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Abstract

Background: With the availability of large scale expression compendia it is now possible to view own findings in
the light of what is already available and retrieve genes with an expression profile similar to a set of genes of
interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that
maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same
time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not
guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based
biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to
extract the information contained within the seed set.

Results: We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons
with potentially novel members. We compared ProBic’s performance with previously published query-based
biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the
outcome against noisy seed sets and biological relevance.
This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their
seed genes and that it is particularly strong in handling noisy seeds.

Conclusions: ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect
biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when
dealing with low quality seed sets.

Background
With the large body of publicly available gene expres-
sion data, compendia are being compiled that assess
gene expression in a plethora of conditions and pertur-
bations [1]. Comparing own experimental data with
these large scale gene expression compendia allows
viewing own findings in a more global cellular context.
To this end query-based biclustering techniques [2-6]
can be used that combine both gene and condition
selection to identify genes that are coexpressed with
genes of interest (i.e., a query or seed set, containing

one or more genes) for a subset of conditions. These
biclustering algorithms do not only differ from each
other in their search strategy, but also in the way they
exploit the expression signal of the seed genes to iden-
tify the query-based biclusters. Some algorithms use the
mean expression profile of the seeds to initialize the
biclustering [3], while others use the ‘similarity’ between
the mean profiles of the seed set and the bicluster to
constrain the search at each iteration [5].
For a query-based biclustering algorithm, it is natu-

rally important to keep a bicluster centered around the
seed genes as it should not converge to a bicluster that
no longer contains the seed genes. However, it can not
be guaranteed that all genes within the seed set will be
tightly coexpressed. In such cases, adhering too strictly
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to the query (e.g., by relying heavily on the mean query
profile to steer the biclustering), will deteriorate the
results as the algorithm will not be able to compensate
for incoherent query profiles. An efficient query-based
biclustering algorithm should therefore always retain
part of the seed genes, but simultaneously allow suffi-
cient freedom to adjust for non-perfect or noisy sets of
seed genes. In order to accommodate for these contrast-
ing requirements in a flexible way, we developed a
query-based biclustering method called ProBic. The
model is formulated in the framework of Probabilistic
Relational Models (PRMs) [7-9]. Query information is
exploited via a Bayesian prior. We compared our algo-
rithm with two of the best state-of-the art query-based
biclustering algorithms, namely Iterative Signature Algo-
rithm (ISA) [3] and Query-Driven Biclustering (QDB)
[5], for a number of different bicluster comparison cri-
teria on a large compendium of Escherichia coli micro-
array experiments.

Methods
Model framework
The general goal is the identification of sets of genes
with similar expression profiles (coordinated changes)
that differ significantly from the background profile in a
subset of experimental conditions (i.e., constant column
biclusters using the terminology of Madeira and Oliveira
[10]). By exploiting information contained in a given set
of seed genes, we constrain the search space to biclus-
ters that represent patterns similar to the seed gene
pattern.
To this end we developed a framework based on

Probabilistic Relational Models (PRMs) for query-driven
biclustering of microarray data. PRMs were developed
as an extension of Bayesian networks to the relational
domain.
An overview of the ProBic Probabilistic Relational

Model is shown in Figure 1: it contains the classes
Gene, Array and Expression. For each class, gene, array
and expression objects exist that are specific instantia-
tions of the class (denoted by the lowercase letters g, a
and e respectively). The complete set of genes, array and
expression objects that belong to a certain class are indi-
cated by uppercase letters G, A and E. Each object g and
a of respectively the Gene and Array class has a number
of binary attributes. The Boolean attributes Bb indicate
for each gene (array) object whether that gene (array)
belongs to a bicluster b or not. The gene-bicluster labels
g.Bb (over all biclusters b) and the array-bicluster labels
a.Bb are the hidden variables of the model. The Array
class has an additional attribute ID that uniquely identi-
fies each individual array object a. This is needed
because ProBic searches for constant column biclusters.
Finally, each object e of the class Expression has a single

numeric attribute e.level that contains the expression
level for each specific gene and array combination.
The PRM imposes that each expression value that

belongs to the same bicluster and array combination is
modeled by a distribution with the same parameters.
Posterior distribution
The posterior distribution for the ProBic model is
shown in Equation (1).

Posterior likelihood prior
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with θ being the collection of model parameters. In
the following sections, we will discuss the likelihood and
the prior in detail.
Likelihood
The likelihood of the ProBic model is shown in Equa-
tion (2). It expresses how probable the observed dataset
is for different settings of the parameter vector θ. For
notational convenience, the dependency on the model
parameters is not written explicitly.
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As shown in Equation (2), this likelihood consists of a
conditional probability distribution (CPD) for the
expression values and several marginal distributions
modeling the assignment of genes and arrays to biclus-
ters (see also following sections).
Modeling the expression values
The CPD for modeling the expression values consists of
two factors:
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The first factor describes the conditional probability of
all expression levels given their gene and array bicluster
assignment attributes:
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A bicluster is modeled by a set of independent Nor-
mal distributions, one for each array that was assigned
to the bicluster. For each array, an individual expression
level is either part of (one or more) bicluster(s) or part
of a background distribution. The distribution of the
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background expression values is modeled per array as a
Normal distribution with parameters (µa,bgr, sa,bgr). The
parameters of the background distributions are fixed
and derived a priori from the dataset using a robust
estimation [11].
A second factor regulates the model complexity by

adjusting the probability that an expression value is
belonging to a bicluster distribution compared to the
background distribution.

P e level e gene B e array B e array ID
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→
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The parameter that regulates this probability can be
defined as a penalty factor log(πbicl/ πbgr) to control
model complexity. The factor indicates how many times
more likely it must be that an expression value is part
of the bicluster distribution compared to being part of

the background distribution before it is actually assigned
to that bicluster. Detailed explanations of each of these
factors can be found in the Additional File 1: Detailed
explanation of the expression level CPD.
Marginal distributions modeling the assignment of genes
and arrays to biclusters
The likelihood function (Equation (2)) contains a num-
ber of factors which can be used to introduce expert
knowledge.
The probability for the gene to bicluster assignments

P(g.B) is defined as a combination of two factors where
each one defines a separate aspect of the prior [11]:

P g B P g B P g Bb

b B

( . ) ( . ) ( . )= ⋅
∈

∏1 2 (6)

The first factor P1(g.B) reflects general expert knowl-
edge on gene to bicluster assignments. It expresses the

Figure 1 Schematic overview of the ProBic model and the conditional probability distributions of the attributes. Gene, Array and
Expression represent the three ProBic classes of the PRM model. For each class, a set of specific gene, array and expression objects exists
(denoted by the lowercase letters g, a and e respectively). The complete set of genes, array and expression objects that belong to a certain class
are indicated by uppercase letters G, A and E. For the Gene (Array) class, a Boolean attribute Bb indicates whether a gene (array) belongs to a
bicluster b or not. For each gene (array) object, the gene-bicluster labels g.Bb (over all biclusters b) and the array-bicluster labels a.Bb are the
hidden variables of the model. Each object e of the Expression class has one single numeric attribute e.level that contains the expression level for
each specific gene and array combination. The array class has an additional attribute ID that uniquely identifies each individual array object a.
The conditional probability distribution P(e.level|e.gene.B,e.array.B,e.array.ID) is modeled as a set of Normal distributions, one for each array-bicluster
combination. A number of marginal distributions P(a.Bb), P(g.Bb) and P(g.B) allow expert knowledge to be introduced in the model, as explained
in the main text.
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prior probability or expectation that a gene will belong
to a bicluster, irrespective of the bicluster identity. It
expresses our belief in the degree of modularity of the
dataset and indirectly affects the average number of
genes in a bicluster. By penalizing the addition of genes
to a bicluster, one can control the tightness of coexpres-
sion in the bicluster. The second factor P2(g.Bb) reflects
prior knowledge on specific gene to bicluster assign-
ments, namely, the probability for a specific gene g to
belong to a particular bicluster b. This prior can be used
to introduce detailed biological prior knowledge in
the model on genes that should belong together in a
bicluster.
Similarly P(a.Bb) describes the prior probability for a

specific array a to belong to a specific bicluster b. This
prior can be used in a similar way as P2(g.Bb), namely to
introduce prior knowledge, by specifying the conditions
that are more likely to belong together.
Each array is also given a unique identifier a.ID and in

principle a probability distribution can be defined for
every array. This distribution was chosen uniform for
the analyses described in this study.
Prior for the model parameters P(θ)
A bicluster is modeled by a set of independent Normal
distributions, one for each array that was assigned to
the bicluster. Each bicluster-array combination is thus
modeled as a Normal distribution with its own set of
parameters (µa,b, sa,b) (Figure 1). Prior knowledge on
the model parameters is introduced in the model
through the appropriate prior distributions. We choose
for conjugate prior distributions as these result in a sim-
ple decomposition of the total probability distribution.

P P

P a b a b

b Ba A

( ) ( , )

( , ), ,

  

 

=

=
∈∈

∏∏ (7)

Any member of the exponential family can be used as
a conjugate to the distribution of Equation (7). We use
Normal-Inverse-c2 priors on the column-wise Gaussian
probability distributions. This distribution is parameter-
ized by the hyperparameters (µ0; �0; ν0; s2

0). µ0 reflects
the prior mean and s2/ �0 reflects the a priori variance
on this mean. The parameters ν0 and s2

0 determine the
a priori variance of the distribution and its associated
variance.
The query-based aspect of our biclustering approach

exploits the possibility to use strong priors on the
bicluster distribution. By choosing the average expres-
sion value per array a of the set of query genes (µa

query )
as the prior mean µa,b

0 , the algorithm will identify a
bicluster b that remains centered around the original
expression profile of the query genes. The prior stan-
dard deviation sa,b

0 is by default chosen to be smaller

than the background standard deviation sa
bgr by a frac-

tion fbcl in order to identify tight bicluster profiles.
To prevent the bicluster from drifting too far away

from the seed profile, the parameter �0 should have a
high value relative to the other hyperparameters (i.e., to
force the variance on the prior mean to be small). The
parameter ν0 determines the relative weight of the prior
versus the data.
A more detailed explanation of the hyperparameters

can be found in Additional File 2: Conjugate prior
distributions.

Learning the model
To learn the model, we applied a hard-assignment EM
approach [12] consisting of the following steps until
convergence (for a detailed explanation, see [11]):
• Maximization step: maximize over the model para-

meters, keeping the hidden variables (i.e., the gene and
array bicluster assignments g.B and a.B) fixed.
• Expectation step: find the expected values for the

hidden variables g.B and a.B, keeping the current model
parameters fixed.
As an initialization of the hidden variables (the gene

to bicluster and array to bicluster assignments) a set of
seed genes is used:

g B
g seed

otherwiseb. =
⎧
⎨
⎩

→
∈1

0
(8)

a Bb. = 1 (9)

Datasets
For benchmarking we used a real dataset. This allows
for a more unbiased comparison than e.g., the often
used Prelic dataset [13] of which the assumptions
underlying the data simulation favours some algorithms
over others. Real data consisted of an E. coli cross-plat-
form expression compendium [14] and sets of seed
genes were derived from RegulonDB (version 6.2) [15].
RegulonDB enlists for the documented E. coli transcrip-
tion factors (TFs) both single (all targets regulated by
one specific TF) and complex regulons (targets regulated
by a specific combination of TFs). We obtained in total
225 different sets of seeds ranging in size from 1 gene
to 98 genes, corresponding to 89 simple regulons and
136 complex regulons (see Additional File 3: Biological
dataset).

Running ProBic and benchmarking with other algorithms
For ProBic, two parameters that are influential in a
query-based setting, i.e., fbcl and log(πbicl/ πbgr) were
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tuned. These parameters determine the bicluster size
and quality as is illustrated in Additional File 4: Influ-
ence of parameter settings. ISA was obtained from [16];
QDB was obtained from [17]. For details on the used
running parameters for all algorithms, see Additional
File 5: Running parameters of query-based biclustering
tools.

Calculation of bicluster comparison criteria
In order to assess the quality of the obtained biclusters
and compare the results of different algorithms, we
define several performance criteria related to both the
expression quality of the biclusters as well as the
retrieved biclusters’ biological relevance.
Bicluster expression quality
High quality biclusters are identified as those that con-
tain genes that are mutually tightly coexpressed and that
preferentially vary largely over the selected conditions
(i.e., with a profile different from the background pro-
file). This behaviour is reflected in two measures: the
standard deviation within conditions (STD-within, Equa-
tion (10)), and the uncentered standard deviation of the
mean profile across conditions (STD-across, Equation
(11)) respectively. These two measures can also be sum-
marized in their ratio (i.e., STD-across/STD-within) to
objectively assess the expression quality of a bicluster.
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In Equation (10) and (11), G is the number of genes
in the seed set or bicluster, C is the number of condi-
tions in the compendium in case of a seed set and the
number of conditions selected after biclustering in case
of a bicluster. xi,j is the expression value measured for
gene i and condition j, and x j is the mean expression
value of the genes in the seed set or bicluster for a
certain array j.
Functional and motif enrichment
For the calculation of the functional enrichment, GO
categories were derived from Ecocyc [18]. For the over-
representation of regulatory motifs in biclusters genome
wide motif hits were obtained by motif screening.
Screening was performed using Clover [19] and the

PWMs representing the motifs of interest. For all first
genes of transcription units their upstream region
(400bp) was screened. In case of multiple TUs per gene,
the TU for which the corresponding first gene had the
longest intergenic region was selected. All sequence
information was retrieved from NCBI (NC_000913) [20].
We estimated from all motif screening scores a robust
noise distribution and used this distribution to select for
each motif a threshold on the score. Hits with a score
higher than this threshold were considered true motif
hits. Seed genes were excluded from the biclusters for
all enrichment calculations. Enrichments were calculated
using the hypergeometric distribution (0.05 significance
level). Due to the discreteness of the distributions one-
sided mid-P-values were used [21].

Results
We used ProBic to search for genes that are tightly
coexpressed with known regulon members in E. coli.
Genes found to be closely expressed with the regulon
seed genes are assumed to be potential undocumented
targets for the regulon’s associated TF(s). For all tests
described below, we benchmarked our method with
other query-based biclustering algorithms for which a
high performance on real datasets was shown previously,
i.e., QDB [5] and ISA [3]. The results section is divided
into two main parts: first we evaluate the performance
of the algorithms for retrieving good quality biclusters,
next we see whether these perfornance differences actu-
ally lead to more biologically relevant results.

Performance of the algorithms
To evaluate the query-based biclustering performance of
the different approaches we assess to what extent the
biclusters remain centered around the seed genes, how
their expression quality relates to the expression quality
of the seed genes, and the ability of the methods to han-
dle noisy seed genes.
Behavior towards seed genes
A first illustration of how the used algorithms cope dif-
ferently with the seed genes is given in Additional File
6: Behavior of the different algorithms towards seed
genes. This table shows to what extent the final biclus-
ters still contained the original seed genes. It suggests
that when a seed set is informative for the queried
expression dataset (meaning that the dataset indeed
contains additional genes being coexpressed with the
seed set), all algorithms are able to find biclusters that
contain all or part of the original seed genes. In contrast
seed sets that are non-informative for the queried data-
set give rise to either ‘empty’ biclusters, to biclusters
with only the seed genes or to biclusters that drift away
and do not longer contain the seed genes. Here ISA
mainly results in biclusters that loose their seeds genes.
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The reason is that ISA is query-based only in its initiali-
zation. Contrary to ISA, ProBic and QDB both use prior
distributions to keep the bicluster profile centered
around the seed gene profile.
Expression quality of the biclusters
This difference in outcome of ProBic, QDB and ISA as
a function of the seed set properties is further illu-
strated by plotting the quality of the obtained biclusters
as a function of the quality of the seed set on the
bicluster results (Figure 2). Both ProBic and ISA identify
biclusters of high expression quality and are much less
sensitive towards quality changes in the seed genes
than QDB.
Difference in handling noisy seed genes
To systematically analyze the robustness of the different
algorithms against the presence of noisy genes in a seed
set, we designed experiments for which a certain num-
ber of random genes were added to one seed set of
‘high’ quality (i.e., ArcR_FadR), three seed sets of

‘intermediate’ quality (i.e., FadR, NarL and OmpR), and
one seed set of ‘low’ quality (i.e., NagC). In the absence
of noisy genes, each of these seed sets was shown to
result in biologically relevant biclusters representing the
regulons from which the seed sets where derived (as
assessed by their functional and motif enrichment) for
all algorithms. We repeated this procedure of adding
random genes hundred times per seed set and assessed
to what extent the different algorithms were able to
remove these noisy seed genes from the complete seed
set in order to retrieve a bicluster that was centered
around the true seed genes. Figure 3 shows the results
for the high and low quality seed genes.
Results for the seed sets of intermediate quality can be

found in the Additional File 7: Robustness of ProBic,
QDB and ISA to noisy seed genes of intermediate quality.
ProBic is most robust against the presence of noisy seed
genes: in the high quality seed set it tends to keep all
true seed genes and finds extra genes irrespective of the

Figure 2 Effect of the seed set quality on the quality of the retrieved biclusters. (x-axis) STD-across/STD-within conditions of the seeds, (y-
axis) STD-within/STD-across (log2 transformed) of the retrieved biclusters. Bicluster results of respectively ProBic (blue) – QDB (green) – ISA (red)
are subdivided in the following groups (indicated by the respective markers): ‘x’ seed sets that give rise to biclusters that contain the full seed
set or part of the seed set together with additional genes, ‘+’ seeds that give rise to biclusters that do not longer contain the seed sets (drift
away biclusters), ‘o’ seed sets that give rise to ‘empty’ biclusters or biclusters that contain seed genes only. Only the results of 127 seed sets of
which the seed quality could be calculated (seed set should contain more than one seed gene), are displayed. Full lines display the overall
trend.
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Figure 3 Effect of noisy seed genes on bicluster results. Analysis of biclusters, obtained by the different algorithms after biclustering in the
presence of an increasing number of random genes (1 = 20%, 2 = 40%, 3 = 60% and 4 = 80% of random genes) added to the true seed set of
one seed set of high quality (panel a: ArcR_FadR) and one seed set of low quality (panel b: NagC). The procedure of adding random sets was
repeated 100 times for each seed set. Obtained biclusters were categorized according to their behavior with respect to the true seed genes,
using the categories ‘Empty’ biclusters, ‘Only full seed set’ biclusters (containing all initial seed genes but without additional genes) and ‘Only
part of the seed set’ biclusters (containing only a part of the initial seed genes but without additional genes), ‘Only (part of) random seed set’
biclusters (containing only (a part of) the random genes that were initially added to the true seed set), ‘(Part of) random seed set and additional
genes’ biclusters (containing a (part of) the random genes that were initially added to the true seed set and extra genes that were not a part of
the initial seed set), ‘Full seed set and additional genes’ biclusters (containing all seed genes together with additional genes), ‘Part of the seed
set and additional genes’ biclusters (containing a part of the initial set of seed genes together with additional genes), and ‘Drift away’ biclusters
(clusters containing one or more genes, but none of the seed genes).
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percentage of noisy seed genes that was added to the
true seed genes, while QDB and ISA fail to identify
biclusters containing the true seed genes.
In the case of a low quality seed set, it is harder to

distinguish the true seed genes from the randomly
added ones. While all algorithms perform worse under
these conditions, ProBic still retrieves part of the seed
genes for up to 20% of noise genes. Both ISA and QDB
mostly fail to keep the true seed genes in all conditions.

Biological relevance
In the previous section we showed how ProBic outper-
forms QDB and ISA with respect to a set of objective
query-based bicluster criteria. In this section we will
evaluate whether ProBic also leads to more relevant
biclusters from a biological perspective. The biological
relevance of retrieved biclusters is assessed through
functional and motif enrichment calculations and a
cross-validation experiment.
Functional and motif enrichment
To test biological relevance of the biclusters obtained
using the 225 seed sets, we assessed to what extent func-
tional classes that were found to be enriched amongst the
bicluster genes were similar to the classes to which either
the TF of the regulon that was used as seed set or at least
one of the seed genes belonged. As an independent assess-
ment of how well the obtained biclusters recapitulate the
original simple and complex regulons, we calculated
whether our obtained biclusters were overrepresented in
the regulatory motifs of the corresponding simple/com-
plex regulons. Figure 4: Biological relevance of the
obtained biclusters, shows that both ISA and ProBic lar-
gely outperform QDB at the level of motif and functional
overrepresentation. Biclusters retrieved by ISA and ProBic
show a comparable motif enrichment and a slightly better
functional enrichment for those derived from ISA than for
those obtained by ProBic: for low informative seeds, ProBic
mainly finds ‘empty’ biclusters or biclusters with only seed
genes, whereas ISA drifts away to larger biclusters no
longer containing the seeds (see also Additional File 6:
Behavior of the different algorithms towards seed genes).
Both situations gave rise to a similar loss in motif enrich-
ment. Drift away biclusters, while no longer containing the
seed genes, can still contain genes that are functionally
related to the seed genes in which case they will still con-
tribute to the functional overrepresentation.
Cross-validation for identification of known targets of TF(s)
In this experimental set up, we used part of the known
regulon members as seeds and tested to what extent the
different query-based bicluster approaches could retrieve
the left out known targets (i.e., validation set) as addi-
tional bicluster members. Of the original 225 regulon
sets, we retained the ones with five or more genes. Each
of these resulting 49 sets was divided into a seed set and

a validation set containing respectively four fifth
and one fifth of the number of original seed genes. This
procedure was repeated in a five-fold cross-validation
set up.
For each of the methods, a query-based biclustering

was performed with the seed sets. Results were validated
by checking if the left out genes of the original regulon
set (i.e., the validation set) were retrieved in the
obtained biclusters. To this end we calculated the per-
centage of genes of the validation set that were retrieved
in the biclusters (i.e., recall). To compensate for the fact
that the recall is likely to increase with the size of the
biclusters, we also calculated the percentage of valida-
tion genes found in the bicluster to the total number of
genes in the bicluster (i.e., ‘enrichment’ of validation
genes in the bicluster). Results presented in Additional
File 8: Recall and ‘enrichment’ of the biclusters in a
cross-validation experiment, are the averages of the five
cross-validations and show that for most seed sets,
biclusters of ProBic show a higher recall and enrichment
of the genes in the validation set than biclusters
obtained by QDB and ISA. In most cases none of the
algorithms is able to retrieve all of the validation genes
(i.e., a recall of 1). This is to be expected as a regulon
membership not necessarily implies coexpression under
the conditions of the expression compendium.

Discussion
In this work we developed ProBic, a query-based biclus-
tering model formulated in the framework of Probabilis-
tic Relational Models. We compared ProBic to related
query-based biclustering techniques with respect to
obtaining high quality and biologically relevant biclus-
ters, centered around the seed genes and with respect to
their ability of dealing with noisy seed genes. Although
query-based biclustering by ISA results in biologically
relevant biclusters of high expression quality, ISA does
not constrain the bicluster to remain centered around
the seed genes and therefore cannot handle noisy genes
in the seed set. ProBic on the other hand does so in a
soft way by using prior distributions to constrain the
bicluster distributions. In that sense ProBic is more
similar to QDB, another model based biclustering algo-
rithm. Despite their model similarities, QDB and ProBic
differ in the implementation. Firstly, QDB estimates the
parameters for the background distribution for each
array during the iterations of the optimization procedure
from the expression values on an array that are not yet
assigned to a bicluster. However, as genes on the array
can be over- or underexpressed without belonging to
the current bicluster, the background variance will tend
to get overestimated, rendering it more difficult to
determine whether for a certain selection of genes a
condition belongs to the background or not. ProBic on
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the other hand estimates the parameters of the back-
ground distributions upfront and in a robust way, i.e.,
by ‘filtering out’ per condition the most over- and
underexpressed genes.
Another major difference is the way the model is

learned: whereas ProBic is run with one parameter set-
ting until convergence to a local optimum, QDB uses a
resolution sweep: i.e., the prior variance on the bicluster
distributions is increased during several consecutive
runs of the algorithm, allowing biclusters to become
gradually more coarse grained. The starting point for a
new run with an increased prior variance is the solution
(i.e., a mode in the posterior landscape) that was found
in a previous run performed with a slightly smaller prior

variance. Applying strong priors on the model para-
meters give rise to rather simple posterior distributions
and a fast convergence for each prior variance. This can
come at the cost of the bicluster quality: relying too
heavily on the seed genes explains the bad performance
in case of noisy seed genes and the dependence of the
quality of the bicluster on the quality of the seed genes.
Because of the ability to use a less informative prior

and the characteristics of the estimation of the back-
ground distributions, Probic tends to find biclusters with
tightly coexpressed genes and conditions in which the
bicluster genes are markedly differentially expressed.
This is reflected in the high scores for the quality para-
meters. Biclusters retrieved by QDB on the other hand

Figure 4 Biological relevance of the obtained biclusters. Histogram displaying the percentage of biclusters (derived from a total of 225
different seed sets) that were found to be enriched in ‘functional categories’ that are related to the functions of the original seed genes or TFs,
and enriched in ‘motifs’ that represent both the simple and complex regulons from which the seed genes were derived: this indicates to what
extent the additionally recruited genes contain similar motifs as the seed genes: ProBic (blue) - QDB (green) - ISA (red).
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are often coarse grained, noisy and large in both genes
and conditions.

Conclusions
ProBic is a query-based biclustering algorithm, designed
to detect biologically relevant, high quality biclusters
that retain their seed genes even in the presence of
noise or when dealing with low quality seeds. It outper-
forms QDB and ISA with respect to a set of objective
query-based bicluster criteria, namely to what extent the
biclusters remain focused around the seed genes, how
their expression quality relates to the expression quality
of the seed genes, and their ability in handling noisy
seed genes. This increased performance also resulted in
more relevant biclusters from a biological perspective.
In addition, the underlying PRM-based framework is
extendable towards integrating additional data sources
such as motif information and ChIP-chip information
that can further help refining the obtained biclusters.

Additional material

Additional File 1: Detailed explanation of the expression level CPD
It contains a detailed explanation of the expression level CPD formulated
in the section ‘Model framework’ in the main text.

Additional File 2: Conjugate prior distributions It contains a detailed
explanation of the prior distributions on the model parameters,
described in the section ‘Model framework’ in the main text.

Additional File 3: Biological dataset It contains a table that gives the
full list of the seed sets derived from simple and complex regulons and
the regulons’ associated TF(s) used in this article to benchmark the
different query-based biclustering approaches.

Additional File 4: Influence of parameter settings It contains an
analysis of the influence of two parameters that are influencial in a
query-based setting on the obtained bicluster result for five
representative seed sets.

Additional File 5: Running parameters of query-based biclustering
tools It contains the parameter settings for all query-based biclustering
algorithms (ProBic, QDB and ISA) that were used to run the experiments
performed in the article.

Additional File 6: Behavior of the different algorithms towards seed
genes It contains an additional table to the section ‘Behavior towards
seed genes’, that displays the number of bicluster results for respectively
ProBic, QDB, ISA belonging to different categories related to the seed
genes.

Additional File 7: Robustness of ProBic, QDB and ISA to noisy seed
genes of intermediate quality It contains additional figures to the
section ‘Difference in handling noisy seed genes’, that depict the
performance of respectively ProBic, QDB and ISA in case of noisy genes
added to three seed sets of intermediate quality.

Additional File 8: Recall and ‘enrichment’ of the biclusters in a
cross-validation experiment It contains an additional figure to the
section ‘Cross-validation for identification of known targets of TF(s)’, that
depicts the recall and enrichment scores for the different seed sets, for
each of the three query-based biclustering approaches.
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