, and the mutated genes correspond to the
genes perturbed in the cell line experiments, a direct per-
formance comparison can be made. Next, we decompose
the expression profiles of a set of breast tumors taken from
six independent datasets, for which no mutation status is
known, but where a set of clinical parameters, including
disease and survival endpoints are known. Moreover,
when changing the regularization parameter, we show
that consensus patterns emerge in the order in which the
weights become non-negative. The results show that
tumors can be stratified into several subgroups, each char-
acterized by a unique perturbation profile, which are asso-
ciated with distinct outcomes. This is a powerful approach
since it allows the characterization of subtypes based on
specific molecular aberrations, and allows a more directed
search for targeted therapies.

Methods
Mathematical framework
In our decomposition, we assume that a linear combina-
tion of a set of pre-defined components (C1 to Cx)
describes the gene expression observed for, for instance, a
human tumor sample y. This implies that the gene expres-
sion of a sample can be written as a weighted summation
over a set of components.

Mathematically the model can be defined as:

y = Cw (1)

where y is a column vector representing the gene expres-
sion that needs to be decomposed, C represents a matrix
of individual component vectors (each column a compo-
nent, Ci), and w is a column vector of weights. In the lin-
ear model the weights in w reflect the extent to which the
sample y, resembles the expression of the components
that are in C. We assume that the weights in w are the
same for all genes (i.e. for all rows in y, and C).

For a given sample (y) and matrix of component vectors
(C), we can obtain an estimate of w by minimizing the
Mean Square Error (MSE). The MSE (MSE) is defined as:

Without any constraints, a solution to Equation 2 can be
found using the Moore-Penrose generalized Pseudoin-
verse ([21]), defined as:

w = (CT C)-1 CT y (3)

w = C† y (4)

where T indicates a matrix transposition, -1 indicates a
matrix inversion, and † indicates the pseudoinverse of a
matrix. In the remainder of this paper, we refer to this var-
iant as 'U' (Unconstrained).

Without any constraints the weights in w are unbounded.
As a result, weights in w might not have any biological rel-
evance. For instance, it is hard to interpret negative
weights in w, implying that the expression profile of a
given component has a negative contribution to the
reconstructed sample. Thus, a logical step is to include a
variant, that ensures non-negativity of the weights in w,
similar to an NMF approach [9]. This changes Equation 2
to

In the remainder of this paper, we refer to this variant as
'P' (constrained with positive weights). Apart from con-
straints on w we also consider a regularization term. For
instance the L1-norm is an often applied form of regular-
ization (Lasso, [20]). This regularization shrinks weights
such that they become exactly zero, allowing the conclu-
sion that the associated component vectors in C do not
contribute to the reconstruction at all. This results in the
remaining components with non-zero weights being
'selected'. In the spirit of the L1-norm, we introduce a con-
straint based variant that restricts the L1-norm to 1. That
is, we include a variant for which the weights in w sum to
1. This changes Equation 2 to

We will refer to this variant as 'S' (constrained with posi-
tive weights that sum to 1).

These different variants lead to different regions of possi-
ble solutions in the gene expression space, as indicated in
Figure 1.

In addition, we also considered the option where we
include a Lasso term into the variant with positive
weights. This way, equation 2 changes to:
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We will refer to this method as 'L' (constrained with posi-
tive weights and Lasso term). Given the non-negativity
constraint, the solution to Equation 7 is fairly simple. We
appended a row to the matrix C with all elements set to λ,
and append the target vector y with a zero.

The setting of the λ parameter will influence the weights
that are obtained in w. Setting λ to infinite will result in
an all zero w vector. Progressively lowering λ will result in
an ordering in which the individual weights become non-
zero [22]. Eventually, when λ is set to 0, the solution will
be equivalent to the 'P' solution, with up to all compo-
nents having a non-zero weight.

We hypothesized that there is a relation between the order
in which the weights become non-zero, and the biology of

the sample. That is, the first weight that becomes non-zero
will be the most important, and each additional weight
that becomes non-zero is less and less important. We
hypothesize that the order of importance might be differ-
ent for different clinical subgroups of tumors. We visual-
ized the order in which the weights become non-zero by
means of an adjusted Karnaugh map [23], See Figure 2 for
a detailed example.

For each of the variants a constrained least squares optimi-
zation problem needs to be solved. To this end, we
employed the Mosek optimization toolbox for Matlab
[24]. This toolbox allows any number of equality and ine-
quality constraints to be set, and employs an interior
point algorithm.

Datasets
HMEC dataset
We used a previously published dataset (Bild et al, [5])
which contains gene expression measurements of 45
Human Mammary Epithelial Cell cultures (HMECs) sam-
ples. These HMEC samples have been perturbed by an
adenovirus, resulting in five different perturbations in
genes (upregulation), namely in Myc (n = 10), Ras (n =
10), E2F3 (n = 9), Src (n = 7), and BCatenin (n = 9). These
samples were analyzed on an Affymetrix Human Genome
U133 Plus 2.0 Array, containing 54613 probes.

Mouse dataset
We used a previously published dataset (Bild et al, [5])
which contains 28 mouse samples. These mouse samples
belong to five classes with different perturbations, namely
in Myc (n = 5), Ras (n = 3), Rbnull (n = 6), Her2 (n = 7),
and a Wild type (n = 7) class which serves as reference.
These samples were measured on an Affymetrix array,
containing 13179 probes.

MCF7 dataset
Creighton et al. [25] created a gene expression dataset
from MCF7 (breast cancer) cell line samples. These cell
lines were transfected with constitutively active RAF, MEK,
ERBB2, and EGFR (overexpression). Each transfection was
measured in triplicate, resulting in 12 arrays. Measure-
ments were performed using the Affymetrix Human
Genome U133A array, containing 22215 probes.

Human dataset
We used a collection of six publicly available breast cancer
datasets (Reyal et al., submitted). These six datasets were
all measured on the Affymetrix Human Genome U133A
Array, containing 22215 probes. In total this combined
dataset contains 509 samples for which distant metastasis
free survival data (DMFS), ER status, and Hu et al. [2] sub-
type information is available.

∈MSE = − +
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∑arg min ||( ) || | |
w
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Example of the solution spaceFigure 1
Example of the solution space. Ranges of solutions that 
can be produced for each of the three variants of constraints, 
for an example with two genes. The red arrow represents a 
gene expression profile to be approximated (y). The black 
arrows indicate two components C1 and C2 (i.e. columns in 
C). The unconstrained variant (U) can reconstruct any point 
in this Gene1- Gene2 space (determined system). The P vari-
ant can only reconstruct points in the grey area, which cor-
responds to non-negativity of the weights for the two 
components. Similarly, the S variant can only reconstruct 
points on the line joining the two components.
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Matching probes across the datasets
Given our four datasets, we want to decompose the mouse
samples using the HMEC data as components, and, simi-
larly, the human data using the MCF7 data as compo-
nents. The samples from these four datasets originate
from different organisms, and were measured on different
platforms. In order to facilitate the decomposition, we
have to match the probes from the mouse and HMEC
data. To do this, we used the Chip Comparer utility [26],
from Bild et al [5]. This way, we mapped these two data-
sets to a common set of 4383 genes. In case multiple
probes mapped to one of the common genes, we selected
the probe with the largest variance. Since the data were
measured on different platforms, it is required to normal-

ize each dataset separately. We applied mean-variance
normalization per gene per dataset.

Both the human data and the MCF7 data was measured
using the Affymetrix Human Genome U133A Array, elim-
inating the need to apply any probe matching. To normal-
ize them, both datasets were median centered per gene
prior to the analysis.

Gene sets
A collection of gene sets were gathered from the respective
repository websites of GO [13], KEGG [14], and Reactome
[27]. In total we gathered 7718 gene sets (GO: 6788,
KEGG: 202, Reactome: 728, downloaded April 17, 2008).
Based on their description, we assigned gene sets to the
Hanahan hallmarks. For four hallmarks (Apoptosis, Ang-
iogenesis, Growth, and Replication) we found associated
gene sets. In our analysis, we used 5 gene sets that were
associated with Apoptosis, 5 for Growth, 3 for Angiogen-
esis, and 3 for DNA replication. In Additional File 1, we
provide a list of the gene sets and their Hanahan hallmark.

Results and Discussion
Decomposing mouse data into HMEC components
First, we decomposed the 14 mouse tumors into the avail-
able five classes of HMEC samples. To do this, we con-
struct a C matrix, where each column consists of the class-
means of the five perturbation classes represented in the
HMEC samples (Myc, Ras, E2F3, Src, and BCatenin). It is
unlikely that a perturbation will have an effect on all
genes, causing many genes to be irrelevant with respect to
a specific perturbation, consequently only contributing
noise to the modeling problem. Therefore, we also
applied a feature selection step on the HMEC data. We
were most interested in genes that distinguish one of the
HMEC classes from the other four. Therefore we ranked,
for each of the classes, the genes based on their ability to
discriminate between that class and the remaining classes.
We employed the absolute signal to noise ratio (SNR) as
ranking criterion. Next, we selected the top n genes for
each of the five ranked lists, and then took the union of
these five lists. Of course, alternative feature selection pro-
cedures can be employed, but they are beyond the scope
of the current analysis. Using the set of genes selected in
the feature selection step, and each of the mouse samples
as target in y, we applied each of the four decomposition
variants, U, P, S, and L (see methods section). After apply-
ing the models, we assign each mouse sample to the
HMEC class which has the highest absolute wi. Since we
know the mutation status of the mouse samples, we can
compare the class assignment from the different variants
to the known mutation status. To evaluate the predictive
accuracy we only employed the three classes in the mouse
dataset for which an equivalent class is present in the
HMEC data. Therefore, we used the classes Myc, Ras and

Visualization of the Lasso shrinkageFigure 2
Visualization of the Lasso shrinkage. Example showing 
how the shrinkage of weights by the Lasso regularization is 
visualized. Let's assume we have a hypothetical case with four 
components, labeled C1 to C4. In subplot a on the left, we 
show an example of the weights in w as a function of λ (in 
analogy to [20]). In the top row of plot a we indicate the 
total number of non-zero weights. Then, subplot b on the 
right shows the table that is used to depict the order in 
which the weights, w, turn non-zero under Lasso regulariza-
tion. The two rows at the top and the two columns to the 
left indicate whether a particular weight is non-zero (1, yel-
low cell shading), or zero (0, white cell shading). Numbers in 
the table (gray shaded area) indicate the combined number of 
non-zero weights in w, that is, all 16 (i.e. 24) states are shown 
(possible combinations with 0 up to 4 weights being non-
zero). There are 24 (i.e. 4!) possible unique paths to go from 
0 to 4 non-zero weights. These paths can be traced in the 
plot assuming the left/right edges and top/bottom edges of 
the table are connected. We start with λ = inf, and slowly 
decrease λ. For an infinite λ the resulting w vector will be all-
zero (bottom right in the table shown in subplot b). At a 
slightly lower λ one of the four weights will be the first to 
become non-zero. By lowering λ to zero, up to four weights 
will be non-zero. In subplot a on the left, the weights turn 
non-zero in the following order: C4, C1, C3 and lastly C2. 
The corresponding trajectory is depicted in subplot b on the 
right using the red line.
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E2F3 (which is equivalent to Rb-null in mice), from the
mouse data.

Figure 3 shows heatmaps indicating the obtained w vec-
tors for all 14 mouse samples, as obtained by each of the
four decomposition variants.

The w vectors found using the U variant have both posi-
tive and negative weights. Several mouse samples are

incorrectly classified, most notably the Ras samples,
which are all incorrect (i.e. their largest wi, indicated by
crosses in Figure 3, does not correspond to the RAS HMEC
class). Next, in the P variant, where all weights are con-
strained to be positive, all w vectors are almost identical
for all mouse samples. This is a clear disadvantage, since
no clear distinction between the mouse samples is made.
For this variant, classification of the E2F3 samples turns
out to be most difficult. Constraining all weights to sum

Results on HMEC-Mouse dataFigure 3
Results on HMEC-Mouse data. Heatmaps showing the w vectors for the decomposition of the mouse samples into the 
HMEC classes. The four heatmaps correspond to the four decomposition variants, U, P, S, and L, as indicated above each of the 
heatmaps. Each heatmap lists the 14 mouse samples along the x-axis, and the five HMEC classes along the y-axis. The heatmap 
reflects the w vectors that were obtained by decomposing each mouse sample separately. Each column contains one cross, 
indicating the largest absolute weight in that particular w vector, and thus the class assignment for that particular mouse sam-
ple. These solutions correspond to the case where the union of top 70 most differentiating genes for the separate one-versus-
rest HMEC class comparisons are employed to represent the HMEC classes.
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to one (variant S), results in a distinctly different set of w
vectors, but in terms of performance it is equal to variant
P.

The lasso-based variant (L) provides the most desirable
output, positive weights for the correct classes, and zeros
everywhere else. Of course the result depends on the set-
ting of λ, which was chosen such that a single non-zero
weight is left for each of the mouse samples. This single
remaining non-zero weight is what we hypothesize to be
the most important weight.

Of course, the set of genes used in the decomposition
influences the results. To investigate this, we inspected the
performance of the four decomposition variants relative
to the number of genes n that is selected in each one-ver-
sus-the-rest rankings. We define performance as the frac-
tion of mouse correctly classified mouse samples, i.e.
assigned to the HMEC class with the correct correspond-
ing perturbation. We varied the number n from 10 to 500
genes. Figure 4 shows the resulting performance curves for
each method. It is clear that the lasso-based method out-
performs the other methods over the entire range of n, and
reaches the best performance around 70 to 80 genes.

Decomposing human data into MCF7 components
For the collection of 509 human breast cancer samples,
we applied a decomposition into four MCF7 classes. Thus,
we used the human samples as y vectors, and created a C
matrix where the mean vectors of the four MCF7 formed
the columns. We used the L variant to decompose the
samples, since that showed the best performing decompo-
sition on the mouse-HMEC data. We applied a feature
selection step similar to that employed for the mouse-
HMEC data to select the genes that are most discriminat-
ing between the four MCF7 classes. We employed the top
70 genes and set λ to 15% of the total number of genes,
since these settings resulted in the best performance in the
mouse-HMEC decomposition.

Unfortunately, for the human breast cancer data there is
no information with regard to presence/absence of muta-
tions. Nevertheless, a multitude of other clinical parame-
ters is available for most of these samples. For all samples
the estrogen receptor (ER) status, distant metastasis free
survival time, and Hu et al. [2] subtype information is

Results on the MCF7-Human breast cancer dataFigure 5
Results on the MCF7-Human breast cancer data. Output from the lasso-based decomposition variant (L), on 509 human 
breast cancer samples. The red and white heatmap indicates the w vectors for all samples (n = 70). Samples with the same sin-
gle non-zero weight are grouped together. For the small group of samples on the left, all weights are zero, whereas for the 
samples on the right more than one element of w is non-zero. The ER status, whether a metastasis event occurred, and the 
subtyping according to Hu et al. are indicated by the top three colored rows above the heatmap. The groups formed based on 
which weights are non-zero are indicated in the fourth row (i.e. derived from this heatmap).
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available. Any link between these clinical parameters and
the MCF7 components is interesting.

Figure 5 shows a heatmap of the w vectors that are
obtained by decomposing the human samples into the
MCF7 samples. The samples were grouped into six groups
based on the number of non-zero weights. Group 1 con-
sists of a small set of samples which were assigned all-zero
weight vectors. Groups 2 to 5 consist of samples with a
single non-zero weight (the group being determined by
the weight being non-zero). Group 6 consists of about 70
samples with more than one non-zero weight. From a
clinical point of view, the outcome parameter is the most
important. Therefore, we wanted to test whether there is a
relation between these six groups of samples, as repre-
sented in Figure 5, and disease free survival. To do so, we
created Kaplan-Meier curves for each of the six groups, see
Figure 6. The difference in survival characteristics between
these six groups is significant (p = 0.0014, logrank test).

Thus, the L decomposition has provided clinically inter-
esting groups of samples with distinct outcome character-
istics.

Based on the grouping obtained in Figure 5, some rela-
tions with the clinical parameters are already visible. We
employed the Chi-squared test to formally test the associ-
ations between each clinical parameter, and MCF7 class,
see Figure 7. This allows us to test whether an association
exists between the non-zero/zero weights and a given clin-
ical parameter such as ER status. Figure 7 shows the most
significant associations that were detected.

As shown in Figure 7, the majority of ER negative samples
have a zero ERBB2 weight. At the same time, the ER posi-
tive samples are equally distributed between the ERBB2
present (non-zero weight) and ERBB2 absent (zero
weight) groups. This association is highly significant (p <
10-15). Similarly, the majority of the samples from the
Basal group, have a zero ERBB2 weight (p < 10-15). This
confirms a previous observation that the Basal samples
are predominantly triple negative, i.e. ERBB2, ER, and PR
negative, Kreike et al. [28]. In addition, we made a Kaplan-
Meier plot for the two groups obtained by splitting on
ERBB2 weight status in (zero/non-zero). The difference in
survival is clearly significant (p = 1.4e – 5, figure not
shown).

Figure 7 also shows that the majority of ER negative sam-
ples have a positive RAF weight, and at the same time that
most of the ER positive samples have a zero RAF weight.
The association between RAF and ER status is highly sig-
nificant (p < 10-15). Both the RAF and ESR1 (ER) genes are
key players in the MAPK signalling cascade (result not
shown, String database, string.embl.de). Thus our analysis
confirms the close relation between these two genes.

The subtypes provided by Hu et al. [2] include a Her2
group. This group is of particular interest since this is
equivalent to the ERBB2 class in the MCF7 dataset. It turns
out that there is little to no correlation between these two
assignments, only 15 out of the 46 Her2 samples have a
non-negative ERBB2 weight (see Figure 7). Strikingly, the
majority of samples with a non-negative ERBB2 weight
are the Luminal A and normal-like samples. Another
method has been published that allows the determination
of the Her2 status solely based on 1 probe that shows a bi-
modal expression distribution (Gong et al. [29]). We also
determined the Her2 status using this method (results not
shown). It turns out that there is limited to no correlation
among the Her2 assignments, as derived by Hu et al. [2],
Gong et al. [29], and our method. A potential explanation
for this might be that the Hu et al. and Gong et al. Her2
subtype is defined largely by the Her2 expression itself,
and much less by its downstream effects. Only a known

Kaplan-Meier plot on the Human breast cancer dataFigure 6
Kaplan-Meier plot on the Human breast cancer data. 
Kaplan-Meier plot indicating the difference in disease free 
survival characteristics of the six groups discerned on the 
509 human samples. The samples were grouped into six 
groups based on the number of non-zero weights. Group 1 
consists of a small set of samples which were assigned all-
zero weight vectors. Groups 2 to 5 consist of samples with a 
single non-zero weight (the group being determined by the 
weight being non-zero). Group 6 consists of the samples 
with more than one non-zero weight. The p-value corre-
sponds to the logrank test.
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ground truth can give an indication which of the three
assignments best reflects the actual perturbation status of
Her2. However, such data is currently not yet available.

Order of Lasso shrinkage
Next, we inspected the effect of the regularization param-
eter on the order in which the weights in w become non-
negative. Thus, we obtain tables with trajectories for each
of the 509 samples, similar to the example shown in Fig-

ure 2. In order to create an aggregate plot of all trajectories
across 509 samples, we created a slightly adapted repre-
sentation, see Figure 8. More specifically, the linewidth of
the red/blue lines in Figure 8 is proportional to the frac-
tion of tables (samples) that have that link, relative to the
total number of samples. For example, let's assume there
are 300 out of 500 samples that traverse 0 to 1 based on a
positive weight for RAF (i.e. upwards in Figure 2), then
that line will be plotted with 0.6 times the maximum
linewidth.

Figure 8 shows that there is a clear consensus in the ER
negative table. For many ER negative samples, first the
RAF weight becomes positive, followed by the MEK
weight as second and EGFR weight as third (or alterna-
tively EGFR as second, and MEK as third). For the ER pos-
itive samples, the trajectories are much more diverse, and
no clear consensus is seen. This implies that the group of
ER negative samples is more coherent in terms of the
order in which these samples are decomposed into the
separate components.

Decomposing human data into gene sets
As an alternative source for knowledge driven compo-
nents, we used gene sets. More specifically, we used gene
sets that were linked to the hallmarks of cancer described
by Hanahan et al. [6] (see Materials and Methods section).
This was done by creating a C matrix with these 16 gene

Visualization of Lasso shrinkage in the ER subgroupsFigure 8
Visualization of Lasso shrinkage in the ER subgroups. 
Table indicating the order in which the weights in w become 
non-zero, when changing λ. The figure shows the results for 
the ER negative (left) and ER positive (right) groups sepa-
rately. The linewidth is proportional to the total number of 
samples in the ER negative/positive subgroup, respectively.
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sets as components. Thus, the C matrix has 16 columns,
one for each gene set. For each gene set (i.e. each column)
the entries in C are set to 1 for gene that is part of that gene
set, and set to zero otherwise. We used this C matrix with
gene sets to decompose the 509 breast cancer samples
(where the expression profile of the tumor samples were
iteratively inserted in the y vector). Once again we applied
feature selection, by performing the decomposition using
only those genes that are assigned to at least one of the
gene sets used.

Figure 9 shows the resulting trajectories associated with
each of the groups defined by Hu et al. A hallmark is now
considered to be zero when the weights of all components
linked to that hallmark are zero. In most subgroups a con-
sensus trajectory can be discerned. The consensus order of
importance in the Her2, LuminalB, and Basal subtypes is
similar: first replication, second apoptosis, followed by
angiogenesis and growth. In the LuminalA group the
order the first two are flipped, that is, first apoptosis, and
second replication attains a non-zero weight. In all four of
these subgroups, a reasonable part of the samples ends up
with a vector having four non-zero weights.

On the other hand, in the normal-like group, there is no
clear consensus, and samples first get a non-zero weight
for either one of apoptosis, growth, angiogenesis. Only
very few samples obtain a non-zero weight for replication.
Consequently, almost none of the normal-like samples
get to the stage with four non-zero weights. This signifies
a discriminating characteristic of the normal-like samples
with respect to the other four categories. This is slightly
contradictory to the original Hanahan et al. [6] hypothe-
sis, which states that a tumor must have obtained all six of
the hallmarks. However, the normal-like group of breast

cancer samples, is also the one with the best survival char-
acteristics [2]. Perhaps this better survival is, in part,
explained by the fact that the replication hallmark is not
as active as in some of the other breast cancer subtypes.

Conclusion
We described a linear model which links a set of knowl-
edge-derived expression vectors to the expression profile
of samples, potentially with unknown mutation status.
When benchmarked on data from HMECs and Mouse, the
lasso-based method outperforms the best. Moreover, the
lasso-based method is relatively insensitive to the setting
of the regularization parameter λ, and performs well for
the entire range of genes (n) that is selected. Thus, the pro-
posed lasso-based constrained least squares decomposi-
tion provides a parameter-insensitive and accurate
assignment of mutation status to samples.

On the collection of 509 human breast cancer samples, we
found several associations between the molecular compo-
nent class the samples were assigned to and the clinical
parameters. This includes both new associations (RAF
with ER status), and known associations (ERBB2 weight
zero with ER negativity/Basal subtype). Thus, the pro-
posed decomposition framework has a clear capability to
unveil relevant relations between the molecular compo-
nents and the human samples, for which no mutation sta-
tus is known. Using gene sets as components has unveiled
different consensus trajectories of appearance for the com-
ponents representing the Hu et al. subtypes when chang-
ing the regularization parameter λ. We hypothesize that
these trajectories provide insight into the key events that
gave rise to the tumor and might shed light on the future
behavior of the tumor, including how it will react to ther-
apy.

Visualization of Lasso shrinkage in the Hu subtypesFigure 9
Visualization of Lasso shrinkage in the Hu subtypes. Table indicating the order in which the weights in w become non-
zero, when changing λ. The figure shows the results for the human samples split over the five subgroups defined by Hu et al. 
[2]. Gene sets that correspond to these four Hanahan hallmarks were chosen as components. The linewidth is proportional to 
the total number of samples in that clinical subgroup. Apopt: Apoptosis; Growth: Growth; Angio: Angiogenesis; Repli: DNA 
Replication.
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A main advantage of our method is that it allows the
incorporation of knowledge derived components, which
is not possible for most data-driven methods. Moreover,
it is possible to do the decomposition for even just one
sample (i.e. a single y vector). This is not possible for, for
example, PCA, where a group of y vectors is required. A
limitation of our method is that it requires a set of com-
ponents derived from knowledge. Of course, for interpre-
tation of the data-driven components, this knowledge has
to be available as well. Thus, the knowledge based decom-
position presented here is a viable alternative.
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