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Abstract

Background: Comparison of short peptides which form amyloid-fibrils with their homologues that may form
amorphous b-aggregates but not fibrils, can aid development of novel amyloid-containing nanomaterials with well
defined morphologies and characteristics. The knowledge gained from the comparative analysis could also be
applied towards identifying potential aggregation prone regions in proteins, which are important for
biotechnology applications or have been implicated in neurodegenerative diseases. In this work we have
systematically analyzed a set of 139 amyloid-fibril hexa-peptides along with a highly homologous set of 168 hexa-
peptides that do not form amyloid fibrils for their position-wise as well as overall amino acid compositions and
averages of 49 selected amino acid properties.

Results: Amyloid-fibril forming peptides show distinct preferences and avoidances for amino acid residues to occur
at each of the six positions. As expected, the amyloid fibril peptides are also more hydrophobic than non-amyloid
peptides. We have used the results of this analysis to develop statistical potential energy values for the 20 amino
acid residues to occur at each of the six different positions in the hexa-peptides. The distribution of the potential
energy values in 139 amyloid and 168 non-amyloid fibrils are distinct and the amyloid-fibril peptides tend to be
more stable (lower total potential energy values) than non-amyloid peptides. The average frequency of occurrence
of these peptides with lower than specific cutoff energies at different positions is 72% and 50%, respectively. The
potential energy values were used to devise a statistical discriminator to distinguish between amyloid-fibril and
non-amyloid peptides. Our method could identify the amyloid-fibril forming hexa-peptides to an accuracy of 89%.
On the other hand, the accuracy of identifying non-amyloid peptides was only 54%. Further attempts were made
to improve the prediction accuracy via machine learning. This resulted in an overall accuracy of 82.7% with the
sensitivity and specificity of 81.3% and 83.9%, respectively, in 10-fold cross-validation method.

Conclusions: Amyloid-fibril forming hexa-peptides show position specific sequence features that are different from
those which may form amorphous b-aggregates. These positional preferences are found to be important features
for discriminating amyloid-fibril forming peptides from their homologues that don’t form amyloid-fibrils.
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Background
Outcome of the competition between functionally active
and inactive aggregated forms is critical to a protein’s
fate in vivo and in vitro. Indeed, aggregation is an
ancient threat to proper folding of proteins and it must
be overcome by proteins from all organisms to maintain
their native functional states. The aggregation of endo-
genous proteins causes several diseases in humans and
animals. Aggregation is also a major hurdle in successful
development of biopharmaceutical drug products [1]. In
converse biotechnology applications, creation of protein
and peptide aggregates with well defined morphologies
is of interest for development of nano-materials with
desired characteristics.
Plaques containing amyloid fibrils are a common form

of protein aggregates that have been detected in several
neurodegenerative diseases, such as Alzheimers’ [2,3].
These fibrils contain cross-b motif, which yields charac-
teristic reflection in fiber X-diffraction studies [4-6].
This motif arises from short 5-9 residues long sequence
regions known as Aggregation Prone Regions (APRs)
[7]. The molecular features of this cross-b motif were
elucidated by Eisenberg and co-workers [8,9]. Figure 1
illustrates the experimentally known structure of an
amyloid-fibril formed by the hexa-peptide, VQIVYK,
which is part of the dataset used in this study. Experiments
from several research groups have also traced origins of
amyloid formation in proteins to short peptide sequences.
In particular, Serrano’s group has derived amyloidogenic
hexa-peptide patterns at neutral and acidic pH by examin-
ing the variants of a de novo designed amyloid-fibril form-
ing hexa-peptide, STVIIE [10]. Maurer-Stroh et al. [11]
have also used amyloid-fibril forming hexa-peptides to

develop position specific matrices for prediction of APRs
in protein sequences. In order to understand the mechan-
isms by which proteins are converted from their soluble
states to amyloid fibrils, it is essential to analyze the char-
acteristic features of amyloid-fibril forming peptides and
compare them with those of the peptides that do not yield
amyloid-fibrils under the same experimental conditions
but may form amorphous b-aggregates.
On the computational point of view, amino acid prop-

erties such as hydrophobicity, b-strand propensity, charge
and solubility of amyloid forming peptides have been
analyzed and used to predict change in aggregation rate
upon mutation [12-14]. Further, several structure-based
models and empirical equations have been proposed to
predict aggregation prone regions and change in aggrega-
tion propensity/rate due to mutation [11,15-21]. Agrawal
et al. [1] and Belli et al. [22] have reviewed several com-
monly available aggregation prediction tools and dis-
cussed their advantages and shortcomings towards
different applications.
In this work, we have collected and analyzed 139 amy-

loid-fibril forming hexa-peptides from the experiments of
Lopez de La Paz and Serrano [10] and Maurer-Stroh et al.
[11]. One hundred and sixty eight hexa-peptide sequences
that do not form amyloid-fibrils in experiments conducted
by the above mentioned groups were also used. For simpli-
city, we refer to the two sets as amyloid peptides and non-
amyloid peptides. The hexa-peptides in the two datasets
are highly homologous as an amyloid peptide may differ
from its non-amyloid cousin by just one residue. This indi-
cates that the sequence-structural-thermodynamic features
separating amyloid peptides from non-amyloid ones are
subtle. Availability of these hexa-peptide sequences with

Figure 1 Microcrystal structure of an amyloid-fibril formed by the hexa-peptide, VQIVYK from a human protein, tau. The heavy atoms
in all the residues are shown in ball and stick representation. Each ribbon represents a hexa-peptide and the box denotes an unit cell.
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experimental data has afforded us an opportunity to
uncover these subtle differences in a systematic manner.
The analyses were carried out for several parameters such
as overall amino acid composition of the hexa-peptides,
preferences for different amino acid residues to occur at
each of the six positions in the hexa-peptides and 49
diverse amino acid properties (http://www.cbrc.jp/~gro-
miha/fold_rate/property.html; [23,24]). Furthermore, we
have developed a set of energy potentials based on the
propensity of the 20 amino acid residues at six different
positions. We found that amyloid peptides show distinct
preferences and avoidances for amino acid residues to
occur at each of the six positions. These preferences are
significantly different from those seen in non-amyloid pep-
tides. Further, we derived energy potentials based on
amino acid preferences at different positions in the hexa-
peptides and attempted to use them for discriminating
amyloid peptides from non-amyloid ones. The success
rate for the energy potentials developed to identify amy-
loid peptides was 89%. This rate compares favorably with
that of position specific matrices based program, Waltz,
(67%) [11], the structure based program, 3Dprofile (80%)
[20], an energy potential based program, PASTA (80%)
[25] and statistical mechanics based program, Tango
(91%) [10]. On the other hand, the accuracy for negative
prediction, that is, prediction of non-amyloid peptides was
only 54%. As far as we know, previous studies have not
attempted negative predictions and there is no data to
compare this negative prediction rate. Further, we have
utilized several machine learning algorithms and the
method based on random forest discriminated the amyloid
and non-amyloid peptides with an accuracy of 82.7%
which is a balance between sensitivity (81.3%) and specifi-
city (83.9%).

Materials and methods
Collection of amyloid peptide and non-amyloid peptide
datasets
We have searched the literature as well as the datasets
used in previous works to construct a reliable dataset
containing peptide sequences that have been studied
experimentally for amyloid-fibril formation. For the pur-
pose of this study, we restricted to hexa-peptide
sequences verified with experimental data. This proce-
dure yielded a majority of data from Waltz [11] and
Amylhex [10]. In addition, we have used the data
reported in the supplementary material of Maurer-Stroh
et al. [11]. After eliminating the redundant data, our
final dataset contains 139 amyloid forming peptides and
168 non-amyloid peptides.

Amino acid composition
We have computed the amino acid composition of all
the amyloid and non-amyloid peptides using the ratio

between the number of amino acids of each type and
the total number of residues. It is defined as [26]:

Comp (i) = �ni/N (1)

where i stands for the 20 amino acid residues. ni is the
number of residues of each type and N is the total num-
ber of residues. The summation is through all the resi-
dues in all the considered peptides.
We have also computed the composition of amino

acid residues at different positions of the considered
hexa-peptides such as position 1, 2, 3, 4, 5 and 6 using
the following equation:

Comp (i,j) = �n (i, j) /N (j) (2)

where, i and j represent 20 amino acid residues and 6
positions, respectively. N(j) is the total number of residues
at position j (i.e. 139 for amyloid and 168 for non-amyloid).

Position specific amino acid propensities
We have converted the composition of amino acid resi-
dues at different positions of hexa-peptides into propensi-
ties by normalizing the composition with different factors
such as (i) the overall composition of their respective amy-
loid and non-amyloid forming peptides (Equation 1),
b-strand propensity of globular proteins [27] and overall
composition of globular proteins [26,28]. After careful
inspection of the results we have chosen the propensity
based on the normalization with the composition of 20
amino acid residues in globular proteins. The propensity
of amino acid residues at different positions is given by

Propen (i, j) = Comp (i, j) /Compglob (i) (3)

where, Compglob(i) is the composition of residue i
obtained with a set of globular proteins [26,28]. The
values are Ala: 8.47; Asp: 5.97; Cys: 1.39; Glu: 6.32; Phe:
3.91; Gly: 7.82; His: 2.26; Ile: 5.71; Lys: 5.76; Leu: 8.48;
Met: 2.21; Asn: 4.54; Pro: 4.63; Gln: 3.82; Arg: 4.93; Ser:
5.94; Thr: 5.79; Val: 7.02; Trp: 1.44 and Tyr: 3.58.

Energy potentials
The amino acid propensities to occur at each of position
of amyloid and non-amyloid peptides were treated as
partition functions and converted into thermodynamic
energy potential by using the following expression:

φ (i, j) = −RT ln propen (i, j) (4)

where, i and j are the 20 amino acid residues and six
positions respectively.

Amino acid properties
In this work, we used a set of 49 diverse amino acid prop-
erties (physical, chemical, energetic and conformational).
These properties have been used in several studies for
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understanding protein stability, transition state structures
of proteins, and predicting protein folding and unfolding
rates, discrimination of transporters and structure-func-
tion relationship in membrane proteins [29-35]. The
numerical values for all the 49 properties used in this
study along with their brief descriptions have been
explained in our earlier article [23,24] and are freely
available at http://www.cbrc.jp/~gromiha/fold_rate/prop-
erty.html. Besides these properties, we also used a hydro-
phobicity scale based on retention times of individual
amino acids in hydrophobic RPLC columns to compute
total hydrophobicity values (HT) for each hexa-peptide.
This scale is different from all others as it measures latent
hydrophobicity of each amino acid [36]. The hydrophobi-
city coefficient values (h) for each amino acid are as fol-
lows: Ala, 13.26; Cys, 26.84; Asp, 8.15; Glu, 11.12; Phe,
90.17; Gly, 3.80; His, 4.14; Ile, 69.53; Lys, 2.92; Leu, 73.84;
Met, 51.64; Asn, 1.00; Pro, 27.54; Gln, 6.00; Arg, 10.24;
Ser, 3.53; Thr, 11.64; Val, 44.60; Trp, 100.00; Tyr, 47.49;
data taken from Table II in [36]. The HT value for each
hexa-peptide was calculated by summing the hydropho-
bicity coefficients of the amino acid residues in the hexa-
peptide.

Computation of total amino acid property
The total amino acid property for each hexa-peptide has
been computed using the standard formula [37],

Ptotal (i) = �P (i, j) (5)

where, P(i,j) is the property value of jth residue for the
ith peptide and the summation is over 6, the total num-
ber of residues in a hexa-peptide. We have repeated the
computations for all the 49 amino acid properties in the
dataset of amyloid and non-amyloid peptides and the
difference between them.

Discrimination of amyloid and non-amyloid peptides
using statistically derived energy potentials
We have made an attempt to discriminate the amyloid and
non-amyloid peptides using the energy potentials derived
in this work. For this purpose, we combined both amyloid
and non-amyloid peptide sets to obtain a set of 307 hexa-
peptides. For each hexa-peptide, k in this set, the energy
potentials j(i,j) were computed based on propensity value
of the ith amino acid ( i = 1, 20) to occur at the jth position
(j = 1, 6) as described above. The total potential of the
peptide k (jtot(k)), was computed by summing over the j
(i,j) values for the peptide.

φtot (k) = �φ (i, j) (6)

These calculations were performed using the potentials
derived from both amyloid and non-amyloid peptide sets.
The discriminator was then computed as follows:

�φ (k) = φtot(k)amyloid − φtot(k)non−amyloid (7)

If Δj (k) has negative value, the peptide is predicted
to form amyloid fibrils. Otherwise, it is predicted not to
form amyloid-fibrils.

Machine learning techniques for discriminating amyloid
and non-amyloid peptides
We have analyzed several machine learning techniques
implemented in WEKA program [38] for discriminating
between amyloid and non-amyloid peptides. WEKA
includes several methods based on different machine
learning techniques such as Bayesian function, Neural
network, Radial basis function network, Logistic func-
tion, Support vector machine, Regression analysis,
Nearest neighbor, Meta learning, Decision tree and
Rules. The details of all these methods are available in
our earlier articles [37]. We have used the energy poten-
tials and selected amino acid properties as input features
for the methods.

Assessment of predictive ability
We have performed 20-fold, 10-fold and 5-fold cross-vali-
dation tests for assessing the validity of the present work.
In this method, the data set is divided into n groups, n-1
of them are used for training and the rest is used for test-
ing the method. The same procedure is repeated for n
times so that each data is used at least once in the test.
We have used different measures, such as sensitivity, spe-

cificity and accuracy, to assess the performance of machine
learning methods towards discriminating between amyloid
and non-amyloid peptides. The term sensitivity shows the
correct prediction of amyloid peptides, specificity is the
correct prediction of non-amyloid peptides and accuracy
indicates the overall assessment. These terms are defined
as follows:
Sensitivity = TP/(TP+FN)
Specificity = TN/(TN+FP)
Accuracy = (TP+TN)/(TP+TN+FP+FN),
where, TP (amyloid peptides predicted as amyloid pep-

tides), FP (non-amyloid peptides predicted as amyloid
peptides), TN (non-amyloid peptides predicted as non-
amyloid peptides) and FN (amyloid peptides predicted as
non-amyloid peptides) refer to the number of true posi-
tives, false positives, true negatives and false negatives,
respectively.

Results
Amino acid composition at different positions of
amyloid and non-amyloid peptides
Amyloid and non-amyloid peptides have different amino
acid compositions. Figure 2 compares the overall amino
acid compositions of amyloid and non-amyloid peptides.
As compared to the non-amyloid peptides, amyloid
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peptides contain greater proportions of Cys, Ile, Asn, Gln,
Ser, Val and Tyr. On the other hand, the non-amyloid pep-
tides contain greater proportions of Ala, Asp, Glu, Phe, Gly,
His, Lys, Leu, Pro and Arg. Proportions of Met, Thr and
Trp are similar between amyloid and non-amyloid peptides.
We noticed that b-branched residues, Ile and Val are con-
siderably more frequent in amyloid peptides whereas the
charged residues, Asp, Glu, Lys and Arg, showed consider-
ably higher incidence in non-amyloid peptides than amy-
loid peptides. These observations are consistent with early
observations on composition of amyloidogenic sequences
[13,14,39,40].
Amyoid and non-amyloid peptides show different posi-

tion specific amino acid preferences. We have computed
the propensities of amino acid residues to occur at different
positions of the amyloid and non-amyloid hexa-peptides.
Table 1 shows the preferred and avoided residues at each
of the six positions in amyloid and non-amyloid hexa-pep-
tides. An amino acid residue which occurs with a propen-
sity value ≥1.2 at a given position is considered to be
preferred at that position. Similarly, the amino acid residue
that occurs with a propensity value ≤ 0.8 at a position is
considered to be avoided at that position. It can be seen
that each position in amyloid or non-amyloid hexa-
peptides prefers and avoids different sets of amino acid
acids. At 5 of the six positions in the hexa-peptides, the
overall position specific preferences for amyloid and non-
amyloid peptides are different, although some residues are
common (shown in bold in Table 1). At position 5, both
amyloid and non-amyloid peptides have the preference for
the same residues. Similarly, there are several common

residues that are avoided at same positions in both amyloid
and non-amyloid peptides.
The difference between amyloid and non-amyloid pep-

tides lies in composition of their core positions. The six
positions in the hexa-peptides can be divided into two
groups consisting termini (positions 1 and 6) and core
(positions 2,3,4 and 5). Most of the preferred residues at
the core positions in the amyloid peptides are aromatic or
aliphatic. The polar amino acids, Asn and Gln are also
preferred at positions 2,3 and 4 of amyloid peptides.

Figure 2 Amino acid composition in amyloid and non-amyloid forming peptides.

Table 1 Preferred and avoided residues at different
positions of amyloid and non-amyloid forming hexa-
peptides

Position Amyloid Non-amyloid

Preferred

1 S, W, Y, H, M, N F, H, K, S, W, Y

2 C, F, I, Q, T, Y E, M, T, Y

3 F, Q, V, W C, E, F, N, V, W

4 I, L, N, W, Y F, I, L, Y

5 F, I, Y F, I, Y

6 C, E, F, M, Q, S, Y E, F, M, T, W

Avoided

1 D, T, R, E G, L, A, Q, V

2 D, A, N, S, G D, N, P, R

3 A, G, D, I, Y A, G, R, T, Y

4 V, S, K, A A, M, V, D, W

5 E, L, Q, S, T A, G, M, R, S, T

6 A, D, G, I, K A, V

Bold letters indicate common amino acid residues in amyloid and non-
amyloid.
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In contrast, core positions in non-amyloid peptides can
contain charged residues also. At the core positions, sev-
eral avoided residues are common between amyloid and
non-amyloid peptides (Table 1). Taken together, the above
observations have revealed the differences between amy-
loid and non-amyloid peptides and suggested that it may
be feasible to discriminate between them at the sequence
level via computational means. However, the amino acid
composition biases seem to suggest that it may be easier
to predict that a given hexa-peptide will from amyloid-
fibrils than to predict that the given hexa-peptide will not
from amyloid fibril (see below). This observation is consis-
tent with the view that amyloid-fibril formation is a back-
bone-driven process [41].

Energy potentials derived to amino acid propensities
To facilitate the discrimination between amyloid and
non-amyloid peptides, we have computed the energy
potentials for each amino acid residue to occur at differ-
ent positions in hexa-peptides and the results are pre-
sented in Table 2. We have analyzed the results on two
directions: (i) based on amino acid residues and (ii) based
on positions. The data presented in Table 2 showed that
in amyloids Ser is preferred in position 1; Thr in position
2; Val in position 3; Ile in positions 4 and 5, and Glu in
position 6 [42]. The respective preference of residues is
lower in the non-amyloid peptides. The amyloid and non-amyloid energy potentials (j(i,j) at

different positions in the hexa-peptides were computed
from amino acid propensities from 139 amyloid and 168
non-amyloid peptides. The next step was to compute the
energy difference potentials for all the 20 amino acids and
at all the six positions. The distribution of these energy
differentials was analyzed for each of the six positions and
the results are shown in Figure 3. Specifically, there is a
marked difference between amyloids and non-amyloids at
the energy cutoff of -0.2 kcal/mol. At this threshold value,
73% of peptides are amyloids and 49% are non-amyloids at
position 1, 80% are amyloids and 61% are non-amyloids at
position 2, 75% are amyloids and 52% are non-amyloids at
position 4 and 73% are amyloids and 56% are non-
amyloids at position 6. Interestingly, at position 4, 5% of
the amyloids have the energy value of -1.4 kcal/mol.
Further, at position 3, the amyloid and non-amyloid pep-
tides are distinguished with 52% and 24% respectively in a
narrow range of -0.6 to -0.4 kcal/mol. Similar trend is also
observed at position 5 with the dominance of 80% and
61% for amyloids and non-amyloids, respectively. The gen-
eral trend is the accumulation of amyloid peptides at the
lower range (more stable) of potentials at each position.

Average hydrophobicity of amyloid and non-amyloid
forming hexa peptides
Hydrophobicity is an important property of peptides that
from amyloid fibrils. To understand how amyloid

Table 2 Energy potentials (kcal/mole) computed from the
propensities of amino acid residues at different positions
in amyloid and non-amyloid hexa-peptides

Amyloid Position

1 2 3 4 5 6

Amyloid

Ala 0.510 0.814 1.469 1.056 0.000 0.814

Asp 0.848 0.848 1.259 0.000 0.000 0.606

Cys 0.000 -0.434 -0.021 -0.021 0.000 -0.263

Glu 0.639 0.335 0.135 0.468 1.294 -0.974

Phe -0.060 -0.231 -0.833 -0.060 -0.806 -0.300

Gly -0.007 0.596 1.422 0.000 0.000 1.009

His -0.386 0.027 0.000 0.681 0.000 0.000

Ile 0.408 -0.137 1.235 -1.225 -1.460 0.580

Lys 0.080 0.000 0.000 1.239 0.000 0.826

Leu 0.310 -0.103 0.231 -0.252 1.056 0.310

Met -0.291 0.255 0.668 0.000 0.000 -0.491

Asn -0.142 0.685 0.442 -0.688 0.000 0.029

Pro 0.000 0.000 0.000 0.000 0.000 0.000

Gln 0.340 -0.314 -0.165 0.000 0.996 -0.534

Arg 0.734 0.000 0.000 0.000 0.000 0.000

Ser -1.036 0.602 0.098 1.259 1.259 -0.171

Thr 0.829 -1.089 0.000 0.175 1.244 0.083

Val -0.014 -0.071 -1.191 1.355 0.000 -0.071

Trp -0.413 0.000 -0.546 -0.747 0.413 0.413

Tyr -0.204 -0.353 0.956 -0.283 -0.798 -0.112

Table 2 Energy potentials (kcal/mole) computed from the
propensities of amino acid residues at different positions
in amyloid and non-amyloid hexa-peptides (Continued)

Non-amyloid

Ala 0.423 -0.070 0.622 0.927 0.622 0.757

Asp 0.214 0.718 0.306 0.548 0.414 0.306

Cys 0.000 0.093 -0.320 0.500 0.000 0.000

Glu -0.073 -0.206 -0.244 -0.021 0.340 -0.874

Phe -0.250 0.054 -0.772 -0.492 -0.864 -0.359

Gly 0.710 0.375 0.879 0.467 1.528 0.225

His -0.165 0.139 0.382 0.139 0.382 0.382

Ile 0.280 0.108 0.280 -0.866 -1.122 0.038

Lys -0.370 0.285 0.192 0.393 0.285 0.393

Leu 0.516 -0.031 0.273 -0.423 0.423 0.011

Met 0.126 -0.178 0.369 0.778 0.778 -0.378

Asn -0.028 1.207 -0.270 -0.099 0.251 0.385

Pro 0.397 0.566 0.397 0.262 0.262 0.262

Gln 0.451 0.451 0.040 0.282 0.282 -0.052

Arg -0.050 0.604 0.604 0.300 0.848 0.192

Ser -0.827 0.132 0.132 0.303 0.716 0.061

Thr 0.117 -0.899 0.530 0.196 0.942 -0.125

Val 0.402 0.310 -0.681 0.645 0.310 0.645

Trp -0.130 0.114 -0.634 0.521 0.114 -0.130

Tyr -0.240 -0.360 0.413 -0.170 -0.503 0.243
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peptides distinguish themselves than the non-amyloid
peptides, we have computed the total hydrophobicity
(HT) of each amyloid and non-amyloid peptide using the
scale proposed by Mant et al. [36] (see materials and
methods). The total hydrophobicity values were divided
into several bins and the frequency of occurrence of pep-
tides at different ranges of hydrophobicity is plotted in
Figure 4. In general, amyloid peptides have higher (HT)
values than non-amyloid peptides; and non-amyloid
peptides are more frequent than amyloid peptides up to
the HT value of 200. At HT ≥ 200, the amyloid peptides
are more frequent. The average HT values for the 139

amyloid and 168 non-amyloid peptide, are 251.1 ± 67.6,
and 217.6 ± 79.0, respectively. This result is consistent
with the observation of increased hydrophobicity of amy-
loidogenic regions in proteins [10,11,17,18].

Variation of the 49-amino acid properties between
amyloid and non-amyloid forming peptides
To uncover all features which may be different between
amyloid and non-amyloid peptides, we have computed the
average values of 49 diverse amino acid properties [23].
The results are summarized in Table 3. For most of the
properties the differences are very small. This is expected

(b) Position 2(a) Position 1

(c) Position 3 (d) Position 4

(e) Position 5 (f) Position 6

Figure 3 Frequency of occurrence of amyloid and non-amyloid peptides at various ranges of potentials.
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Figure 4 Variation of hydrophobicity in amyloid and non-amyloid peptides.

Table 3 Average values for the 49 properties used in the
present study

Property Amyloid Non-amyloid Difference

K0 -31.966 -31.675 -0.291

Ht 1.693 1.546 0.147

Hp 13.461 13.001 0.460

P 6.535 12.132 -5.597

pHi 5.801 5.997 -0.196

pK’ 2.004 2.046 -0.042

Mw 134.369 135.217 -0.848

Bl 17.329 16.377 0.952

Rf 12.353 11.152 1.202

μ 18.155 18.051 0.104

Hnc 0.497 0.264 0.233

Esm 1.207 1.201 0.006

El 0.608 0.563 0.044

Et 1.817 1.767 0.050

Pa 1.032 1.050 -0.018

Pb 1.231 1.088 0.143

Pt 0.817 0.879 -0.062

Pc 0.875 0.926 -0.051

Ca 34.890 34.666 0.224

F 0.895 0.934 -0.039

Br 0.369 0.321 0.048

Ra 4.998 4.409 0.589

Ns 6.544 6.250 0.294

aN 1.111 1.079 0.032

aC 0.929 1.030 -0.101

am 0.968 0.990 -0.022

V0 95.343 94.341 1.002

Nm 1.818 1.848 -0.030

Nl 4.497 4.179 0.318

Hgm 13.845 13.459 0.386

ASAD 156.030 156.043 -0.013

ASAN 43.340 49.795 -6.455

ΔASA 112.345 105.918 6.427

Table 3 Average values for the 49 properties used in the
present study (Continued)

ΔGh -1.662 -1.903 0.241

GhD -2.864 -3.460 0.596

GhN -1.172 -1.455 0.283

ΔHh -4.896 -4.964 0.067

-TΔSh 3.235 3.061 0.174

ΔCph 25.269 22.474 2.796

ΔGc 1.854 2.074 -0.220

ΔHc 5.833 5.733 0.100

-TΔSc -3.983 -3.663 -0.321

ΔG 0.190 0.170 0.020

ΔH 0.934 0.766 0.168

-TΔS -0.744 -0.597 -0.147

v 4.253 4.314 -0.061

s 1.382 1.460 -0.078

f 1.788 1.916 -0.128

Pj-ψ 0.817 0.955 -0.138

Abbreviations: K0, compressibility; Ht, thermodynamic transfer hydrophobicity;
Hp, surrounding hydrophobicity; P, polarity; pHi, isoelectric point; pK’:
equilibrium constant with reference to the ionization property of COOH
group; Mw, molecular weight; Bl , bulkiness; Rf, chromatographic index; b,
refractive index; Hnc , normalized consensus hydrophobicity; Esm, short and
medium range non-bonded energy; El , long-range non-bonded energy; Et,
total non-bonded energy; Pa, Pb, Pt and Pc are, respectively, b-helical, b-
structure, turn and coil tendencies; Ca, helical contact area; F, mean rms
fluctuational displacement; Br, buriedness; Ra, solvent accessible reduction
ratio; Ns , average number of surrounding residues; bN, bC and bm are,
respectively, power to be at the N-terminal, C-terminal and middle of b-helix;
V0, partial-specific volume; Nm and Nl are, respectively, average medium and
long-range contacts; Hgm, combined surrounding hydrophobicity (globular
and membrane); ASAD, ASAN and bASA are, respectively, solvent accessible
surface area for denatured, native and unfolding; bGh , GhD and GhN are,
respectively, Gibbs free energy change of hydration for unfolding, denatured
and native protein; bHh, unfolding enthalpy change of hydration; -TbSh,
unfolding entropy change of hydration; bCph , unfolding hydration heat
capacity change; bGc , bHc and -TbSc are, respectively, unfolding Gibbs free
energy, unfolding enthalpy and unfolding entropy changes of chain; bG, bH
and -TbS are, respectively, unfolding Gibbs free energy change, unfolding
enthalpy change and unfolding entropy change; v, volume (number of non-
hydrogen side chain atoms); s, shape (position of branch point in a side-
chain); f, flexibility (number of side-chain dihedral angles); Pj-ψ: backbone
dihedral probability.
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because the two peptide sets are highly homologous. How-
ever, property numbers 4, 32, 33 and 39 show large differ-
ences between amyloid and non amyloid peptides. These
properties are polarity, solvent accessible surface area for
native protein and protein unfolding, and unfolding hydra-
tion heat capacity change. Interestingly, these properties
refer to electrostatics, solvent accessibility as well as
thermodynamics, indicating that the forces involved in
protein folding and amyloidosis are common. We per-
formed correlation and chi-square analysis between the
average property values obtained with amyloid and non-
amyloid peptides, and the results showed that the distribu-
tions are highly similar (r = 0.99, c2 = 1).

Discrimination between amyloid and non-amyloid
forming peptides
Can the above described position specific sequence fea-
tures distinguish amyloid-fibril forming peptides from
their close homologues that do not from the amyloid-
fibrils? We have made an attempt to discriminate amyloid
and non-amyloid forming peptides using hydrophobicity,
49 different properties and the energy potentials. Discrimi-
nation based on the energy differentials performed better
than the other properties. We devised a statistical method
to discriminate amyloid and non-amyloid peptides using
total potential computed with Eqn. 6. For each peptide, k,
the total energy j(k) was computed for both amyloid-fibril
formation and not (from non-amyloid potential). The dif-
ference between the energy potentials yield the discrimina-
tor, Δj (k) (see eqn. 7) The results showed that amyloid
peptides are well discriminated with an accuracy of 89%
(123/139). This value compares favorably with other pre-
diction methods [10,20,25]. However, the discriminator
yielded only marginal performance for non-amyloid
peptides (accuracy: 54%). Taken together, these results
indicate that for a given short peptide sequence, the pre-
diction that it will form amyloid fibrils is easier to make
than otherwise. That is, it is harder to predict that the pep-
tide will not form amyloid fibrils. These and other aspects
of our work are discussed in the “Discussion” section.

Use of machine learning techniques for discrimination
between amyloid and non-amyloid peptides
We have utilized several machine learning techniques for
discriminating between amyloid and non-amyloid peptides
as described in the Methods section. Overall, most algo-
rithms showed similar performance and the method based
on Random forest performed the best. In a 10-fold cross-
validation exercise, this method yielded an accuracy of
82.1% when the statistically derived position-specific
energy potentials were used. The sensitivity and specificity
are 79.9% and 83.9%, respectively. Combining these energy
potentials with three amino acid properties, hydrophobi-
city, isoelectric point and long-range non-bonded energy

improved the accuracy marginally to 82.7% (sensitivity,
81.3%; specificity, 83.9%). The method was also tested with
5-fold and 20-fold cross-validations and the accuracies are
80% and 81.1%, respectively.

Discussion
Fibril forming portions of many amyloidogenic proteins
have been traced to short peptides by many experimental
groups. The smallest length for a peptide that forms amy-
loid fibrils is three amino acid residues[43]. Tetra-peptides
have also been shown to form amyloid-fibrils [12]. The
most common sequence lengths for the amyloid-fibril
peptides are 5-9 residues. We chose to focus on hexa-pep-
tides because hexa-peptides have been often used in
experiments to grow amyloid-fibrils [10,11]. Available
experimental data on short peptides that form amyloid
fibrils and those that do not form amyloid fibrils shows
that even single residue differences are important [10,11].
With the growing interest in nano-materials made out of
peptide aggregates with well-defined fibrillar morphologies
and desirable properties [44], it has become important to
computationally predict which of the short peptide
sequences are capable of forming amyloid fibrils with
desired properties and which of them would not yield
such fibrils, even though they may form amorphous b-
aggregates and may still contain kernels of the cross-b
steric zipper motif. To our knowledge, this is the first
attempt to discriminate between amyloid fibril and non-
amyloid fibril forming peptide sequences using empirical/
computational means. Here, we have used publicly avail-
able information on Amyl Hex and other hexa-peptides to
uncover the subtle sequence-structural features that could
be different between amyloid and non-amyloid peptides.
The sequences in the two peptide datasets are highly
homologous and almost all non-amyloid peptides do form
amorphous b-aggregates [10]. Thus, it was not surprising
that almost all of the 49 physico-chemical amino acid
properties [23] showed only small differences between
amyloid and non-amyloid peptide sets. Despite the high
sequence homologies, the overall and position-wise amino
acid propensities are different between amyloid and non-
amyloid peptide sets. This indicates that amino acid side
chains do play a role in amyloid-fibril formation even
though the process has been thought to be mainly driven
by backbone [41]. The differences in sequence features
and positional context in formation of amyloid and
non-amyloid peptides were converted in to the energy
potentials in this study. These potentials were able to suc-
cessfully identify the amyloid-peptides in most cases. This
validates our approach for predicting potential amyloido-
genic sequences.
Almost all studies in computational biology focus on

making positive predictions. However, in this study we
attempted to make negative predictions also. That is, we
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tried to predict that a given peptide will not from amyloid
fibrils, even though it may self-associate via cross-b motif
and form amorphous b-aggregates. In this case, making
the negative prediction proved to be harder than the posi-
tive prediction that a peptide will form amyloid-fibril.
There could be several reasons for this. First of all, kinetics
of amyloid fibril formation depend on critical monomer
concentrations required to initiate the process [45]. The
critical monomer concentrations required for initiation of
fibril formation were found to vary in the range of 30-400
μM for highly homologous tetra-peptides, KFFE, KVVE,
KLLE [12,44]. However, the experiments that determine
which peptides in a given set form amyloid fibrils use a
single concentration value for all the peptides. The time
periods over which fibril are grown are also arbitrarily set
(see method section in [10-12]). These experimental con-
dition requirements imply that the peptides which require
higher critical monomer concentrations to initiate fibril
formation and/or which have slower fibril growth kinetics
may be falsely designated as non-amyloid peptides even-
though their sequences may contain all the required fea-
tures for amyloid-fibril formation. Secondly, the prefer-
ences for the individual amino acid residues to occur at
each of the six positions are better characterized for amy-
loid and non-amyloid peptides than avoidances (Table 2),
that is, amyloid fibril forming sequence features are based
on positive, and not negative, selection of the relevant phy-
sicochemical properties at the level of individual amino
acids. Third, the peptide sequences in the two data set are
highly homologous and most of the peptides in the non-
amyloid set, derived from the parent amyloid-fibril form-
ing peptide sequence, STVIIE [10] form b-aggregates. It is
quite probable that many of the peptides in non-amyloid
set would form amyloid-fibrils in slightly different experi-
mental conditions.
The prediction for non-amyloid peptides improved

when three amino acid properties, namely, hydrophobi-
city, isoelectric point and long range interaction energy,
were combined with the position specific energy poten-
tials and machine learning techniques were used. In such
techniques, the data are trained so that the methods
should perform equally well for both amyloids and non-
amyloid peptide sets. Not surprisingly, this procedure
showed similar levels of sensitivity and specificity, and
the accuracy is the balance between these two terms.

Conclusions
We have analyzed the available experimental data on the
hexa-peptides that from amyloid fibrils and on those that
do not form amyloid-fibrils. We found that amyloid pep-
tides show position-specific preference and avoidances
that are different from their homologues which may form
b-aggregates but not fibrils. These position-specific pre-
ferences of amino acid residues have been utilized to

discriminate amyloid forming peptides and non-amyloids
using statistical methods and machine learning techni-
ques. In the next step, we plan to combine single residue
propensities with the residue pair propensities in a posi-
tion wise manner to further improve our ability to
predict both amyloid and non-amyloid forming hexa-
peptides.
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