
PROCEEDINGS Open Access

Biomedical event extraction from abstracts and
full papers using search-based structured
prediction
Andreas Vlachos1*, Mark Craven2

From BioNLP Shared Task 2011
Portland, OR, USA. 23-24 June 2011

Abstract

Background: Biomedical event extraction has attracted substantial attention as it can assist researchers in
understanding the plethora of interactions among genes that are described in publications in molecular biology.
While most recent work has focused on abstracts, the BioNLP 2011 shared task evaluated the submitted systems
on both abstracts and full papers. In this article, we describe our submission to the shared task which decomposes
event extraction into a set of classification tasks that can be learned either independently or jointly using the
search-based structured prediction framework. Our intention is to explore how these two learning paradigms
compare in the context of the shared task.

Results: We report that models learned using search-based structured prediction exceed the accuracy of
independently learned classifiers by 8.3 points in F-score, with the gains being more pronounced on the more
complex Regulation events (13.23 points). Furthermore, we show how the trade-off between recall and precision
can be adjusted in both learning paradigms and that search-based structured prediction achieves better recall at
all precision points. Finally, we report on experiments with a simple domain-adaptation method, resulting in the
second-best performance achieved by a single system.

Conclusions: We demonstrate that joint inference using the search-based structured prediction framework can
achieve better performance than independently learned classifiers, thus demonstrating the potential of this
learning paradigm for event extraction and other similarly complex information-extraction tasks.

Background
The term biomedical event extraction is used to refer to
the task of extracting descriptions of actions and rela-
tions among one or more entities from the biomedical
literature. Since the scientific literature contains a wealth
of information about relationships among gene products
that is not contained in structured databases, there has
been sustained interest in developing methods that are
able to automatically extract these relationships of inter-
est. In recent years, there have been two community-
wide shared tasks focused on the semantically rich pro-
blem of event extraction. The 2009 and 2011 BioNLP

shared tasks [1,2] involved extracting events composed
from a handful of different relation types of varying
complexity. In this article, we describe our submission
to BioNLP 2011 shared task GENIA Task1
(BioNLP11ST-GE1) [3] and report on additional experi-
ments we have conducted.
In our approach, we decompose event extraction into

a set of classification tasks that can be learned either
independently or jointly using the search-based struc-
tured prediction framework (SEARN) [4] in a formula-
tion we proposed in earlier work [5]. SEARN is an
algorithm that converts the problem of learning a model
for structured prediction into learning a set of models
for cost-sensitive classification (CSC). CSC is a task in
which each training instance has a vector of

* Correspondence: andreas.vlachos@cl.cam.ac.uk
1Computer Laboratory, University of Cambridge, UK
Full list of author information is available at the end of the article

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

© 2012 Vlachos and Craven; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:andreas.vlachos@cl.cam.ac.uk
http://creativecommons.org/licenses/by/2.0

misclassification costs associated with it, thus rendering
some mistakes to be more expensive than others [6].
Compared to independently learned classifiers, SEARN
is able to achieve better performance because its models
are learned jointly. Thus, each of these models is able to
incorporate features representing predictions made by
the other ones, while taking into account possible mis-
takes made. Our intention is to explore how these two
learning paradigms compare with each other, as well as
with other approaches in the context of BioNLP11ST-
GE1. In addition to reporting results using the official
evaluation using F-score, we also explore the range of
precision and recall points that are achievable by the
two approaches. Moreover, we demonstrate how we can
adjust the trade-off between recall and precision under
SEARN by using a weighted loss function. Finally, we
report on experiments with the simple domain adapta-
tion method proposed by Daumé III [7], which creates a
version of each feature for each domain.
An early shared task in biomedical information extrac-

tion was the Learning Language in Logic 2005 (LLL
2005) Genic interaction shared task [8], which focused
on protein-protein interactions (PPI). However, the data-
sets involved were rather small in size, not allowing con-
fident conclusions on system performances. LLL 2005
was followed by the protein-protein interaction pair sub-
task of BioCreative II [9]. In this subtask, the annotated
datasets provided were produced by gathering curated
interactions from relevant databases. This meant that
there was no text-bound annotation, thus making the
application and evaluation of existing NLP techniques
difficult, resulting in rather low performances. Indica-
tively, the best performance achieved was 29 in F-score,
while many of the teams scored below 10. More recently,
the BioNLP 2009 shared task (BioNLP09ST) on event
extraction [1] focused on a number of relations of varying
complexity using a text-bound annotation scheme. The
performances achieved ranged from 16 to 52 in F-score,
suggesting improvements in task definitions, data annota-
tion and participating systems. Following BioNLP09ST,
the BioNLP 2011 shared task GE-NIA Task1
(BioNLP11ST-GE1) [3] used the same event extraction
task definition as it predecessor, but evaluated the sub-
mitted systems on event extraction from both abstracts
and full papers. It had 15 participants with performances
ranging from 11.80 to 56.04 in F-score.

Methods
Event extraction decomposition
Each event consists of a trigger and one or more argu-
ments. Nine event types are defined which can be
grouped in three categories, namely Simple, Binding and
Regulation. Simple events include Gene_expression, Tran-
scription, Protein_catabolism, Phosphorylation, and

Localization events. These have only one Theme argu-
ment which is a protein. Binding events have one or
more protein Themes. Regulation events include Positi-
ve_regulation, Negative_regulation and Regulation and
are the most complex ones as they have one obligatory
Theme and one optional Cause, each of which can be
either a protein or another event, thus resulting in nested
events. The protein names are annotated in advance and
any token in a sentence can be a trigger for one of the
nine event types considered. Thus, the task can be viewed
as a structured prediction problem in which the output
for a given instance is a (possibly disconnected) directed
acyclic graph (not necessarily a tree) in which vertices
correspond to triggers or protein arguments, and edges
represent relations between them. In an example demon-
strating the complexity of the task, given the passage “. . .
SQ 22536 suppressed gp41-induced IL-10 production in
monocytes”, systems should extract the three nested
events shown in Figure 1.
Figure 1 describes the event extraction pipeline that is

used throughout the paper. We assume that the sen-
tences to be processed are parsed into syntactic depen-
dencies and lemmatized. Each stage of the pipeline has
its own module to perform the classification task
needed, which is either a learned classifier (trigger
recognition, Theme/Cause assignment) or a rule-based
component (event construction).
Trigger recognition
In trigger recognition, the system decides whether a
token acts as a trigger for one of the nine event types or
not. Thus it is a 10-way classification task. We only

Figure 1 The stages of our biomedical event extraction system.

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 2 of 11

consider tokens that are tagged as nouns, verbs or adjec-
tives by the parser, as they cover the majority of the
triggers in the data. This task is similar to word sense
disambiguation, but it is simpler due to the restricted
domain. The main features used in the classifier repre-
sent the lemma of the token which is sufficient to pre-
dict the event type correctly in most cases. In addition,
we include features that conjoin each lemma with its
part-of-speech tag. This allows us to handle words with
the same nominal and verbal form that have different
meanings, such as “lead”. While the domain restricts
most lemmas to one event type, there are some whose
event type is determined by the context, e.g. “regulation”
on its own denotes a Regulation event but in “positive
regulation” it denotes a Positive_regulation event instead.
In order to capture this phenomenon, we add as fea-
tures the conjunction of each lemma with the lemma of
the tokens immediately surrounding it, as well as with
the lemmas of the tokens it has syntactic dependencies
with.
Theme and Cause assignment
In Theme assignment, we form an agenda of candidate
trigger-argument pairs for all trigger-protein combina-
tions in the sentence and classify them as Themes or
not. For each trigger-argument pair, a binary classifier is
used to determine whether it has a Theme relation or
not. Whenever a trigger is predicted to have a Theme
argument, we form candidate pairs between all the Reg-
ulation triggers in the sentence and that trigger as the
argument, thus allowing the prediction of nested events.
Also, we remove candidate pairs that could result in
directed cycles, as they are not allowed by the task.
The features used to predict whether a trigger-argu-

ment pair should be classified as a Theme are extracted
from the syntactic dependency path and the textual
string between them. In particular, we extract the short-
est unlexicalized dependency path connecting each trig-
ger-argument pair using Dijkstra’s algorithm, allowing
the paths to follow either dependency direction. One set
of features represent these paths and in addition we
have sets of features representing each path conjoined
with the lemma, the PoS tag and the event type of the
trigger, the type of the argument and the first and last
lemmas in the dependency path. The latter help by pro-
viding some mild lexicalization. We also add features
representing the textual string between the trigger and
the argument, combined with the event type of the trig-
ger. While not as informative as dependency paths, such
features help in sentences where the parse is incorrect,
as triggers and their arguments tend to appear near
each other.
In Cause assignment, we form an agenda of candidate

trigger-argument between the Regulation class triggers
that were assigned at least one Theme and the protein

names and the other triggers that were assigned a
Theme. For each trigger-argument pair, a binary classi-
fier is used to determine whether it has a Cause relation
or not. We extract features as in Theme assignment,
adding additional features representing the conjunction
of the dependency path of the candidate pair with the
path(s) from the trigger to its Theme(s).
Event construction
In the event construction stage, we convert the predic-
tions of the previous stages into events. If a Binding
trigger is assigned multiple Themes, we choose to form
either one event per Theme or one event with multiple
Themes. For this purpose, we group the arguments of
each nominal Binding trigger according to the first label
in their dependency path and generate events using the
cross-product of these groups. For example, assuming
the parse was correct and all the Themes recognized,
“interactions of A and B with C“ would result in two
Binding events with two Themes each, A with C, and B
with C respectively. We add the exceptions that if two
Themes are part of the same token (e.g. “A/B interac-
tions”), or the trigger and one of the Themes are part of
the same token, or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.
Finally, there are certain tokens such as “overexpress”

that are consistently annotated with a Simple event type
and a Regulation event type with the latter forming an
event with the former as its Theme. In the event extrac-
tion decomposition used, we predict one event type per
token so it is not possible to produce this event struc-
ture. Therefore, for the lemmas that have these addi-
tional Regulation events, we generate them heuristically
using a dictionary.

Structured prediction with SEARN
SEARN [4] forms the prediction of an instance s as a
sequence of T multiclass predictions ŷ1:T made by a
hypothesis h. The hypothesis consists of a set of classi-
fiers that are learned jointly. Each prediction ŷt can use
features from s as well as from all the previous predic-
tions ŷ1:t−1 . These multiclass predictions are referred to
as actions and we adopt this term in order to distinguish
them from the structured output prediction of an
instance. The number of actions taken for an instance is
not defined in advance but it is determined as the pre-
diction is formed.
The SEARN algorithm is presented in Alg. 1. It initia-

lizes hypothesis h to the optimal policy π (step 2) which
predicts the optimal action in each timestep t according
to the gold standard. The optimal action at timestep t is
the one that minimizes the overall loss over s assuming
that all future actions ŷt+1:T are also made optimally.
The loss function is defined by the structured prediction
task considered. Each iteration begins by making

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 3 of 11

predictions for all instances s in the training data S
(step 6). For each s and each action ŷt , a cost-sensitive
classification (CSC) example is generated (steps 8-12).
The features are extracted from s and the previous
actions ŷ1:t−1 (step 8). The cost for each possible action
yit is estimated by predicting the remaining actions
y′t+1:T in s using h (step 10) and evaluating the cost
incurred given that action (step 11). Using a CSC learn-
ing algorithm, a new hypothesis is learned (step 13)
which is combined with the current one according to
the interpolation parameter b (step 14). In order to
interpolate between the learned hypotheses and the
optimal policy we draw a random number between 0
and 1. If it is less than (1-b)iteration, then we use the
optimal policy. Otherwise, we use the learned hypoth-
eses which is a weighted ensemble of the hypotheses
learned in each iteration (hnew). The weights are set
according to the equation in step 13, which results in
hypotheses learned in earlier rounds becoming less
important their more recent counterparts.
In each iteration, SEARN moves away from the opti-

mal policy and instead uses the learned hypotheses
when predicting (steps 6 and 10). Thus, each hnew is
adapted to the actions chosen by h instead of those of
the optimal policy. When the dependence on the latter
becomes insignificant (i.e. the probability of using the
optimal policy becomes very small), the algorithm termi-
nates and returns the weighted ensemble of learned
hypotheses without the optimal policy.
The interpolation parameter b determines how fast

SEARN moves away from the optimal policy, and as a
result, how many iterations will be needed to minimize
the dependence on it. Dependence in this context refers
to the probability of using the optimal policy instead of
the learned hypothesis in choosing an action during pre-
diction. Conversely, in each iteration, the features
extracted (Ft in step 8) become progressively dependent
on the actions chosen by the learned hypotheses instead
of those of the optimal policy.
The decomposition of structured prediction into

actions implies a search order. For some tasks such as
part-of-speech (PoS) tagging, there is a natural left-to-
right order in which the tokens are treated. However for
others, including the task tackled in this paper, this
ordering might not be appropriate. We discuss this issue
in the next section.
Structural information under SEARN is incorporated

in two ways. First, via the costs that are estimated using
the loss over the instance rather than isolated actions, e.
g. counting how many incorrect PoS tags will occur in
the sentence if a given token is tagged as noun. Second,
via the features extracted from the previous actions, e.g.
the PoS tag predicted for the previous token can be a
feature. Note that such features would be possible in a

standard pipeline as well, but during training they
would have to be extracted using the gold standard
instead of the actual predictions made by the classifiers,
as they would be extracted during testing. While it is
possible to use cross-validation to train a pipeline on its
own predictions, however this is rarely done in practice.
Finally, SEARN can be adapted to learn a pipeline of

independently trained classifiers. To achieve this, b must
be set to 1 so that there is only one iteration, the fea-
tures that are dependent on previous actions must be
removed, and the cost for each action must be set to 0
if it follows from the gold standard, or to 1 otherwise.
This adaptation allows for a fair comparison between
SEARN and a pipeline of independently learned
classifiers.

Biomedical event extraction with SEARN
In this section we describe how we use SEARN to learn
the event extraction decomposition described earlier.
Each instance is a sentence and the hypothesis learned
in each iteration consists of a classifier for each stage of
the pipeline, excluding event construction which is rule-
based. For this purpose we need to concretely define the
way the prediction of a structured instance is performed
(step 6 in Alg. 1), the optimal policy, and the method
used to estimate the cost for each action (steps 9-11 in
Alg. 1).
Algorithm 1 SEARN
1: Input: labeled instances S , optimal policy π, CSC

learning algorithm CSCL, loss function ℓ

2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1...ŷT
7: for ŷt in h(s) do
8: Extract features �t = f (s, ŷ1:t−1)
9: for each possible action yit do
10: Predict y′t+1:T = h(s|ŷ1:t−1, yit)
11: Estimate cit = �(ŷ1:t−1, yit , y

′
t+1:T)

12: Add (Ft, ct) to E
13: Learn a classifier hnew = CSCL(E)
14: h = bhnew + (1 - b)h
15: Output: policy h without π
SEARN allows us to extract structural features for

each action from the previous ones. During trigger
recognition, we add as features the combination of the
lemma of the token being classified and the event types
(if any) assigned to the previous and the next token, as
well as the event type assigned to the tokens that have
syntactic dependencies with the token being classified.
During Theme assignment, when considering a trigger-
argument pair, we add features based on whether the
pair forms an undirected cycle with previously predicted

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 4 of 11

Themes (undirected Theme cycles are allowed in the
task definition but they are relatively rare), whether the
trigger has been assigned a protein as a Theme and the
candidate Theme is an event trigger (and the reverse),
and whether the argument is the Theme of a trigger
with the same event type. We also add a feature indicat-
ing whether the trigger has three Themes predicted
already, as triggers with more Themes are rare. During
Cause assignment, we add features representing whether
the trigger has been assigned a protein as a Cause and
whether the candidate Cause is an event trigger.
Since the features extracted for an action depend on

previous ones, we need to define a prediction order for
the actions. Ideally, the actions predicted earlier should
be less dependent on structural features and/or easier so
that they can inform the more structure dependent/
harder ones. In trigger recognition, we process the
tokens from left to right since modifiers appearing
before nouns tend to affect the meaning of the latter, e.
g. “binding activity”. In Theme and Cause assignment,
we predict trigger-argument pairs in order of increasing
dependency path length, assuming that, since they are
the main source of features in these stages and shorter
paths are less sparse, pairs containing shorter ones
should be predicted more reliably. Trigger-argument
pairs with the same dependency path length are pre-
dicted according to the order they were added to the
agenda, i.e. pairs with proteins as arguments are pre-
dicted before those that have other triggers as argu-
ments. While we found this ordering of the actions to
work well in practice, it could be improved by taking
into account other properties of the trigger-argument, e.
g. how frequently we encountered its dependency path
in the training data.
The loss function sums the number of false positive

and false negative events, which is the evaluation mea-
sure of the shared task. The optimal policy is derived
from the gold standard and returns the action that mini-
mizes the loss over the sentence given the previous
actions and assuming that all future actions are optimal.
In trigger recognition it returns either the event type for
tokens that are triggers or a “No trigger” label otherwise.
In Theme assignment, for a given trigger-argument pair
the optimal policy returns Theme only if the trigger is
recognized correctly and the argument is indeed a
Theme for that trigger according to the gold standard.
In case the argument is another event, we require that
its Themes have been recognized correctly as well. In
Cause assignment, the requirements are the same as
those for the Themes, but we also require that at least
one Theme of the trigger in the trigger-argument pair to
be considered correct. Consequently, if a trigger is pre-
dicted with the wrong event type, the optimal policy
would not assign any Themes to it in order to avoid the

false positive event it would incur. These additional
checks are imposed by the task definition, under which
events must have all their elements identified correctly.
While the could reduce recall as the optimal policy
avoids predicting some Theme edges, it allows the algo-
rithm to learn how to minimize the losses incurred due
to its own wrong decisions.
Cost estimation
Cost estimation (steps 6-12 in Alg. 1) is crucial to the
successful application of SEARN. In order to highlight
its importance, consider the example of Figure 2 focus-
ing on trigger recognition.
In the first iteration (Figure 2(a)), the actions for the

sentence will be made using the optimal policy only,
thus replicating the gold standard. During costing, if a
token is not a trigger according to the gold standard (e.
g. “SQ”), then the cost for all actions is 0, as the optimal
policy will not assign Themes to a trigger with incorrect
event type. Such instances are ignored by the cost-sensi-
tive learner.
In the second iteration (Figure 2(b)), the optimal pol-

icy is interpolated with the learned hypothesis, thus
some of the actions are likely to be incorrect. Assume
that “SQ” is incorrectly predicted to be a Neg_reg trig-
ger and assigned a Theme. During costing, the action
of labeling “SQ” as Neg_reg has a cost of 1, as it would
result in a false positive event. Thus the learned
hypothesis will be informed that it should not label

Figure 2 Prediction (top of each panel) and cost sensitive
examples for trigger recognition actions (bottom of each
panel) in the first two SEARN iterations.

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 5 of 11

“SQ” as a trigger as it would assign Themes to it incor-
rectly and it is adapted to handle its own mistakes.
Note that the costs for the other actions for that token
remain 0, assuming that the learned hypothesis would
not assign Themes to “SQ” if it is predicted to be Gen-
e_exp, Pos_reg or No_trigger. Similarly, the action of
labeling “production” as Neg_reg in this iteration
would incur a cost of 6, as the learned hypothesis
would assign a Theme incorrectly, thus resulting in 3
false negative and 3 false positive events. Therefore,
the learned hypothesis will be informed that assigning
the wrong event type to “production” is worse than
not predicting a trigger.
The interpolation between the optimal policy and the

learned hypothesis is stochastic, i.e. in each iteration
beyond the first one the actions are taken either by the
optimal policy or by the learned hypotheses, as
described in the section “Structured prediction with
SEARN”. Therefore, the cost estimates obtained in steps
10 and 11 of Alg. 1 vary according to the mistakes
made by the learned hypothesis, thus affecting the cost
estimates obtained. In order to obtain more reliable esti-
mates, one can average over multiple samples for each
action by repeating steps 10 and 11 of Alg. 1. However,
the computational cost is effectively multiplied by the
number of samples.
A different approach proposed by Daumé III [4] is to

assume that all actions following the one we are costing
are going to be optimal and use the optimal policy to
approximate the prediction of the learned hypothesis in
step 10 of Alg. 1. In tasks where the learned hypothesis
is accurate enough, this has no performance loss and it
is computationally efficient as the optimal policy is
deterministic. However, in event extraction, the learned
hypothesis is likely to make mistakes, thus the optimal
policy would not provide a good approximation to it. In
the example of Figure 2, this approach would not alter
the costs between the two iterations, as the optimal pol-
icy would avoid assigning Themes to incorrectly recog-
nized triggers, thus the learned hypothesis would not be
informed of its mistakes.
In step 11 of Alg. 1, the cost of each action is esti-

mated over the whole sentence. While this allows us to
take structure into account, it can result in costs being
affected by a part of the output that is not related to
that action. This is likely to occur in event extraction, as
sentences can often be long (more than 100 tokens) and
contain disconnected event components in their output
graphs. For this reason we use focused costing [5], in
which the cost estimation for an action takes into
account only the part of the output graph connected
with that action. For example, in Figure 2 the cost esti-
mation for “SQ” will ignore the events in the first itera-
tion, while it will take them into account in the second

one. Seen differently, focused costing results in more reli-
able cost estimates than the standard costing (for a
given number of samples) by reducing the number of
actions taken into account.
CSC learning with passive-aggressive algorithms
The SEARN framework requires a multiclass CSC algo-
rithm to learn how to predict actions. This algorithm
must be computationally fast during parameter learning
and prediction, as in every iteration we need to learn a
new hypothesis and to consider each possible action for
each instance in order to construct the cost-sensitive
examples.
Daumé III et al. [4] showed that it is possible to use

any binary classification algorithm in order to perform
multiclass CSC. This is achieved by reducing multiclass
CSC to binary CSC using the weighted all-pairs algo-
rithm [10] and in turn reducing CSC to binary classifi-
cation using the costing algorithm [11]. The main
drawback of this approach is that it relies on multiple
subsamplings of the training data, which can be ineffi-
cient for large datasets and many classes. Zadrozny et al.
[11] observed that it is more efficient to incorporate the
costs in the loss of the classifier when possible. This can
be relatively straightforward in binary problems, but not
in the multiclass ones.
With these considerations in mind, we implement a

multiclass CSC learning algorithm using the generaliza-
tion of the online passive-aggressive (PA) algorithm for
binary classification [12]. For each training example xt,
the K-class linear classifier with K weight vectors w(k)

t
makes a prediction ŷt and suffers a loss ℓt. In the case
of multiclass CSC learning, each example has its own
cost vector ct. If the loss is 0 then the weight vectors of
the classifier are not updated (passive). Otherwise, the
weight vectors are updated minimally so that the predic-
tion on example xt is corrected (aggressive). The update
takes into account the cost of the mistake and the
aggressiveness parameter C , which allows the algorithm
to handle noisy data. Crammer et al. [12] describe three
variants to perform the updates which differ in how the
learning rate τt is set for each example. In our experi-
ments we used the variant named PA-II with predic-
tion-based updates. Initial experiments showed little
difference in accuracy between the variants, which is in
agreement with the observations reported by Crammer
et al.
The full algorithm is presented in Alg. 2. Since we are

operating in a batch learning setting (i.e. we have access
to all the training examples), we perform multiple
rounds and average the weight vectors obtained, as in
the averaged perceptron [13]. Furthermore, since online
learning depends on the order of the training examples
but our data does not have a temporal aspect, we shuffle
the examples in the beginning of each round.

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 6 of 11

Results
In this section we compare the event extraction accu-
racy achieved by the system based on independently
learned classifiers (henceforth independent) versus the
accuracy achieved by the system learning classifiers
under SEARN. The purpose of these experiments is to
assess the benefits of joint learning under SEARN. In
the results reported below, we follow the dataset split of
BioNLP11ST-GE1, namely 800 abstracts and five full
articles for training, 150 abstracts and five full articles
for development, and 260 abstracts and five full articles
for testing. To put these results in a wider context, we
also compare against the other systems that participated
in BioNLP11ST-GE1.
For both independent and SEARN the aggressiveness

parameter of PA and the number of rounds in para-
meter learning are set by tuning on 10% of the training
set. For SEARN, we also set the interpolation parameter
b to 0.3 and use 12 iterations. Thus, in the final itera-
tion the probability of using the optimal policy is (1 -
0.3)12 ≈ 0.01. These parameters were tuned in prelimin-
ary experiments using the development data. For syntac-
tic parsing, we use the output of the re-ranking parser
[14] adapted to the biomedical domain [15], as provided
by the shared task organizers in the Stanford collapsed
dependencies with conjunct dependency propagation
[16]. The use of this publicly available resource allows
for easy replication of our experiments. Lemmatization
is performed using morpha [17]. No other knowledge
sources or tools are used. A pre-processing step we per-
form on the training data is to reduce the multi-token
triggers in the gold standard to their syntactic heads.
This procedure simplifies the task of assigning argu-
ments to triggers and, as the evaluation variant used
allows approximate trigger matching, it does not result
in performance loss.
Table 1 reports the Recall/Precision/F-score achieved

by independent and SEARN in each stage, as well as the
overall performance on the development set. SEARN
obtains better performance on the development set by
6.75 F-score points. The difference is more pronounced
on the more complex Regulation events where SEARN
achieves 41.36 versus 29.13. Table 2 contains detailed

results per event type and class. Note that while the
trigger classifier learned with SEARN overpredicts (its
precision is 29.78), the Theme and Cause classifiers
maintain relatively high precision with substantially
higher recall as they are learned jointly with it. As trig-
gers that do not form events are ignored by the evalua-
tion, trigger overprediction without event overprediction
does not result in performance loss.
Algorithm 2 Passive-aggressive CSC learning
1: Input : training examples X = x1...xT , cost vectors

c1 . . . cT ≥ 0, rounds R, aggressiveness C
2: Initialize weights w(k)

0 = (0, ..., 0)
3: for r = 1,..., R do
4: Shuffle X
5: for xt ∈ X do
6: Predict ŷt = argmaxk(w

(k)
t · xt)

7: Receive cost vector ct ≥ 0
8: if c(ŷt)t > 0then
9: Suffer loss �t = w(ŷt)

t · xt − w(yt)
t · xt

√
c(ŷt)t

10: Set learning rate τt =
�t

||xt||2+ 1
2c11: Update w(yt)

t+1 = wt + τtxt
12: Update w(ŷt)

t+1 = wt − τtxt
13: Average wavg = 1

T×R

∑T×R
i=0 wi

The results on the test dataset using SEARN are
46.67/61.63/53.12 (Recall/Precision/F-score) which
would have ranked fourth in the shared task, 2.92 F-
score points below the best performing ensemble system
FAUST [18]. (These numbers are higher than the ones
reported in the official results labeled UW-Madison due
to fixing a bug.) On the same dataset, the independent
system achieves 33.45/67.87/44.82, which while it would
have ranked eighth in the shared task (out of a total of
15 participants), it is 8.3 F-score points below the result
achieved with SEARN. In the full papers part of the cor-
pus, our approach using SEARN would have ranked sec-
ond with 52.98 F-score points, slightly below the best
reported performance at 53.14 by UMass [19]. While a
direct comparison between learning frameworks is diffi-
cult due to the differences in task decomposition and
feature extraction, we hypothesize that the superior per-
formance of these systems is partly due to learning how
to construct Binding events, while our approach uses
heuristics for this task. However, it is possible to model
Binding event construction with a classifier and learn it
jointly with SEARN, which we leave for future work.

Evaluation at varying recall-precision curves
In the previous section we evaluated the accuracy of the
event extraction systems discussed using F-score, which
by default favors balanced precision and recall scores.
While SEARN achieves a better F-score than indepen-
dent, it is important to note that they operate at differ-
ent precision levels, with independent being substantially
more precise at 69.39% versus 59.60%. Therefore it is

Table 1 R(ecall)/P(recision)/F(-score) on the development
dataset.

independent (R/P/F) SEARN (R/P/F)

trigger 52.82 66.76 58.98 83.65 29.78 43.92

Theme 46.23 79.03 58.34 63.63 71.82 67.48

Cause 15.16 58.49 24.08 31.79 49.06 38.57

Event 35.68 69.39 47.12 49.15 59.60 53.87

Each row reports the results for each stage of the event extraction
decomposition, with the last row containing the overall event extraction
performance.

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 7 of 11

reasonable to ask whether SEARN achieves higher F-
score simply because it operates at lower precision, thus
if it was forced to operate at the same precision this
would result in lower recall (and therefore F-score) than
the one achieved by independent. In other words, the
question we ask is whether SEARN learns more than a
good set of thresholds for the classifiers used at each
stage of the event extraction decomposition.
In this section, we explore the behavior of the two sys-

tems by adjusting the scores returned during prediction
by the classifier used at each stage. In particular, we
alter the score returned by the classifier for the negative
class of each stage (No_Trigger for trigger recognition,
No_Theme for Theme assignment and No_Cause for
Cause assignment) by a parameter that can be either
positive, thus resulting in over-generation, or negative,
thus resulting in under-generation. Each stage has its
own parameter, thus each experimental run is defined
by a set of three parameter values. Altogether, we inves-
tigated 1,000 sets of parameter values for both systems,
the results of which we evaluate on the development
data.
The results of Figure 3 demonstrate that SEARN

achieves better recall than independent at all precision
levels. In particular, at 69% precision (the precision of
the independent system on this dataset reported in the
previous section), SEARN achieves 44% recall versus
36%. This is also the case at even higher precision levels.
For example, SEARN achieves 29% recall at 80% preci-
sion, compared to 13% by independent. Finally, these
observations are confirmed at the other end of the pre-
cision-recall trade-off. For example, at 20% precision
SEARN achieves 54% recall compared to 43% by inde-
pendent. Thus we confirm that the improved predictive
accuracy of SEARN is not only due to adjusting

classification thresholds, but also due to generating
appropriate training examples and learning structural
feature weights.

Controlling the trade-off between recall and precision
In the previous section we adjusted the trade-off
between precision and recall in order to obtain a more
complete comparison between classifiers learned with
SEARN and classifiers learned independently. The ability
to adjust this trade-off is of interest to users of event
extraction systems, as they frequently need to adapt the
behavior of a system to particular needs. For example, if
a system is going to be used to populate a knowledge
base whose users are not expected to verify its contents,
then precision is more important than recall. Conver-
sely, if it is going to be used by users to navigate
through the biomedical literature and recover rarely

Figure 3 Recall-precision points resulting from different
parameter values for independent and SEARN.

Table 2 Detailed results on the development data using independently learned classifiers and SEARN

independent SEARN

Event Type/Class Recall Precision F-score Recall Precision F-score

Gene_expression 67.02 85.20 75.03 73.43 78.88 76.06

Transcription 34.81 90.16 50.23 48.73 70.00 57.46

Protein_catabolism 69.57 94.12 80.00 69.57 76.19 72.73

Phosphorylation 71.17 86.81 78.22 81.08 90.91 85.71

Localization 62.69 80.77 70.59 71.64 77.42 74.42

Simple (TOTAL) 62.64 85.66 72.36 70.49 78.95 74.48

Binding 28.42 63.10 39.19 40.21 62.24 48.86

Simple+Binding (TOTAL) 54.02 81.78 65.06 62.86 75.67 68.67

Regulation 14.04 44.57 21.35 32.19 37.90 34.81

Positive_regulation 22.02 55.00 31.45 40.24 46.42 43.11

Negative_regulation 20.38 48.73 28.74 35.46 50.61 41.70

Regulation (TOTAL) 20.26 51.81 29.13 37.63 45.91 41.36

TOTAL 35.68 69.39 47.12 49.15 59.60 53.87

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 8 of 11

mentioned facts about proteins, then recall is more
important than precision. Similar observations were
made in the context of biomedical named entity recog-
nition by Carpenter [20].
As described earlier, the results reported in the pre-

vious section were obtained by evaluating the effect of
1,000 sets of parameter values to adjust the classification
scores at each stage. It is important to note that the
effect of these values is not straightforward to anticipate,
as it is difficult to predict how the classifiers for each
stage will interact with each other. For example, it is
impossible to know in advance how to adjust the Theme
assignment classifier if we adjust the trigger recognizer
to over-generate. Furthermore, in the case of complex
classification pipelines, the effect of each parameter can
be hard to predict, e.g. while over-generating Causes is
expected to increase recall since it results in more
events predicted, it could also have the opposite effect,
as it can change correctly extracted Regulation events
that do not have such arguments into incorrect ones.
These issues are visible in the results of Figure 3, where
for each recall level there is a range of precision values
obtained by each system, some of them well below the
best one or even 0.
In order to choose the best set of parameter values at

various precision levels, it is customary to use a develop-
ment set, as done in order to report the results in the
previous section. However this is not always desirable,
as it requires part of the available annotated data to be
withheld for this purpose and thus not used for training.
Furthermore, the procedure to find the parameter values
that result in the desired trade-off between recall and
precision must be repeated each time there is a change
in the event extraction system.
Instead of adjusting classification scores, it is possible

under SEARN to adjust the trade-off between precision
and recall via the loss function ℓ used to estimate the
cost of each action (step 11 in Algorithm 1). In our
approach, as described in the section “Biomedical event
extraction with SEARN”, the loss function is the sum of
the numbers of false positives and false negatives.
Therefore, in order to learn a system with higher preci-
sion, we multiply the number of false positives with a
positive weight, and conversely, in order to learn a sys-
tem with higher recall we multiply the number of false
negatives with a positive weight.
The results obtained using SEARN with different

weights on false positives and false negatives are shown
in Figure 4. In each experiment, one of these weights
was kept to 1, while the other one was set to 21...6, thus
resulting in 12 experiments in total. It can be observed
that in all cases the trade-off achieved is a reasonable
one, i.e. favoring precision over recall never results in
the latter becoming prohibitively low, as well as the

reverse. This demonstrates that the classifiers learned
jointly under SEARN are adapted to each other in order
to adjust the balance between precision and recall. The
benefits of this method are more pronounced at the
higher recall levels, for example it obtains 54% recall at
41% precision, while the same recall was possible only
at 18% precision in the previous section. Furthermore,
while the trade-off achieved at high precision levels is
not always as good as the one obtained by adjusting the
scores of the classifiers directly, it is never substantially
worse. Most importantly, using weights on false posi-
tives and false negatives in the loss function is very
stable and thus it can be used without a development
set.

Experiments with domain adaptation
BioNLP11ST-GE1 evaluated event extraction on
abstracts and full papers. While the annotation guide-
lines used were the same, full papers are likely to con-
tain richer vocabulary and linguistic phenomena than
the abstracts. Since we have annotated data for both we
decided to address this task as a supervised domain
adaptation problem. We experimented with the domain
adaptation method proposed by Daumé III [7], which
creates multiple versions for each feature by conjoining
it with the domain label of the instance it is extracted
from (abstracts or full papers). For example, during trig-
ger recognition, the feature representing the lemma of a
token becomes three features: the original lemma fea-
ture, a lemma feature for the abstracts domain and a
lemma feature for the full papers domain. For each
token, only two of these features will be active, accord-
ing to the domain of the sentence the token is found in.
For example, if the token is found in a sentence of an
abstract, only the original lemma feature and the
abstracts domain lemma feature will be active.

Figure 4 Recall-precision points obtained for SEARN using
different weights for false positives and false negatives.

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 9 of 11

In our experiments, this simple domain adaptation
method improved the accuracy of the classifiers trained
under SEARN by 0.5 F-score points on the development
and 0.41 F-score points on the test set, mainly by
improving accuracy on the abstracts while preserving
the already high accuracy on the full papers. This
improvement is due to the domain-specific versions of
the features that allow the flexibility to model the parti-
cularities of each domain independently. This version of
the system would have ranked third overall with 53.53
F-score points, and second if we do not take the best-
performing ensemble system FAUST [18] into consid-
eration. Table 3 contains detailed results per event type,
event class and domain. In the regulation events that
are more difficult to extract it would have ranked third
overall and in the regulation events of the full papers it
would have ranked first with 42.45 F-score points, 1.89
points better than the best-performing ensemble system
FAUST. We hypothesize that the relatively limited
impact of domain adaptation is due to the sparse fea-
tures used in the stages of the event extraction decom-
position, which become even sparser using this domain
adaptation method, thus rendering the learning of
appropriate weights for them harder.

Conclusions
We presented a joint inference approach to the
BioNLP11ST-GE1 event extraction task using SEARN
which converts a structured prediction task into a set
of CSC tasks whose models are learned jointly. Our
results demonstrate that SEARN achieves substantial
performance gains over independently learned

classifiers using the same features at all precision
levels. Furthermore, we suggested an efficient method
to adjust the trade-off between recall and precision
under SEARN in order to accommodate different
usage scenarios. Finally, we were able to improve our
performance further using a simple domain adaptation
method in order to handle the differences between
abstracts and full papers. In the course of our experi-
ments, we reported the second-best event extraction
results by a single system.

Acknowledgements
The authors were funded by NIH/NLM grant R01 LM07050. We would like to
thank the BioNLP shared task organizers for providing the infrastructure and
the data. Most of the work reported in this paper was undertaken while the
first author was employed by the University of Wisconsin-Madison.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 11, 2012: Selected articles from BioNLP Shared Task 2011. The
full contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/S11.

Author details
1Computer Laboratory, University of Cambridge, UK. 2Department of
Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA.

Authors’ contributions
AV wrote the code and ran the experiments. Both authors were involved in
designing the approach and writing the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 26 June 2012

References
1. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09 Shared

Task on Event Extraction. Proceedings of the BioNLP 2009 Workshop
Companion Volume for Shared Task 2009, 1-9.

2. Kim JD, Pyysalo S, Ohta T, Bossy R, Tsujii J: Overview of BioNLP Shared
Task 2011. Proceedings of the BioNLP 2011 Workshop Companion Volume for
Shared Task 2011, 1-6.

3. Kim JD, Wang Y, Takagi T, Yonezawa A: Overview of the Genia Event task
in BioNLP Shared Task 2011. Proceedings of the BioNLP 2011 Workshop
Companion Volume for Shared Task 2011, 7-15.

4. Daumé III H, Langford J, Marcu D: Search-based structured prediction.
Machine Learning 2009, 75:297-325.

5. Vlachos A, Craven M: Search-based structured prediction applied to
biomedical event extraction. Proceedings of the Fifteenth Conference on
Computational Natural Language Learning Association for Computational
Linguistics; 2011, 49-57.

6. Domingos P: MetaCost: a general method for making classifiers cost-
sensitive. Proceedings of the 5th International Conference on Knowledge
Discovery and Data Mining Association for Computing Machinery; 1999,
155-164.

7. Daumé III H: Frustratingly Easy Domain Adaptation. Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics
Association for Computational Linguistics; 2007, 256-263.

8. Nédellec C: Learning Language in Logic - Genic Interaction Extraction
Challenge. Proceedings of the Learning Language in Logic 2005 Workshop at
ICML 2005.

9. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia A: Overview of the
protein-protein interaction annotation extraction task of BioCreative II.
Genome Biology 2008, 9(Suppl 2):S4.

10. Beygelzimer A, Dani V, Hayes T, Langford J, Zadrozny B: Error limiting
reductions between classification tasks. Proceedings of the 22nd
International Conference on Machine Learning Association for Computing
Machinery; 2005, 49-56.

Table 3 Detailed results on the test data using SEARN
with domain adaptation

Domain abstracts+full abstracts full
papers

Event Type/Class Recall Precision F-
score

F-score F-score

Gene_expression 69.46 80.65 74.64 72.63 79.35

Transcription 44.83 62.40 52.17 53.11 48.28

Protein_catabolism 73.33 42.31 53.66 70.97 0.00

Phosphorylation 81.62 88.82 85.07 83.08 90.53

Localization 45.03 88.66 59.72 61.72 43.75

Simple (TOTAL) 65.22 79.78 71.77 70.32 75.80

Binding 38.09 57.36 45.78 46.67 43.72

Simple+Binding
(TOTAL)

58.75 75.23 65.98 65.27 67.87

Regulation 32.99 41.50 36.76 38.13 32.77

Positive_regulation 40.82 51.62 45.59 44.69 47.36

Negative_regulation 38.35 43.89 40.93 43.80 35.64

Regulation (TOTAL) 38.97 48.05 43.04 43.33 42.45

TOTAL 48.10 60.34 53.53 53.79 52.93

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 10 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S11
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S11

11. Zadrozny B, Langford J, Abe N: Cost-Sensitive Learning by Cost-
Proportionate Example Weighting. Proceedings of the 3rd IEEE International
Conference on Data Mining IEEE Computer Society; 2003, 435-442.

12. Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y: Online Passive-
Aggressive Algorithms. Journal of Machine Learning Research 2006,
7:551-585.

13. Collins M: Discriminative training methods for hidden Markov models:
theory and experiments with perceptron algorithms. Proceedings of the
2002 Conference on Empirical Methods in Natural Language Processing
Association for Computational Linguistics; 2002, 1-8.

14. Charniak E, Johnson M: Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics Association for Computational
Linguistics; 2005, 173-180.

15. McClosky D: Any domain parsing: Automatic domain adaptation for
natural language parsing. PhD thesis Department of Computer Science,
Brown University; 2010.

16. Stenetorp P, Topić G, Pyysalo S, Ohta T, Kim JD, Tsu-jii J: BioNLP Shared
Task 2011: Supporting Resources. Proceedings of the BioNLP 2011
Workshop Companion Volume for Shared Task 2011.

17. Minnen G, Carroll J, Pearce D: Applied morphological processing of
English. Natural Language Engineering 2001, 7(3):207-223.

18. Riedel S, McClosky D, Surdeanu M, McCallum A, D Manning C: Model
Combination for Event Extraction in BioNLP 2011. Proceedings of the
BioNLP 2011 Workshop Companion Volume for Shared Task 2011, 51-55.

19. Riedel S, McCallum A: Robust Biomedical Event Extraction with Dual
Decomposition and Minimal Domain Adaptation. Proceedings of the
BioNLP 2011 Workshop Companion Volume for Shared Task 2011, 46-50.

20. Carpenter B: LingPipe for 99.99 % Recall of Gene Mentions. Proceedings of
the 2nd Biocreative Workshop 2007.

doi:10.1186/1471-2105-13-S11-S5
Cite this article as: Vlachos and Craven: Biomedical event extraction
from abstracts and full papers using search-based structured prediction.
BMC Bioinformatics 2012 13(Suppl 11):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Vlachos and Craven BMC Bioinformatics 2012, 13(Suppl 11):S5
http://www.biomedcentral.com/1471-2105/13/S11/S5

Page 11 of 11

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Event extraction decomposition
	Trigger recognition
	Theme and Cause assignment
	Event construction

	Structured prediction with SEARN
	Biomedical event extraction with SEARN
	Cost estimation
	CSC learning with passive-aggressive algorithms

	Results
	Evaluation at varying recall-precision curves
	Controlling the trade-off between recall and precision
	Experiments with domain adaptation

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

