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Abstract

Background: Beta-site amyloid precursor protein cleaving enzyme (BACE-1) is a single-membrane protein belongs
to the aspartyl protease class of catabolic enzymes. This enzyme involved in the processing of the amyloid
precursor protein (APP). The cleavage of APP by BACE-1 is the rate-limiting step in the amyloid cascade leading to
the production of two peptide fragments Ab40 and Ab42. Among two peptide fragments Ab42 is the primary
species thought to be responsible for the neurotoxicity and amyloid plaque formation that lead to memory and
cognitive defects in Alzheimer’s disease (AD). AD is a ravaging neurodegenerative disorder for which no disease-
modifying treatment is currently available. Inhibition of BACE-1 is expected to stop amyloid plaque formation and
emerged as an interesting and attractive therapeutic target for AD.

Methods: Ligand-based computational approach was used to identify the molecular chemical features required for
the inhibition of BACE-1 enzyme. A training set of 20 compounds with known experimental activity was used to
generate pharmacophore hypotheses using 3D QSAR Pharmacophore Generation module available in Discovery
studio. The hypothesis was validated by four different methods and the best hypothesis was utilized in database
screening of four chemical databases like Maybridge, Chembridge, NCI and Asinex. The retrieved hit compounds
were subjected to molecular docking study using GOLD 4.1 program.

Results: Among ten generated pharmacophore hypotheses, Hypo 1 was chosen as best pharmacophore
hypothesis. Hypo 1 consists of one hydrogen bond donor, one positive ionizable, one ring aromatic and two
hydrophobic features with high correlation coefficient of 0.977, highest cost difference of 121.98 bits and lowest
RMSD value of 0.804. Hypo 1 was validated using Fischer randomization method, test set with a correlation
coefficient of 0.917, leave-one-out method and decoy set with a goodness of hit score of 0.76. The validated Hypo
1 was used as a 3D query in database screening and retrieved 773 compounds with the estimated activity value
<100 nM. These hits were docked into the active site of BACE-1 and further refined based on molecular
interactions with the essential amino acids and good GOLD fitness score.

Conclusion: The best pharmacophore hypothesis, Hypo 1, with high predictive ability contains chemical features
required for the effective inhibition of BACE-1. Using Hypo 1, we have identified two compounds with diverse
chemical scaffolds as potential virtual leads which, as such or upon further optimization, can be used in the
designing of new BACE-1 inhibitors.
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Background
Beta-site amyloid precursor protein cleaving enzyme
(BACE-1), also known as b-secretase, memapsin-2, or
Aspartyl protease-2, is a single-membrane protein
belongs to the aspartyl protease class of catabolic
enzyme. This is one of the enzymes responsible for the
sequential proteolysis of amyloid precursor protein
(APP) [1]. The cleavage of APP by BACE-1, which is
the rate-limiting step in the amyloid cascade, results in
the generation of two peptide fragments Ab40 and
Ab42. Among two peptide fragments, Ab42 is the pri-
mary species and thought to be causal for the neuro-
toxicity and amyloid plaque formation that lead to
memory and cognitive defects in Alzheimer’s disease
(AD) [2]. The AD is a debilitating neurodegenerative
disease that results in the irreversible loss of neurons,
particularly in the cortex and hippocampus [3]. It is
characterized by progressive decline in cognitive func-
tion that inevitably leading to incapacitation and death.
It also histopathologically characterized by the presence
of amyloid plaques and neurofibrillar tangles in the
brain. Regardless of the increasing demand for medica-
tion, no truly disease-modifying treatment is currently
available [4,5]. The BACE knockout study in mice
shows a complete absence of Ab production with no
reported side effects [6-8]. Since gene knockout study
showed a reduction in AD-like pathology, inhibition of
BACE-1 the key enzyme in the production of Ab pep-
tide has emerged as an attractive therapeutic target for
AD [9]. Therefore extensive efforts have been followed
in the discovery of potential inhibitors of BACE-1. Most
of the designing of BACE-1 inhibitors are based on the
transition state mimetic approach, which depends
mainly on replacing the scissile amide bond of an
appropriate substrate with a stable mimetic of the puta-
tive transition-state structure [10].
The main aim of our approach, which is discussed in

this study is different than the transition state mimetic
approach, is to develop an accurate and efficient method
for discovering potent BACE-1 inhibitors. A pharmaco-
phore hypothesis was generated based on key structural
features of compounds with BACE-1 inhibitory activity.
It provides a rational hypothetical representation of the
most important chemical features responsible for activ-
ity. Herein, a ligand-based 3D pharmacophore hypoth-
esis for BACE-1 inhibitors was constructed based on the
structure-activity relationship observed in a set of
known BACE-1 inhibitors. The resulted pharmacophore
hypotheses were validated by test set, Fischer randomi-
zation, leave-one-out, and decoy set methods. The vali-
dated pharmacophore hypothesis has been used in
in silico screening to identify hits that are highly varied
in chemical nature. The retrieved hits were subsequently

subjected to a well-defined refining procedure based on
estimated activity values, drug-likeness prediction and
further by molecular docking study. The identified hits
can further be utilized in designing novel and potent
BACE-1 inhibitors.

Methods
Dataset collection
In a computerized pharmacophore generation process
the accurate choice of the training set is a key issue.
The built pharmacophore hypothesis can be as good as
the input data information. The following criteria should
be considered during the selection of data set in order
to achieve a significant pharmacophore hypothesis. (1)
All compounds used in the training set have to bind to
the same receptor in roughly the same fashion. Com-
pounds having more binding interaction with the recep-
tor are more active than those with fewer; (2) the data
set must be widely populated covering an activity range
of at least 4 orders of magnitude; (3) the most active
compounds should inevitably be included in the training
set and (4) all biologically relevant data should be
obtained by homogenous procedures [11]. Every indivi-
dual feature in the resulting hypotheses will invade a
certain weight that is proportional to its relative contri-
bution to biological activity.
By taking these criteria into account, we have col-

lected a total number of 320 BACE-1 inhibitors from
various literature resources [12-25] and a database has
been created. The 2D structure of the compounds were
built using ChemSketch program version 12, and subse-
quently converted in to 3D structures using Discovery
studio 2.5 (DS) [26]. In the next step, 60 compounds
were selected as final dataset as the BACE-1 inhibitory
activities of these 60 compounds were studied under
same biological assay condition. Based on the principle of
structural diversity and wide coverage of activity range,
20 compounds were carefully selected as training set
compounds and the rest were used as test set in model
validation. Here, the IC50 value of the training set com-
pounds was taken into account, the inhibitory activity
values of the training set compounds span over a range
of four orders of magnitude, from 4 nM to 37 000 nM.
The chemical structure and experimental activity of the
training set compounds are shown in Figure 1.

Diverse conformation generation
Prior to the generation of pharmacophore hypotheses,
the training set compounds, which were converted to
3D structure, were used to generate diverse conforma-
tions. Diverse Conformation Generation protocol imple-
mented in DS was used to generate conformations using
the Best conformation model generation method with
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CHARMM force field and Poling algorithm to ensure
the energy-minimized conformation for each compound.
The parameters like maximum number of 250 confor-
mers, the ‘best conformational analysis’ method, and an
energy threshold of 20 kcal/mol above the global energy
minimum were chosen during conformation generation.

Pharmacophore modeling
The training set comprises of 20 compounds was used
in pharmacophore hypothesis generation. The HypoGen
algorithm available in 3D QSAR Pharmacophore Genera-
tion protocol of DS tries to generate hypotheses with
features common amongst active molecules and do not
reflect the inactive molecules of the training set. The
training set compounds were predicted for their inher-
ent chemical features using Feature Mapping protocol
implemented in DS. During pharmacophore hypothesis
generation a minimum of 4 and a maximum of 5 phar-
macophoric features like hydrogen bond acceptor
(HBA), hydrogen bond donor (HBD), positive ionizable
(PI), ring aromatic (RA) and hydrophobic (HY) were
included. These features were selected based on the fea-
ture mapping results. All parameters were set to their
default values except uncertainty value, which has been
changed to 2 instead of 3. An uncertainty value of 2 was
more convenient for our dataset because the activity
values of the training set spanned exactly the required 4
orders of magnitude; this choice has been further con-
firmed by preliminary calculations and by other litera-
ture evidence [27]. The uncertainty value represents the
ratio of the uncertainty range of the actual activity
against measured biology activity for each compound.

The HypoGen algorithm
With the full range of training set compounds from active
to inactive the pharmacophore hypotheses were generated
by HypoGen algorithm implemented in DS. This algo-
rithm constructs and ranks the pharmacophore hypoth-
eses that correlate best between 3D spatial arrangement of

features in a given training set compounds and their
respective experimental activities. This process is accom-
plished in three steps: the constructive phase, the subtrac-
tive phase and the optimization phase [28].
The constructive phase identifies the hypotheses that

are common amongst the active compounds. HypoGen
enumerates all possible pharmacophore configurations
using all combinations of pharmacophore features for
each of the conformations of the most active compound.
In order to consider the left over most active com-
pounds the hypotheses must fit a minimum subset of its
features. Hence, a large database of pharmacophore con-
figurations will be generated at the end of the construc-
tive phase.
The subtractive phase will remove the pharmacophore

configurations that are present in the least active com-
pounds. All compounds whose activity is by default 3.5
orders of magnitude less than that of the most active
compound are considered to represent the least active
compounds. The value 3.5 is adjustable depending on
the activity range of the training set. The optimization
phase improves the hypothesis score. These scores of
the generated hypotheses depend on the errors in activ-
ity estimation from regression and complexity. The opti-
mization involves a variation of features and/or locations
to optimize activity prediction via a simulated annealing
approach. The total cost parameter will be calculated
for every new hypothesis. The HypoGen will quit and
reports the 10 top-scoring hypotheses when there is no
improvement in the hypothesis score.

Data analysis
The quality of a pharmacophore hypothesis is best
determined by two theoretical cost calculations, which
are represented in bit units [29]. One is the ‘fixed cost’
also known as cost of an ideal hypothesis, which repre-
sents the simplest model that fits all the data perfectly.
The second cost is the ‘null cost’, which represents the
highest cost of a pharmacophore with no features that
estimates every activity to be the average of the activity
data of the training set compounds.
The total cost of any pharmacophore hypothesis

should always be close to the fixed cost and away from
the null cost to be the significant model. The cost differ-
ence between fixed and null cost values should be larger
for a meaningful pharmacophore hypothesis. A value of
40-60 bits in a pharmacophore hypothesis indicates that
it has 75-90% probability of representing a true correla-
tion in the data.
The hypotheses are also evaluated based on other cost

components. The cost value for every individual hypoth-
esis is the summation of three cost components: the
error cost (E), the weight cost (W) and the configuration
cost (C). The error cost is the value represents the root-

Figure 1 Structure of training set compounds. The 2D chemical
structures of 20 compounds of the training set together with their
experimental IC50 values in nM.
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mean-squared difference (RMSD) between experimental
and estimated activity value of the training set com-
pounds. The weight cost is a value that increases in a
Gaussian form as this function weights in a model devi-
ate from the ideal value of two. The configuration cost
or entropy cost measures the entropy of the hypothesis
space. If the input training set compounds are too mul-
tiplex, e.g. because of too flexible training set com-
pounds, this will result in an effusive number of
hypotheses as an outcome of the subtractive phase. This
configuration cost should always be less than a maxi-
mum value of 17 [30]. The correlation coefficient of the
pharmacophore hypothesis should be close to 1.

Pharmacophore validation
The generated pharmacophore hypothesis was validated
using test set, Fischer randomization, decoy set and
leave-one-out methods.
Test set method
A total of 40 compounds with experimental activity data
were selected as test set compounds. This method is
used to elucidate whether the generated pharmacophore
hypothesis is proficient to predict the activities of the
compounds other than training set and classify them
correctly in their activity scale. The conformation gen-
eration for test set compounds was carried out in a
similar way like training set compounds using Diverse
Conformation Generation protocol in DS. The com-
pounds associated with their conformations were subse-
quently carried out for pharmacophore mapping using
Ligand Pharmacophore Mapping protocol with Best/
Flexible Search option available in DS.
Fischer randomization method
The main purpose of this validation is to verify whether
there is a strong correlation existing between the chemi-
cal structure and biological activities of compounds.
This generates pharmacophore hypotheses by randomiz-
ing the activity data of the training set compounds with
the same features and parameters used to generate the
original pharmacophore hypothesis. The statistical sig-
nificance is calculated using the following formula: Sig-
nificance = 100 (1-(1+x/y)), where x represents the total
number of hypotheses having a total cost value lower
than the original hypothesis, and y represents the total
number of HypoGen runs i.e. initial and random runs.
The confidence level was set to 99%, where 99 random
spreadsheets (random hypotheses) were generated. Dur-
ing the pharmacophore generation, if the randomized
data set results in similar or better cost values, RMSD
and correlation, it means that the original hypothesis
have been generated by chance.
Decoy set method
An external database containing BACE-1 active and inac-
tive compounds was used to evaluate the discriminative

ability of Hypo 1 in the separation of active compounds
from the inactive compounds. The database was devel-
oped using a total of 453 compounds containing
206 actives and 247 inactives. All the compounds were
collected from published literature including binding
database [12-25,31]. The database screening was carried
out using Ligand Pharmacophore Mapping protocol
available in DS. A set of statistical parameters [32] like
Ht, % yield of actives, Enrichment factor (E), false posi-
tives, false negatives and Goodness of Hit (GH) score
were calculated.
Leave-one-out method
The pharmacophore hypothesis is cross validated by
leave-one-out method. In this method, one compound is
left in the generation of a new pharmacophore model
and its affinity is predicted using that new model. The
model building and estimation cycle is repeated until
each compound was left out once [33]. This test is per-
formed to verify whether the correlation coefficient of
the training set compounds is strongly depend on one
particular compound or not [34].

Database screening
The validated pharmacophore hypothesis, Hypo 1, was
used as a 3D query for screening four different chemical
databases. The purpose of this screening is to retrieve
novel and potential leads suitable for further develop-
ment. The chemical databases used were Maybridge,
Chembridge, NCI and Asinex. Conformers were gener-
ated for each molecule in the database using best con-
former generation method that allows a maximum
energy of 15 kcal/mol above that of the most stable con-
formation. The database screening was carried out using
Ligand Pharmacophore Mapping protocol implemented
in DS with Best/Flexible Search option. The retrieved
compounds were filtered by restricting the estimated
activity value less than 100 nM and the obtained com-
pounds were further refined using molecular docking
study.

Molecular docking
Pharmacophore modeling normally firmly associated
with docking procedure, which in a first step flexibly
aligns the ligand molecule into a rigid macromolecule
environment and then estimates the tightness of the
interaction by different scoring functions [35]. The
Docking takes all the information from a rigid protein
environment and scores several possible interaction
modes for different alignments. There are many docking
programs available for molecular docking studies. In this
study, we used GOLD (Genetic Optimisation for Ligand
Docking), a docking program [36] that uses genetic
algorithm for docking and performs automated docking
with full acyclic ligand flexibility, partial cyclic ligand
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flexibility and partial protein flexibility in the neighbor-
hood of the protein active site. The crystal structure of
BACE-1 complexed with an inhibitor SC7 (PDB ID:
2QP8) was used in molecular docking studies. The inhi-
bitor SC7 was extracted from the active site and the
retrieved database hits were docked based on the ligand
SC7 coordinates, in to the active site of BACE-1. The
water molecules were removed prior to docking because
they were not found to play any important roles in
BACE1-ligand interaction. The early termination option
parameter in GOLD was changed from 3 to 5 and the
maximum save conformations was set to 10. All the
other parameters were set at their default values.

Results and discussion
Pharmacophore generation
We have used the HypoGen algorithm implemented in
DS in order to quantitatively correlate the chemical
structure of BACE-1 inhibitors to their biological activ-
ity. The training set of 20 compounds (Figure 1) with
activity values ranging from 4 to 37000 nM was used in
pharmacophore model generation. The Feature Mapping
protocol resulted in HBA, HBD, RA, PI and HY
features. Selecting these features, the pharmacophore
generation run was performed along with diverse con-
formers of training set molecules generated as described
in methods section. Ten top-scored pharmacophore
hypotheses were generated and in order to choose the
best one and also to give an idea about the statistical
significance, the pharmacophore hypotheses were sub-
jected to cost analysis. The results of top ten pharmaco-
phore hypotheses and their statistical parameters are
given in Table 1. In this study, the first pharmacophore
hypothesis (Hypo 1) is the best hypothesis characterized
by the large cost difference (121.98 bits), lowest RMSD
value (0.804) and a high correlation coefficient of 0.977.

All ten hypotheses consist of HBD, PI, RA and HY fea-
tures. Nine of ten hypotheses were composed of five
pharmacophoric features except only one hypothesis,
which was of four features. The best pharmacophore
hypothesis (Hypo 1), which scored the large cost differ-
ence, lowest RMSD, lowest error cost and high correla-
tion coefficient, was made of one HBD, one PI, one RA
and two HY features.

Statistical data analysis
The generated hypotheses were subjected to cost analy-
sis. The two main values used for cost analysis are the
difference between fixed and null cost and another is
the difference between the null cost and the total cost
(Δcost). The fixed cost of the run was 74.77 bits, which
was well separated from the null cost of 203.22 bits and
close to the total cost of 81.24 bits. The large difference
(128.45 bits) observed between the fixed cost and null
cost value indicates that Hypo 1 has more than 90% sta-
tistical significance to be a significant model. All the 10
hypotheses were subjected to further evaluation for their
capability to predict the activity of the training set com-
pounds. Configuration cost or entropy value must be
less than 17 for which a value of 15.59 was obtained in
this study. All hypotheses have scored RMSD values
lower than 1.5 and ranging from 0.804 to 1.111, this
characterization further emphasizing the good predictive
quality of these hypotheses. Based on the rule to select a
hypothesis with a lowest total cost, high correlation
coefficient, large cost difference and significantly low
RMSD value, Hypo 1 gave the best statistical values
among other hypotheses. Hence, Hypo 1 with one HBD,
one PI, one RA and two HY was chosen as the best
hypothesis for further analysis. The inter-feature dis-
tance constraints were observed for this five-featured
pharmacophore hypothesis (Hypo 1) (Figure 2).

Table 1 Results of the top 10 pharmacophore hypotheses generated by the HypoGen algorithm

Hypothesis Total cost Cost differencea RMSD Corr. (r) Featuresb Test set correlation coefficient

Hypo 1 81.24 121.98 0.804 0.977 HBD, PI, RA, HY, HY 0.917

Hypo 2 81.44 121.78 0.813 0.976 HBD, PI, RA, HY, HY 0.902

Hypo 3 81.80 121.42 0.836 0.975 HBD, PI, RA, HY, HY 0.882

Hypo 4 82.13 121.09 0.852 0.974 HBD, PI, RA, HY, HY 0.861

Hypo 5 83.00 120.22 0.907 0.971 HBD, PI, RA, HY, HY 0.899

Hypo 6 85.49 117.73 1.035 0.962 HBD, PI, RA, HY, HY 0.901

Hypo 7 86.57 116.65 1.082 0.959 HBD, PI, RA, HY, HY 0.872

Hypo 8 86.75 116.47 1.085 0.958 HBD, PI, RA, HY 0.859

Hypo 9 86.87 116.35 1.098 0.957 HBD, PI, RA, HY, HY 0.862

Hypo 10 87.53 115.9 1.111 0.956 HBD, PI, RA, HY, HY 0.875

Null cost = 203.22; fixed cost = 74.77; configuration cost = 15.59.
aCost difference = null cost – total cost.
bHBD, hydrogen-bond donor; PI, positive ionizable; RA, ring aromatic; HY, hydrophobic.

John et al. BMC Bioinformatics 2011, 12(Suppl 1):S28
http://www.biomedcentral.com/1471-2105/12/S1/S28

Page 5 of 11



Activity prediction and mapping of training set
compound on Hypo1
To verify the predictive ability of Hypo1 on training set
compounds, the activity of each training set compound is
estimated by regression analysis. The experimental activities
of training set compounds were classified into four groups:
most active (IC50 ≤ 100 nM, ++++), active (100 nM < IC50

≤ 1000 nM, +++), moderately active (1000 nM < IC50 ≤ 10
000 nM, ++) and inactive (IC50 > 10 000 nM, +). The

estimated activity values of training set compounds based
on Hypo 1 and the corresponding error values are calcu-
lated (Table 2). The error value is the ratio between the
estimated and experimental activities. The positive error
value indicates that the estimated IC50 value is higher than
the experimental activity, whereas the negative error value
indicates that the estimated IC50 value is lower than the
experimental activity. An error value of less than 10 signifies
the prediction of activity lesser than one order of magni-
tude. Among 20 training set compounds, only one com-
pound had an error value of greater than 3. From Table 2 it
is clear that the estimated activity values of most of the
training set compounds was predicted with the same activ-
ity scale as the experimental activity. Among 20 training set
compounds, one most active compound (++++) was esti-
mated as active (+++), one active compound (+++) was
estimated as moderately active (++), one moderately active
compound (++) was estimated as inactive (+) and two inac-
tive compounds (+) were estimated as moderately active (+
+). The divergence between the estimated and experimental
activity observed in four compounds was only about 1
order of magnitude, which might be an artifact of the pro-
gram that uses different number of degrees of freedom for
these compounds to mismatch the pharmacophore model.

Figure 2 HypoGen pharmacophore hypothesis for BACE-1
inhibitors. A) The best five feature pharmacophore model Hypo 1 B)
3D spatial arrangement and the distance constraints of the Hypo 1.
The features are color coded with magenta, hydrogen bond donor;
red, positive ionizable; orange, ring aromatic; cyan, hydrophobic
features.

Table 2 Experimental and estimated IC50 values of the training set compounds based on the pharmacophore
hypothesis ‘Hypo 1’

Compound IC50 nM Errora Fit valueb Activity scalec

Experimental Estimated Experimental Estimated

1 4 1.7 -2.4 9.52 ++++ ++++

2 7 16 +2.3 8.54 ++++ ++++

3 13 13 -1 8.64 ++++ ++++

4 52 88 +1.7 7.80 ++++ ++++

5 90 150 +1.7 7.57 ++++ +++

6 115 170 +1.5 7.51 +++ +++

7 240 190 -1.3 7.48 +++ +++

8 348 320 -1.1 7.24 +++ +++

9 450 470 +1.1 7.07 +++ +++

10 674 460 -1.5 7.08 +++ +++

11 730 610 -1.2 6.97 +++ +++

12 980 1400 +1.4 6.60 +++ ++

13 1500 880 -1.7 6.80 ++ +

14 2800 8100 +2.9 5.84 ++ ++

15 4600 5200 +1.1 6.03 ++ ++

16 8000 10000 +1.3 5.73 ++ ++

17 12000 8000 -1.6 5.84 + ++

18 19000 19000 -1 5.48 + +

19 25000 6100 -4.1 5.96 + ++

20 37000 38000 +1 5.16 + +
aPositive value indicates that the estimated IC50 is higher than the experimental IC50; negative value indicates that the estimated IC50 is lower than the
experimental IC50.
bFit value indicates how well the features in the pharmacophore map the chemical features in the compound.
cActivity scale: most active, ++++, IC50 ≤ 100 nM; active, +++, 100 nM < IC50 ≤ 1000 nM; moderately active, ++, 1000 nM < IC50 ≤ 10,000 nM; inactive, +, IC50 >
10,000 nM.
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Interestingly, for feature fitting, the most active compounds
in the training set mapped well on all the chemical
features that are one HBD, one PI, one RA and two
HY features of Hypo 1 with good fitting score. The
active, moderately and inactive compounds have
missed at least one of five features. In addition, the
most active compounds mapped well on the RA and
PI features whereas some active, moderately active and
all inactive compounds could not map on the RA and
PI features signifying the importance of these two fea-
tures. The pharmacophore overlay of most active Com-
pound 1 and Hypo 1 has shown a fit value of 9.52. The
RA feature corresponds to phenyl ring present in
between two amide and a sulfonamide groups, one
HBD feature corresponds to nitrogen of amide group
located at the branch, PI group corresponds to the
only amino nitrogen, one HY feature corresponds to a
phenyl group whereas the another HY feature corre-
sponds to alkyl group (Figure 3A). The pharmacophore
overlay of least active compound 20 has revealed that
it missed two features when mapped on Hypo 1 with a
fit value of 5.16. This compound has mapped only the
HBD and two HY features in the same manner as
most active compound with no mapping over RA and
PI features (Figure 3B). Fit value indicates how well
the features in the pharmacophore overlaps the chemi-
cal features in the molecule and thereby aid in under-
standing the chemical meaning of the hypothesis [37].
These results emphasized Hypo 1 as a reliable model
to accurately estimate the experimental activity of the
training set compounds.

Validation of Hypo 1
Hypo 1 was further validated by test set, Fischer rando-
mization test, leave-one-out and decoy set methods.
Test set method
A total of 40 compounds structurally different from the
training set compounds were selected as test set. The

test set compounds were prepared in the same way
training set compounds were prepared. The top-scored
10 hypotheses was regressed against 40 test set com-
pounds and calculated the correlation coefficient values
ranging from 0.917 to 0.859 (Table 1) between experi-
mental and estimated activities. Among 10 hypotheses,
Hypo 1 has given a correlation coefficient of 0.917
(Figure 4) indicating a good correlation between the esti-
mated and experimental activities. The predictive ability of
the Hypo 1 against test set compounds was considered bet-
ter than other hypotheses and the estimated activity values
along with the experimental and error values based on
Hypo 1 are tabulated (See additional file 1: Experimental
and estimated IC50 values of the test set compounds based
on the pharmacophore hypothesis ‘Hypo 1’.). Most of the
test set compounds was estimated correctly to their experi-
mental activity. The test compounds were classified into
four groups in a similar way as that of training set: most
active (IC50 ≤ 100 nM, ++++), active (100 nM < IC50 ≤
1000 nM, +++), moderately active (1000 nM < IC50 ≤ 10
000 nM, ++) and inactive (IC50 > 10 000 nM, +). A total of
11 out of 12 active (+++) compounds were estimated cor-
rectly as active, but 1 compound was estimated as most
active (++++). Interestingly all the six most active (++++)
compounds were estimated correctly as most active (++++).
Total of twelve active (+++) compounds were estimated
correctly as active. Out of thirteen moderately active (++)
compounds only one compound was over estimated as
active (+++), and 3 compounds were under estimated as
inactive (+), whereas nine compounds were estimated cor-
rectly as moderately active. Among nine inactive (+) com-
pounds one was over estimated as moderately active (++)

Figure 3 Pharmacophore mapping of most and least active
compounds in the training set. A) Hypo 1 mapped on to the
most active Compound 1 B) Hypo 1 mapped on to the least active
Compound 20. The features are color coded with magenta,
hydrogen bond donor; red, positive ionizable; orange, ring aromatic;
cyan, hydrophobic features.

Figure 4 Test set correlation graph. Graph showing the
correlation between experimental and Hypo 1 estimated activities
of the 40 test set compounds along with 20 training set
compounds.
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compound whereas eight were estimated as inactive com-
pounds. A total of 2 inactive (+) compounds out of 9 were
over estimated as moderately active (++) whereas 7 were
correctly estimated as inactive compounds. These results
suggested that Hypo 1 has a good agreement with the
experimental data and able to predict the activities of a
wide variety of BACE-1 inhibitors.
Fisher randomization method
This method is used to evaluate the statistical signifi-
cance of Hypo 1 based on the principle of randomizing
the activity data of the training set compounds. During
validation process random spreadsheets were generated
using the training set molecules, and randomly reassigns
the activity values to each compound. Subsequently gen-
erates the pharmacophore hypotheses using the same
features and parameters used in the development of ori-
ginal hypothesis, Hypo 1. A total of 99 random spread-
sheets (random hypotheses) required to be generated to

achieve a confidence level of 99%. The results of top 10
random spreadsheets along with Hypo 1 are presented
in Table 3. None of the top 99 radomly generated
hypotheses has scored a total cost lower than the origi-
nal hypothesis. The statistics of Hypo 1 is far more
superior to the top 10 random hypotheses as well as the
other 89 random hypotheses. This cross validation
results clearly shows that the Hypo 1 was not generated
by chance, and has strong confidence to represent a
true correlation in the training set.
Decoy set method
The Hypo 1 was further validated using an external
database for its ability to select BACE-1 inhibitors.
This database contains a total (D) of 453 compounds
including 206 active (A) compounds. Using Hypo 1,
this database screening was carried out, 230 com-
pounds were retrieved as hits (Ht). The results of GH
score and E-value calculation are given in Table 4.
Among 230 retrieved hit compounds, 197 compounds
were from known actives (Ha). The false positive value
is 33 and the false negative value is 9. The calculated E
value was 1.88 indicates that the model is highly effi-
cient for database screening. The GH value is expected
to be greater than 0.7, which indicates a good model
[38]. It was observed to be 0.76 for Hypo 1 and prov-
ing its ability in predicting the active compounds
among inactives.
Leave-one-out method
The cross validation of the model was done using the
leave-one-out method. This method is progressed by
recomputing the pharmacophore hypotheses by leaving
one compound at a time from the training set com-
pounds. The importance of this validation is to prove
that the correlation of the original pharmacophore
hypothesis (Hypo 1) is not depending only on one parti-
cular compound. If the activity of each left-out
compound is correctly estimated by the corresponding
one-missing hypothesis then the test is positive. The fea-
ture composition of the pharmacophore, the value of
correlation coefficient and the quality of the estimated
activity of the left-out compound were used as measures
for the assessment of the statistical test. By leaving each
one of the 20 training set compounds according to this
method, 20 new hypotheses were generated. As a result
we did not obtain any meaningful differences between
Hypo1 and each hypothesis resulting from the leave-
one-out method. This result gives more confidence on
Hypo 1 that it does not depend on one particular com-
pound in the training set.

Database screening
The validated pharmacophore hypothesis, Hypo1, was
used as a 3D structural query for retrieving compounds
from chemical databases including MayBridge (59 652

Table 3 Fischer’s randomization test results of the
pharmacophore hypothesis Hypo 1

Validation no. Total cost Fixed cost RMSD Correlation

Original hypothesis

Hypo1 81.24 74.770 0.804 0.977

Randomization results

Trial1 116.69 66.395 2.232 0.811

Trial2 133.35 69.600 2.496 0.756

Trial3 124.05 68.126 2.372 0.783

Trial4 189.35 62.993 3.500 0.397

Trial5 171.63 68.169 3.211 0.539

Trial6 158.05 63.578 3.074 0.591

Trial7 116.78 64.678 2.191 0.821

Trial8 135.62 68.457 2.580 0.736

Trial9 140.83 69.702 2.667 0.714

Trial10 172.23 64.740 3.257 0.520

Table 4 Statistical parameters of GH score validation for
Hypo 1

S. No Parameters Results

1 Total molecules in database (D) 453

2 Total no. of actives in database (A) 206

3 Total hits (Ht) 230

4 Active hits (Ha) 197

5 % Yield of actives [(Ha/Ht) X 100] 85.65

6 % Ratio of actives [(Ha/A) X 100] 95.63

7 Enrichment factor (E) [(Ha X D)/(Ht X A)] 1.88

8 False negatives [A - Ha] 9

9 False positives [Ht - Ha] 33

10 Goodness of hit (GH)* 0.76

*[(Ha/4HtA)(3A + Ht) X (1 – (Ht – Ha)/(D –A))]; GH score of 0.6-0.8 indicates a
very good model.
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compounds), Chembridge (50 000 compounds), NCI
(238 819 compounds) and Asinex (213 462 compounds).
As a result of first screening 11 578, 590, 5096 and 63
265 compounds were retrieved from Maybridge, Chem-
bridge, NCI and Asinex respectively. Since the active
site of BACE-1 is larger in size, the experimentally
known most active inhibitors are also larger in size and
violate the first rule of Lipinski’s rule of five. Hence, the
retrieved hit compounds were filtered based only on the
estimated activity values calculated by Hypo 1. The
activity range for the most active compounds is <100
nM. Finally 773 compounds were selected by restricting
the minimum estimated activity to <100 nM.

Molecular docking
To further refine the retrieved hits and also to remove
the false positives, these 773 compounds along with the
20 training set compounds were docked into the active
site of BACE-1 using GOLD 4.1 program. There are
number of crystal structures for BACE-ligand complexes
are available in PDB. The crystal structure of BACE-SC7
(PDB ID: 2QP8) complex was taken based on its high
resolution. The GOLD fitness score was calculated for
all the 793 compounds, it distinguishes molecules based
on their interacting ability. The GOLD fitness score for
the most active compound in the training set was
53.035. The compounds for further analysis were
selected based on the ligand conformations which can
satisfy the necessary interactions at the active site and
scoring GOLD fitness score greater than 60. Finally 20
compounds from Maybridge and 15 compounds from

Asinex have shown the required interaction with BACE-
1 as well as good GOLD fitness scores. The compounds
with the same chemical scaffolds were filtered carefully
based on the molecular interactions observed at the
active site. Finally, two compounds with different scaf-
folds one from Maybridge (RJC01726) and one from
Asinex (Asnx-2) were selected as representative com-
pounds. The binding mode of the final hits and the
most active Compound 1 in the training set are shown
in Figure 5. Figure 5A represents the binding mode of
Compound 1 with a GOLD fitness score of 53.035. It
has formed hydrogen bond interactions with D93, G95,
T133, Q134, G291 and T293 and hydrophobic interac-
tions with Y132, F169, and T292. The GOLD fitness
score of RJC01726 was 68.289 and the mode of binding
in the active site (Figure 5B) is similar to Compound 1.
It has formed hydrogen bond interactions with T133,
Q134 and T293 and hydrophobic interactions with D93,
G95, F169 and T292. Asnx-2 has shown hydrogen bond
interactions with T133, G291 and T293 as well as
hydrophobic interactions with D93, Y132, F169 and
T292 with a GOLD fitness score of 62.026 (Figure 5C).
Figure 5D represents the overlay of most active Com-
pound 1, RJC01726 and Asnx-2 at their binding modes.
The pharmacophore overlay of the final hits compounds
are shown in Figure 6 and their 2D representations are
shown in Figure 7.
The hydrophobic interactions of the final hits com-

pounds were observed using Ligplot program [39]. The

Figure 5 Molecular docking results. Binding orientations of
A) Compound 1 of the training set (cyan color), B) RJC01726
(magenta color), C) Asnx-2 (blue color), D) overlay of Compound 1,
RJC01726 and Asnx-2 in the active site of BACE-1 protein. Active site
residues are shown in stick form and hydrogen bond interactions
are indicated with purple dotted lines.

Figure 6 Pharmacophore overlay on final hits. The mapping of
pharmacophore hypothesis Hypo 1 on the final hits. A) RJC01726
(red color) B) Asnx-2 (cyan color).

Figure 7 Chemical structure of final hits. 2D representation of
the final hits RJC01726 and Asnx-2.
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novelty of the two hits compounds were confirmed
using SciFinder search [40] and PubChem search [41].

Conclusion
A chemical feature based 3D pharmacophore hypotheses
of BACE-1 inhibitors have been developed using 3D
QSAR Pharmacophore Generation protocol available in DS
2.5. The best quantitative pharmacophore model, Hypo 1,
was characterized by the highest cost difference (121.98),
best correlation coefficient (0.977), lowest total cost value
(81.24) and lowest RMSD (0.804). The fixed cost and null
cost values were 74.77 and 203.22 bits, respectively. Hypo1
consisted of one HBD, one PI, one RA and two HY fea-
tures. Hypo1 was further validated by test set, Fischer ran-
domization test, leave-one-out, and decoy set methods.
The test set containing 40 compounds was used in investi-
gating the predictive ability of Hypo1 and resulted with a
correlation coefficient of 0.917. Other validation methods
also have provided reliable results on the strength of Hypo
1. This validated Hypo1 was used as a 3D query in data-
base screening. The database hit compounds were subse-
quently subjected to filtering by estimated activity value.
To further refine the retrieved hits the 793 compounds
along with training set were carried out for molecular
docking studies. The molecular docking result of all com-
pounds was analyzed based on the GOLD fitness score,
binding modes and molecular interactions with essential
active site residues. Finally, two hits, namely, RJC01726
and Asnx-2 of different scaffolds with GOLD fitness score
of 68.362 and 63.053, respectively, and interactions with
important active site residues were chosen as lead candi-
dates. These compounds as such and on further optimiza-
tion can be used as potential leads in designing new
BACE-1 inhibitors.

Additional material

Additional file 1: Experimental and estimated IC50 values of the
test set compounds based on the pharmacophore hypothesis
‘Hypo 1’.).
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