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Abstract

Background: Determining the disulfide (S-S) bond pattern in a protein is often crucial for understanding its
structure and function. In recent research, mass spectrometry (MS) based analysis has been applied to this problem
following protein digestion under both partial reduction and non-reduction conditions. However, this paradigm still
awaits solutions to certain algorithmic problems fundamental amongst which is the efficient matching of an
exponentially growing set of putative S-S bonded structural alternatives to the large amounts of experimental
spectrometric data. Current methods circumvent this challenge primarily through simplifications, such as by
assuming only the occurrence of certain ion-types (b-ions and y-ions) that predominate in the more popular
dissociation methods, such as collision-induced dissociation (CID). Unfortunately, this can adversely impact the
quality of results.

Method: We present an algorithmic approach to this problem that can, with high computational efficiency,
analyze multiple ions types (a, b, bo, b*, c, x, y, yo, y*, and z) and deal with complex bonding topologies, such as
inter/intra bonding involving more than two peptides. The proposed approach combines an approximation
algorithm-based search formulation with data driven parameter estimation. This formulation considers only those
regions of the search space where the correct solution resides with a high likelihood. Putative disulfide bonds thus
obtained are finally combined in a globally consistent pattern to yield the overall disulfide bonding topology of
the molecule. Additionally, each bond is associated with a confidence score, which aids in interpretation and
assimilation of the results.

Results: The method was tested on nine different eukaryotic Glycosyltransferases possessing disulfide bonding
topologies of varying complexity. Its performance was found to be characterized by high efficiency (in terms of
time and the fraction of search space considered), sensitivity, specificity, and accuracy. The method was also
compared with other techniques at the state-of-the-art. It was found to perform as well or better than the
competing techniques. An implementation is available at: http://tintin.sfsu.edu/~whemurad/disulfidebond.

Conclusions: This research addresses some of the significant challenges in MS-based disulfide bond determination.
To the best of our knowledge, this is the first algorithmic work that can consider multiple ion types in this
problem setting while simultaneously ensuring polynomial time complexity and high accuracy of results.
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Background
Disulfide (S-S) bonds are known to play an important
role in protein structure and function. Among others,
this includes: influencing protein folding and stabiliza-
tion, formation of characteristic structural motifs such
as the cysteine knot, mediation of thiol-disulfide inter-
change reactions, and regulation of enzymatic activity.
Early computational approaches for S-S bond determi-
nation focused on two learning-driven formulations
based on the protein primary structure [1]: residue clas-
sification (distinguish bonded and free cysteines) and
connectivity prediction (determine the S-S connectivity
pattern). In recent times, the increasing availability and
accuracy of mass spectrometry [2] (MS) has opened up
an alternate approach; its essence lies in matching the
theoretical spectra of ionized peptide fragments with
experimentally obtained spectra to identify the presence
of specific S-S bonds. A diagrammatic representation of
the key steps of a MS-based approach is presented in
Figure 1, along with the different types of fragment ions
that can be generated as an outcome of this process.
MS-based methods generally outperform methods

using sequence-based learning formulations, as showed
by Lee and Singh [3]. However, a number of algorithmic
challenges remain outstanding in realizing the potential
of MS-based approaches. Salient among these are:
(1) accounting for multiple ion types in the data [4,5]:
To avoid an exponential increase in the search space, a
common simplification is to limit the analysis to the
spectra of b-ions and y-ions only [3,6,7]. However, this
simplification may erroneously ignore the occurrence of
other ions, such as: a, bo, b*, c, x, yo, y*, and z. While the
occurrence of non-b/y ions is minimized (though not
eliminated) in collision-induced dissociation (CID),
some of these ions can be present with greater likeli-
hood in dissociation methods such as electron capture
dissociation (ECD), electron transfer dissociation (ETD),
and electron-detachment dissociation (EDD). In fact
these ions types should be considered even in CID as

illustrated by the example in Figure 2. (2) Design of effi-
cient search and matching algorithms: The search space
of possible disulfide topologies increases rapidly not
only with the number of ion types being analyzed but
also with the number of cysteines as well as the types of
connectivity patterns. Thus, it is imperative to have
algorithms that can accommodate the richness of the
entire problem domain. (3) Automated data-driven
determination of parameters: Many advanced algorithms
in this area are intrinsically parametric. Often, determin-
ing the optimal value of these parameters automatically
is in itself, a complex problem. This places the practi-
tioner at a significant disadvantage. Support for auto-
mated and data-driven strategies for estimation of
crucial parameters is therefore crucial to the real-world
success of a method in this problem domain.
The contributions of this paper in context of the

aforementioned challenges include: (1) Development of
a highly efficient strategy for multi-ion disulfide bond
analysis by considering a, b, bo, b*, c, x, y, yo, y*, and z
ion types. To the best of our knowledge, this is the first
algorithmic work that has considered all these ion-types
in S-S bond determination. (2) A fully polynomial-time
algorithm that selectively generates only those regions of
the search space where the correct solutions reside with
a high likelihood. (3) A multiple-regression-based data
driven method to calculate the critical parameters mod-
ulating the search, so as to ensure that the correct
bonding topologies are not missed due to the truncation
of the search space. At the same time, the parameter
selection ensures that the search is focused on the most
promising regions of the search-space, and (4) A local-
to-global strategy that builds a globally consistent bond-
ing pattern based on MS data at the level of individual
bonds.
The proposed approach also implements the probabil-

ity-based scoring model proposed in [8] for each specific
disulfide bond based on the number of MS/MS matches
and their respective abundance. These scores reflect the

Figure 1 MS-based approach diagrammatic representation. (A) Once a protein is digested, the theoretically possible disulfide bonded
peptides are compared with experimentally obtained precursor ions. In order to confirm each correspondence, the possible disulfide bonded
fragment ions are next compared with experimentally generated MS/MS spectra. (B) Most of the different fragment ions (and their
nomenclature) that can be observed. Ions types not represented here include b and y ions which have either lost a water molecule (bo, yo) or
have lost an ammonia molecule (b*, y*).
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significance of the specific disulfide bond and can form
the basis of analysis, such as that conducted in [9], to
estimate the accuracy of peptide assignment to tandem
mass spectra.
At a high-level, the proposed approach can be thought

of as a two-stage database-based matching technique
(see Figure 3). From this perspective, it shares similari-
ties with [10], where cross-linked peptides were also
identified using a two-level method. During the first
stage of such two-stage methods, the mass values of the
theoretically possible disulfide-bonded peptide structures
are compared with precursor ion mass values derived
from the MS-spectra. In the second (confirmatory)
stage, the theoretical spectra from the disulfide-bonded
peptide structures are compared with MS/MS experi-
mental spectra. The confirmatory step is necessary since
a disulfide bonded peptide may not actually correspond
to a precursor ion, even if their mass values are similar.
Our approach can be used to conduct this entire search
process in (a low degree) polynomial time. This paper

significantly extends our prior research where we had
proposed efficient indexing strategies to speed-up the
search [11,12] as well as our more recent work [13],
where a polynomial time approximation algorithm using
hand-crafted parameters was proposed for the first stage
matching.

Methods
We start the description of our method by providing, in
Table 1, the key abbreviations used in the ensuing
description and their respective definitions. In the first
stage of the method, an Initial Match (IM) is said to be
obtained when the difference between the detected mass
of a targeted ion from the PMS and the calculated mass
of a possible disulfide-bonded peptide structure from
the DMS is found to be less than a threshold TIM. The
second stage validates (or rejects) the initial matches.
For each Initial Match, the validation occurs by search-
ing for matches between product ions from the TMS
and the theoretical spectra FMS. A Validation Match

Figure 2 Multiple-ion spectra analysis. This figure illustrates the presence of multiple ions types (in green) after CID. In the first spectrum, note
the presence of bo and yo ions with high intensity in the fragmentation of the precursor ion with sequence: FFLQGIQLNTILPDAR, for the protein
Lysozyme [Swiss-Prot: P11279]. In the second spectrum, a, bo, b*, and yo ions (all with high intensity) can be observed after the fragmentation of
a precursor ion existing in the protein Pratelet glycoprotein 4 [Swiss-Prot P16671].
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(VM) is said to occur when the difference between a
precursor ion fragment mass from TMS and a disulfide-
bonded fragment structure mass from FMS falls below a
validation match threshold TVM.
Unfortunately, the sizes of both FMS and DMS grow

exponentially. For a disulfide-bonded peptide structure
consisting of k peptides, considering that there are f dif-
ferent fragment ion types possible, up to fk types of frag-
ment arrangements may occur in the FMS. If the ith
fragment ion consists of pi amino acid residues, then

the complexity to compute the entire FMS for a disul-

fide-bonded peptide structure is Ο f pk
i

i

n

×
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
∏

1

using

a brute-force approach. The DMS also grows exponen-
tially. To understand this, let P = {p1, p2, …, pk} be the
list of cysteine-containing peptides in a polypeptide
chain. Further, let C = {c1, c2, …, ci} be the list of the
number of cysteines per cysteine-containing peptide pi.

Figure 3 Two-stage matching spectra for protein ST8SiaIV. (A) In the first-stage (DMS vs. PMS), the theoretical disulfide-bonded structure is
matched with the doubly charged precursor ion with highest intensity, whose m/z = 1082.9. (B) For this initial match, the disulfide-bonded
peptide pair is fragmented and the fragments are matched with the MS/MS spectrum for the precursor ion (FMS vs. TMS), generating a list of
validation matches.

Table 1 Abbreviations and their definitions

Abbreviation Definition

DMS Set of mass values corresponding to all possible disulfide-bonded peptide structures that can be obtained from a digested protein.

PMS Set of mass values of ions that undergo dissociation to produce product ions (set of precursor ions).

IM Correspondence obtained when the difference between the detected mass of a targeted ion from the PMS and the calculated mass
of a possible disulfide-bonded peptide structure from the DMS is less than a match threshold TIM.

TIM Initial Match threshold. Threshold used to define a mass window centered on a PMS value within which a correspondence between
a DMS value and a PMS value may be found.

ε DMS trimming parameter used to trim the DMS set. To trim the DMS set by ε means to remove as many elements from DMS as
possible without losing meaningful mass values.

TrimSet Set of trimmed mass values from the DMS set.

PM Peptide Mass: cysteine-containing peptide mass value.

TempSet Temporary mass set containing possible disulfide bonded peptide structures.

FMS Set of mass values of every disulfide-bonded fragment structure that can be obtained from fragment ions, which can be of types a,
b, bo, b*, c, x, y, yo, y*and z.

TMS Set of mass values of the product ions obtained after the MS/MS step (MS/MS spectra).

VM Correspondence obtained when the difference between a precursor ion fragment mass from TMS and a disulfide-bonded fragment
structure mass from FMS falls below a validation match threshold TVM.

TVM Validation Match threshold. Threshold used to define a mass window centered at a TMS value in which a correspondence between a
FMS value and a TMS value may be found.

δ FMS trimming parameter used to trim the FMS set. To trim the DMS set by δ means to remove as many elements from FMS as
possible without losing meaningful fragment ions mass values.

FragSet Set containing the mass values of fragment ions generated by the method GENFRAGS(.) in the APROX-FMS routine.
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If n ci i= ∑1 is the total number of cysteines in a pro-

tein, the number of possible disulfide connectivity pat-

terns (DMS size) is [1,14]: ( )!! ( )
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The subset-sum formulation: towards polynomial-time
matching
Given the growth characteristics of the DMS and the
FMS, an exhaustive search-and-match strategy is clearly
infeasible in the general case. This is especially true if
multiple ion types are considered. Indexing [11,12] and
filtering [15] are two possible approaches that have been
considered for ameliorating this problem. In this paper
we explore an alternative strategy that is based on the
key insight that the entire search space (DMS or FMS)
does not need to be generated to determine the matches.
That is, we only want to generate the few disulfide
bonded peptides whose mass is close to the (given)
experimental spectra rather than generate all possible
peptide combinations and subsequently testing and dis-
carding most of these. This insight allows us to re-cast
the DMS and FMS generation as instances of the sub-
set-sum problem [16]. Recall, that given the pair (S, t),
where S is a set of positive integers and t Î Z+, the sub-
set-sum problem asks whether there exists a subset of S
that adds up to t. While the subset-sum problem is itself
NP-Complete, it can be solved using approximation
strategies to obtain near-optimal solutions, in polyno-
mial-time [16].

Polynomial time DMS mass list construction
Our strategy lies in obtaining an approximate solution
to the subset-sum problem by trimming as many ele-
ments from DMS as possible based on a parameter ε.
To trim the DMS set by ε means to remove as many
elements from DMS as possible such that if DMS* is the
resultant trimmed set, then for every element DMSi
removed from DMS, there will remain an element
DMSi

* in DMS* which is “sufficiently” close in terms of
its mass to the deleted element DMSi. Specifically,

( ) *DMS DMS DMSi i i1 + ≤ ≤ (1)

The approximation algorithm for creating the partial
DMS is described by the APPROX-DMS and TRIM rou-
tines (Figure 4). APPROX-DMS takes the following
parameters: (1) a sorted list of cysteine-containing pep-
tides mass values (CCP), (2) a target mass value from
the PMS list (PMSval), (3) the trimming parameter ε,
and (4) the Initial Match threshold (TIM). In lines 2-8 of
Figure 4, all the variables and data structures are initia-
lized. In lines 9-11, the theoretical disulfide-bonded pep-
tide structures are formed and stored in a temporary set

called TempSet. Line 10 excludes values greater than the
PMSval plus a constant corresponding to the Initial
Match threshold. The rationale behind this threshold is
explained in the following section. Line 12 increments
the DMS by invoking the routine MERGE, which
returns a sorted set formed by merging the two sorted
input sets DMS and TempSet, with duplicated values
removed. In line 13, the TRIM routine is called to
shorten the DMS set. Lines 14-15 examine if the largest
mass value in the constructed DMS set is sufficiently
close to the targeted mass PMSval. If so, an Initial
Match occurs.
Table 2 presents an example showing the effectiveness

of the APROX-DMS. In this specific case, 37.5% of the
entire search space (all feasible combinations of
cysteine-containing peptides) was successfully trimmed,
while ensuring that the correct IM was not missed.
Another example illustrating the action of APPROX-
DMS on the Beta-LG protein is available as supplemen-
tal information (see Additional File 1).
The complexity of both routines MERGE and TRIM is

O(|DMS|+|TempSet|) and O(|DMS|), respectively.
Further, for any fixed ε > 0, our algorithm is a (1 + ε)-
approximation scheme. That is, for any fixed ε > 0, the
algorithm runs in polynomial time. The proof of the
polynomial time complexity of APPROX-DMS can be
obtained by direct analogy to the proof of the polyno-
mial time complexity of the subset sum approximation
algorithm from [16] and is outlined in Appendix A.

Parameters estimation
APPROX-DMS depends on two important parameters,
namely, the match threshold TIM and the trimming
parameter ε. The match threshold is responsible for
defining a “matching window”. This is necessary due to
practical considerations such as the sensitivity of the
instrument (i.e. 0.01Da, 0.1Da, and 1.0Da) and experi-
mental noise, due to which an exact match is a rarity.
We conducted an empirical study by using different
values of TIM for all our datasets. Based on the results,
the TIM value of ±1.0Da was found to minimize missing
matches as well as the occurrence of false positives.
Considering the smallest precursor ion mass involved, in
these studies, the above value of TIM guaranteed a
matching accuracy of 99.86%.
The second parameter ε is much more important as it

is crucial to the running time of the algorithm and its
accuracy as evident from Eq. (1). To determine ε, we
note that it is inversely proportional to the algorithm’s
running time. However, a large value of ε would cause
meaningful fragments to be left out of the DMS. At the
same time, a small value for ε will lead to few data
points being trimmed. Thus “guessing” appropriate
values of ε can be complicated and suboptimal choices
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can significantly impact the quality of the results. We
address the problem of data-driven estimation of ε using
a regression framework where ε is treated as a depen-
dent variable and based on the data, a functional
relationship is obtained between it and the other (inde-
pendent) variables. We model this functional relation-
ship using the following independent variables: (1) the
cysteine-containing peptides (CCP) mass range defined
by CCPmax and CCPmin corresponding to the peptides
with the highest and lowest mass respectively. (2) The
number of cysteine-containing peptides k. A large k
implies that the average difference in the mass of any
two peptide fragments is small. Conversely, a small k
implies fewer fragments with putatively larger differ-
ences in their masses. (3) The cysteine-containing

peptides average mass value CCPaverage. The relationship
between ε and these other variables is then obtained
using multiple-variable regression. In our studies, the
data for the regression was obtained using bootstrapping
where groups of four proteins were randomly picked
from the set of 9 proteins available to us. The functional
relationship defining ε was obtained to be:

 = × ×
−( ) − × × +− −1 3939 10 1 0824 10 3 902 3. . .max minCCP CCP

CCP
k

average

994 10 2× − (2)

Polynomial time FMS construction
In creating the FMS, a strategy similar to the one used
for generating the DMS can be used. This involves using
an approximation algorithm, this time, to generate the
theoretical spectra for all the IMs found during the first-

Figure 4 Pseudo code for APROX-DMS and TRIM routines

Table 2 Running APROX-DMS on the ST8SiaIV C142-C292bond

Property Value

CCP {716, 728, 749, 863, 864, 891, 976, 1096, 1105, 1161, 1204, 1274, 1359, 1367, 1418, 1480, 1593, 1733, 1754, 1846, 1863, 1864, 1976, 2179,
2292, 2351, 2617, 2737, 2822}

PMSval {2050.5} (Precursor ion mass)

ε 0.02530

TIM 1.0

DMS {728, 749, 863, 891, 976, 1105, 1161, 1204, 1274, 1367, 1418, 1480, 1593, 1639, 1702, 1754, 1846, 1908, 1994, 2050} – (value in bold is a
valid IM)

TrimSet {716, 864, 1096, 1359, 1476, 1733, 1863, 1864, 1865, 1867, 1976, 2022}

IM {2050.0} (KTCAVVGNSGIL – CDEIHLY) – SS-bond: C142-C292

CCP: the mass values of all cysteine-containing peptides. PMSval: a disulfide-bonded precursor ion mass. TrimSet: all the disulfide-bonded structures trimmed from
the set of feasible combinations of cysteine-containing peptides. For this example, 37.5% of the structures were trimmed and the correct IM was found.
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stage matching. We define another trimming parameter
δ to trim the FMS mass list. It can be expected that the
functional form of δ depends on the fragments mass
range, as well as their granularity (extent to which frag-
ments are broken down into smaller ions). In a manner
similar to the case for estimating ε, we used regression
to obtain the specific functional form for the dependent
variable δ in terms of the variables AAmax (the largest
amino acid residue mass), AAmin (the smallest amino
acid residue mass), AAaverage (the average amino acid
residues mass), and ||p|| (average number of amino acid
residues per fragment). Bootstrapping was once again
utilized, resulting in the relationship shown in Eq. (3).

 = × ×
−( ) − × × + ×− −6 1744 10 3 0936 10 5 07313 3. . .max minAA AA

AA
p

average

110 2− (3)

The pseudocode of the APPROX-FMS procedure used
for generating the FMS is shown in Figure 5. The func-
tion GENFRAGS(.), in line 7, generates multiple frag-
ment ions (a, b, bo, b*, c, x, y, yo, y*, and z) for peptide
sequences in Pepsequences, which contains the disulfide-

bonded peptides involved in the IM being analyzed.
Next, for each element in the FMS and for each frag-
ment in the FragSet (lines 8-11), new disulfide-bonded
peptide fragment structures are formed. Line 10 rejects
values greater than the TMSval, considering the Valida-
tion Match threshold. In line 12, the current FMS set is
combined with the disulfide-bonded peptide fragments
set TempSet using MERGE. In line 13, the FMS is
trimmed using the TRIM routine. Lastly, a Validation
Match VM is declared (lines 14-15) when a correspon-
dence is found between the mass of the largest value in
FMS and an experimentally determined mass value
TMSval, given a Validation Match threshold.

Determining the globally consistent bond topology
Once all the Initial Matches and Validation Matches are
calculated, we have a “local” (putative bond-level) view
of the possible disulfide connectivity. This local informa-
tion needs to be integrated to obtain a globally consis-
tent view. Our approach to this problem is motivated by
Fariselli and Casadio [14]. Specifically, we model the

Figure 5 Pseudo code for APROX-FMS routine.
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location of the putative disulfide bonds by edges in an
undirected graph G (V, E), where the set of vertices V
corresponds to the set of cysteines. To each edge, we
assign a match score. This score represents the com-
bined importance of each single peak match within two
spectra. Each specific peak match is weighted according
to its intensity. The match score is given by:

V VM I TMS IS i N

i

n

i N

i

n

= × ×
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

×
= =
∑ ∑( ) / ( )

1 1

100 (4)

In Eq. (4), the numerator corresponds to the sum of
each validation match for a disulfide bond multiplied by
the matched MS/MS fragment normalized intensity
value (IN). Here, VMi is a binary value which is set to 1
if a confirmatory match was found for fragment i. The
denominator similarly contains the sum of each experi-
mental MS/MS fragment ion from TMS multiplied by
IN. Here, TMSi is a binary variable which indicates the
presence of a fragment i in the MS/MS spectrum.
Next, the globally consistent bond topology is found

by solving the maximum weight matching problem for
the graph G. A matching M in the graph G is a set of
pair-wise non-adjacent edges; that is, two edges do not
share a common vertex. A maximum weight matching
is defined as a matching M that contains the largest
possible sum of the weights (match scores) of each pos-
sible edge (disulfide bond). We use the Gabow algo-
rithm [17], as implemented in [18] for computing the
maximum weight match.

Results
The proposed method was validated utilizing experi-
mental data obtained using a capillary liquid chromato-
graphy system coupled with a Thermo-Fisher LCQ ion
trap mass spectrometer LC/ESI-MS/MS system. Details
of the experimental protocols can be found in [19,20].
We used data from nine eukaryotic glycosyltransferases.
These molecules and their Swiss-Prot ID were: ST8Sia
IV [Q92187], Beta-lactoglobulin [P02754], FucT VII
[Q11130], C2GnT-I [Q09324], Lysozyme [P00698], FT
III [P21217], b1-4GalT [P08037], Aldolase [P00883], and
Aspa [Q9R1T5].
We conducted five sets of experiments to investigate

the proposed method and its efficacy. These experi-
ments included: (1) Analysis of method’s efficiency,
showing how the method successfully reduced the DMS
and FMS search spaces. (2) Analysis of the effect of
incorporating multiple ion types, demonstrating the
importance of considering non-b/y ions in the determi-
nation of disulfide bonds. (3) Comparative analysis of
the proposed method with established predictive techni-
ques. (4) Comparative analysis of the method with

MassMatrix, an established MS-based approach which
can be used for determining S-S bonds. In both experi-
ment 3 and experiment 4, the aforementioned set of gly-
cosyltransferases and their known S-S bond topology
provided us with the ground truth. (5) Analysis of the
method in terms of established performance measures:
Accuracy (Q2), Sensitivity (Qc), Specificity (Qnc), and
Matthew’s correlation coefficient (c).

Analysis of efficiency of the search
One of the most important characteristics of the pro-
posed method is its efficiency in terms of excluding sig-
nificant portions of a large and rapidly expanding search
space. In Table 3 we compare the size of the complete
DMS (containing all the disulfide-bonded peptide struc-
tures generated for each protein) and the complete FMS
(containing all the disulfide-bonded fragment ions) with
the truncated DMS and FMS obtained using the pro-
posed approach.
It may be noted that across the molecules, on an aver-

age, the proposed approach required examining about
78% of the entire DMS and only about 14% of the entire
FMS. It is crucial to note that this reduction in search
was achieved without impacting the accuracy and hav-
ing considered all multiple fragment ion types (a, b, bo,
b*, c, x, y, yo, y*, and z). The DMS decrease was less than
the FMS decrease because the disulfide-bonded struc-
tures in the DMS were bigger and fewer in number and
consequently dispersed across the spectra mass range.
In Figure 6, we show the actual time taken to obtain a
solution by generating the complete DMS and FMS, as
well as their truncated counterparts, for each of the
molecules.

Effects of incorporating multiple ion types: a case study
In this experiment, we investigated the effect of incor-
porating multiple ion types (a, b, bo, b*, c, x, y, yo, y*,
and z) in determining the S-S bonds as opposed to con-
sidering only b/y-ions. We found that multiple instances
of combinations between b/y ions and other ions types
occurred by analyzing the confirmatory matches for the
different disulfide bonds. These combinations are avail-
able as supplemental information (see Additional File 2).
The consideration of multiple ion types also contribu-

ted to the method’s accuracy in terms of determining
specific S-S bonds. Disulfide bonds previously missed
due to their low match score could be identified when
all ten different ion types were considered. The tryptic-
digested protein FucT VII (which underwent CID)
constituted one such example. In FucT VII the bond
C318-C321 was missed when considering only b/y ions
(match score 29, pp=11, pp2 =15). However, as shown
in Figure 7, this bond was identified when multiple ions
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types were included (match score 100, pp=31, pp2=70).
The confidence measures pp and pp2 are described in
the following section. To explain this improvement we
note that C318-C321 was an intra-bond involving
cysteines that were close together. Consequently, CID-
based fragmentation was poor and the consideration of
other ion types essentially improved the signal-to-back-
ground contrast. In this particular case, five other ion
types - a4, a5, a6, b

o
7, y

*
7 - were present in the FucT VII

MS/MS data besides the b ions represented in the spec-
trum on the right in Figure 7. In the following, we pre-
sent details of how these ions contribute to the match
score Vs (from Eq. (4)). We present the two cases: con-
sideration of only b/y-ions (Eq. (5)) and consideration of
multiple ion types (Eq. (6)). In the numerator we specify
the contribution of each spectrum peak from Figure 7

(the ion corresponding to each VMi × IN term is showed
in brackets).

V
b b b b

S = + + +⎛
⎝⎜

⎞
⎠⎟

0 1784 0 1732 0 1574 1 4324
6 7321

4 5 6 7. [ ] . [ ] . [ ] . [ ]
.

×× = ( ) × =100 1 9414
6 7321

100 28 8.
.

. (5)

V
b b b b

S =
× + × + × + × + ×0 1784 0 1732 0 1574 1 4324 0 18634 5 6 7. [ ] . [ ] . [ ] . [ ] . [[ ]

. [ ] . [ ] . [ ] . [ ]
.

*

a

a a b yo

4

5 6 7 70 6787 0 1996 0 1464 3 5797
6 7

+

× + × + × + ×
3321 100

6 7321 6 7321 100 100 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ×

= ( ) × =. . .

(6)

We also observed that consideration of multiple ion-
types led to significant increase in the match scores of
the true disulfide bonds, whereas only a modest increase
was noticed for false positives. This allowed us to
increase the threshold we use on the match score Vs to
identify high-quality matches from 30 to 80 (a 166%
increase). The positive effect of this increment on the
specificity of the method can be illustrated by considering

Table 3 DMS and FMS mass space sizes comparison

Protein Disulfide Bond Full Search (exponential) Proposed Search (polynomial) DMS decrease FMS decrease

DMS size FMS size DMS size FMS size

Beta-LG C82C176 2152 2169 1870 78 13.1% 96.4%

ST8Sia IV C142C292 1246 1792 1038 106 16.7% 94.1%

C156C356 1246 2640 1038 255 16.7% 90.3%

FucT VII C318C321 581 115 528 34 9.1% 70.4%

C68C76 879 103 681 41 22.5% 60.2%

C211C214 879 1819 681 107 22.5% 94.1%

B1,4-GalT C134C176 2149 1189 1127 77 47.6% 93.5%

C247C266 2149 5480 1127 426 47.6% 92.2%

Average DMS and FMS decrease 21.8% 86.4%

Figure 6 Comparison of the computational time (in seconds) for the exhaustive and partial generation of DMS and FMS of the
proteins from Table 3. On average there was a 49.5% decrease in time to compute the DMS and 88.7% decrease in time to compute the FMS.
The computations were carried out on an Intel T2390 1.86 GHz single-core processor with 1GB RAM.
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the protein Aldolase. In this molecule, consideration of
only b/y ions led to a false positive S-S bond identifica-
tion between cysteines C135-C202 (Vs=30.8, with (original)
threshold 30) However, when the multiple ions-types
were considered with the (increased) threshold on the
match score, no S-S bond was found between C135-C202

(Vs= 53.2, (incremented) threshold 80).

Comparative studies with predictive techniques
In this experiment we compared the proposed method
with three well known predictive methods DiANNA
[21], DISULFIND [22], and PreCys [23]. The results
from each of the methods are shown in Table 4 along
with the with the known disulfide bond linkages accord-
ing to the Swiss-Prot knowledgebase. As it can be seen,
in terms of correct identifications (as well as minimizing

false positives), the proposed approach outperformed all
the predictive techniques.

Comparative studies with MassMatrix
At the state-of-the-art MS2Assign [6] and MassMatrix
[7] are two MS-based methods that can be applied to
the problem of determining S-S bond connectivity. In
our previous work [3], the MS2DB system developed by
us was found to be comparable to MS2Assign [6], albeit,
in limited testing. Since the proposed method improves
upon MS2DB and due to space limitations, we only pre-
sent detailed comparative results with MassMatrix [7] in
Table 5. As part of this experiment, for each S-S bond,
in addition to the empirical match score (Eq. (4)), a
probability based scoring model proposed in [8] was
implemented. This model provided two scores called pp

Figure 7 Spectra samples from tryptic digested protein FucT VII. Spectra (m/z vs. normalized intensity) illustrating the confirmatory matches
(whose intensity values were at least 10% of the maximum intensity) found for the disulfide bond between cysteines C318-C321 in protein FucT
VII. The spectrum in the left shows the matches found when multiple ions were considered. The spectrum in the right shows the matches when
only b/y-ions were considered.

Table 4 Comparison with predictive methods

Protein Known Pattern Proposed
Algorithm

DiANNA 1.1 DISULFIND PreCys

ST8Sia IV C142C292, C156C356, C142C292, C156C356 C11C156, C142C292, C169C356 None C142C356, C156C292

Beta-LG C82C176, C122C135 C82C176 C12C137, C82C176, C126C135 None None

FucT VII C68C76, C211C214, C318C321 C68C76, C211C214,
C318C321

C68C321, C76C211, C214C318 C76C318 C68C76, C211C214, C318C321

B1,4-GalT C134C176, C247C266 C134C176, C247C266 C23C176, C30C144, C266C341 None C134C247, C176C266

C2GnT-I C59C413, C100C172, C151C199,
C372C381

C59C413, C151C199,
C372C381

C13C172, C59C217, C151C234,
C199C372, C381C413

Not supported C59C381, C100C372, C151C172,
C199C413

Lysozyme C24C145, C48C133 C24C145, C48C133, C24C145, C48C133, C82C98, C94C112 C24C145, C48C133, C82C98,
C94C112

C82C145

FT III C81C338, C91C341 C81C338 C16C91, C81C143, C129C338 None C81C91

Aldolase None None C73C339, C135C290, C115C240,
C178C202

None None

Aspa None None C4C275, C60C217, C66C151, C123C145 None None
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and pp2 scores. The pp score helps to evaluate whether
the number of VMs could be a random. The pp2 score
evaluates whether the total abundance (intensity) of
VMs could be a random. We refer the reader to [8] for
a detailed description and formulae of the pp and pp2
scores. The reader may note that the proposed method
had better pp and pp2 scores when compared to Mass-
Matrix (higher pp and pp2 scores are better, indicating
smaller p-values). While the match scores (Vs) obtained
with the proposed method were also higher than those
obtained with MassMatrix (V*

s), no inferences should be
drawn as these scores are calculated differently in each
of these methods. As can be seen from Table 5, every
bond correctly determined by MassMatrix was also
found by us. However, there were S-S bonds in C2GnT-
I and Lysozyme that were found by the proposed
method but not by MassMatrix.

Quantitative assessment and analysis of the method’s
performance
If the set of disulfide bonds are denoted by P and the
set of cysteines not forming disulfide bonds by N, then
true positive (TP) predictions occur when disulfide
bonds that exist are correctly predicted. False negative
(FN) predictions occur when bonds that exist are not
predicted as such. Similarly, a true negative (TN) predic-
tion correctly identifies cysteine pairs that do not form a
bond. Finally, a false positive (FP) prediction, incorrectly
assigns a disulfide link to a pair of cysteines, which are
not actually bonded. Based on these definitions, we use
the following four standard measures to analyze the pro-
posed method.
Sensitivity (Qc) = TP/P (7)
Specificity (Qnc) = TN/N (8)
Accuracy (Q2) = TP + TN/P + N (9)

Matthew’s correlation coefficient c( ) = × − ×
+

TP TN FP FN
TP FN T( )( PP FP TN FP TN FN+ + +)( )( )

In Table 6 we present the results obtained for our
framework. With maximum specificity and high accuracy
(98% average), the method correctly reported the connec-
tivity for most of the proteins. The method only failed to
identify three disulfide bonds. One intra-bond in the
Beta-LG protein could not be found due to a blind spot
caused by the same intra-bond, making the protein’s
fragmentation difficult. A blind spot occurs when the pre-
cursor ion fragmentation produces different fragments
only at the outside boundaries of the intra-disulfide bond.
This can cause too few product ions to be generated; the
limited information can prevent accurate determination of
disulfide bonds using MS-based methods. One cross-
linked bond in the FT III protein also could not be identi-
fied because this particular connectivity configuration
creates a large disulfide-bonded structure, which is poorly
fragmented by tandem mass spectrometry. One bond in
the C2GnT-I protein could not be found, since the precur-
sor ion cannot be formed by chymotryptic digestion,
which was the digestion carried for C2GnT-I. It is impor-
tant to note that neither MassMatrix nor MS2Assign were
able to identify these bonds.

Table 5 Comparison with MassMatrix

Protein Known Pattern Proposed Method MassMatrix

ST8Sia IV C142C292, C156C356 C142C292 [Vs:131;pp:109;pp2:41], C
156C356 [Vs:100;pp:97;

pp2:6]
C142C292 [V*s:54;pp:15;pp2:13], C

156C356 [V*s:77;pp:23;
pp2:15]

Beta-LG C82C176, C122C135 C82C176 [Vs:100;pp:49;pp2:16] C82C176 [V*s:68;pp:14;pp2:14]

FucT VII C68C76, C211C214,
C318C321

C68C76 [Vs:105;pp:41;pp2:98], C
211C214 [Vs:100;pp:13;pp2:20],

C318C321 [Vs:100;pp:31;pp2:70]
C68C76 [V*s:12;pp:9;pp2:3], C

211C214 [V*s:78;pp:16;
pp2:11], C318C321 [V*s:46;pp:28;pp2:16]

B1,4-GalT C134C176, C247C266 C134C176 [Vs:100;pp:61;pp2:29], C
247C266 [Vs:195;pp:88;

pp2:177]
C134C176 [V*s:34;pp:9;pp2:7], C

247C266 [V*s:31;pp:7;pp2:7]

C2GnT-I C59C413, C100C172,
C151C199, C372C381

C59C413 [Vs:158;pp:237;pp2:61], C
151C199 [ Vs:100;pp:93;

pp2:15], C372C381 [Vs:100;pp:81;pp2:79]
None

Lysozyme C24C145, C48C133 C24C145 [Vs:140;pp:65;pp2:88], C
48C133 [Vs:100;pp:62;pp2:55] C48C133 [V*s:135;pp:51;pp2:33]

FT III C81C338, C91C341 C81C338 [Vs:100;pp:179;pp2:93] None

Aldolase None None None

Aspa None None None

The score (Vs) of each disulfide bond and the confidence scores (pp and pp2 values) are shown in brackets, respectively.

Table 6 Sensitivity, specificity, accuracy and Mathew’s
correlation coefficient results for all nine proteins
analyzed

Protein Qc Qnc Q2 c

ST8Sia IV 1.00 1.00 1.00 1.00

Beta-LG 0.50 1.00 0.95 0.69

FucT VII 1.00 1.00 1.00 1.00

C2GnT-I 0.75 1.00 0.98 0.86

Lysozyme 1.00 1.00 1.00 1.00

B1,4-GalT 1.00 1.00 1.00 1.00

FT III 0.50 1.00 0.94 0.69

Aldolase X 1.00 1.00 X

Aspa X 1.00 1.00 X
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Conclusions
We have presented an algorithmic framework for deter-
mining S-S bond topologies of molecules using MS/MS
data. The proposed approach is computationally effi-
cient, data driven, and has high accuracy, sensitivity, and
specificity. It is not limited either by the connectivity
pattern or by the variability of product ion types gener-
ated during the fragmentation of precursor ions.
Furthermore, the approach does not require user inter-
vention and can form the basis for high-throughput S-S
bond determination.

Additional material

Additional File 1: Action of APPROX-DMS on the protein Beta-LG
This example shows the effectiveness of the APROX-DMS algorithm while
trimming a DMS set generated for the protein Beta-LG using MS/MS
data.

Additional File 2: Combination between b/y ions and other ions
types on MS/MS data This example shows that combinations between
ion types other than just b and/or y ions do occur, even for proteins that
underwent CID (CID is a dissociation method which produces mainly b/y
ions).
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Appendix A – Etudes of the proof of polynomial complexity
The proof that the proposed method is a fully polynomial approximation
scheme consists of two parts. First, we need to show that each value
returned by the APPROX-DMS function is within 1 + ε from the optimal
solution. Second, we need to show that the running time of the method is
fully polynomial. We refer the reader to [16] for the proof of the first part
and focus in the following on analyzing the complexity of the method. To
show that the method is a fully polynomial-time approximation scheme, we
derive a bound on the length of a DMS set. After trimming, successive
elements DMSi and DMSi

’ of DMS must have a relationship

DMS DMSi i
’ > +1  . Therefore, each possible DMS set contains up

to log1+εPMLval values. Since (x/(1 + x)) ≤ ln(1 + x) ≤ x and 0 < ε < 1, it can
be shown that:

log
ln
ln

ln ln
1 1

1 2
+ =

+
≤
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PML

PMS PMS PMS
val

val val val (11)

As can be seen from Eq. (11), this bound is (explicitly) polynomial in the size
of the input PMSval. It is also (implicitly) polynomial in the size of the set
DMS since ε is directly proportional to the number of cysteine-containing
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peptides k (per Eq. (2)) and these peptides are in turn combined to form
each element of the DMS. A similar argument can be made for the APPROX-
FMS routine, completing thereby the proof that the proposed method is a
fully polynomial-time approximation scheme.
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