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Abstract

ambiguity in read mapping.

quantitative RNA-sequencing applications.

Background: In the last decade, Next-Generation Sequencing technologies have been extensively applied to
quantitative transcriptomics, making RNA sequencing a valuable alternative to microarrays for measuring and
comparing gene transcription levels. Although several methods have been proposed to provide an unbiased
estimate of transcript abundances through data normalization, all of them are based on an initial count of the total
number of reads mapping on each transcript. This procedure, in principle robust to random noise, is actually error-
prone if reads are not uniformly distributed along sequences, as happens indeed due to sequencing errors and

Here we propose a new approach, called maxcounts, to quantify the expression assigned to an exon as the
maximum of its per-base counts, and we assess its performance in comparison with the standard approach
described above, which considers the total number of reads aligned to an exon. The two measures are compared
using multiple data sets and considering several evaluation criteria: independence from gene-specific covariates,
such as exon length and GC-content, accuracy and precision in the quantification of true concentrations and
robustness of measurements to variations of alignments quality.

Results: Both measures show high accuracy and low dependency on GC-content. However, maxcounts expression
quantification is less biased towards long exons with respect to the standard approach. Moreover, it shows lower
technical variability at low expressions and is more robust to variations in the quality of alignments.

Conclusions: In summary, we confirm that counts computed with the standard approach depend on the length
of the feature they are summarized on, and are sensitive to the non-uniform distribution of reads along transcripts.
On the opposite, maxcounts are robust to biases due to the non-uniformity distribution of reads and are
characterized by a lower technical variability. Hence, we propose maxcounts as an alternative approach for

Background

In recent years, ultra-high-throughput sequencing tech-
nologies (also called Next-Generation Sequencing tech-
nologies, NGS) [1,2] have been applied intensively in
quantitative transcriptomics, making RNA sequencing
(RNA-seq) [3] a valuable alternative to microarrays.
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While microarrays can only assay transcripts correspond-
ing to probes, RNA-seq can, in principle, investigate at a
finer level of detail all the transcripts present in a sample,
characterizing their sequences and quantifying their
abundances at the same time [4]. The possibility of
sequencing transcriptomes at single-base resolution has
opened a wide frontier of applications in transcriptomics
research: transcriptome profiling of non-model organ-
isms [5,6], novel transcripts discovery [7], quantification
of allele-specific gene expression [8], investigation of
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RNA editing [9,10] and “dual RNA-seq” of pathogen and
host [11]. In this work we focus on its application to
quantitative transcriptomics, since RNA-seq is now
widely used in place of microarrays for measuring and
comparing gene transcription levels [4,12]. The standard
workflow of transcripts quantification with RNA-seq is
the following: first, RNAs are extracted from the sample
of interest and subjected to fragmentation; then, RNA
fragments are reverse-transcribed into complementary
DNAs (cDNAs); finally, cDNAs are ligated to adapters
and subjected to ultra-high-throughput sequencing. The
millions of short sequences generated, called reads, can
be aligned to a reference genome or transcriptome to cal-
culate counts (i.e. the number of reads aligned to each
gene or transcript), which give a digital measure of tran-
script abundances in the original sample. However, this
measure requires normalization to correct for systematic
errors arising from several sources of bias. First of all, the
largest fraction of the reads sequenced in a sample arises
from a restricted subset of highly expressed genes
[13,14]; as a consequence, these genes account for most
of the counts in a library, while the remaining genes are
under-represented. Moreover, by definition, counts are
intrinsically biased towards longer transcripts: longer
transcripts are more likely to be sequenced than shorter
ones, so counts depend not only on the true gene expres-
sion, but also on the length of transcribed isoforms
[15-19]. In addition, recent works highlight other
sequence-dependent sources of bias affecting NGS data
[20-23]. In particular, many studies observe the presence
of a GC-content effect: gene counts correlate with the
fraction of “G” (guanine) and “C” (cytosine) bases in the
nucleotidic sequence of a gene [23-25].

Although several methods have been proposed to nor-
malize data, thus providing less biased estimates of tran-
script abundances, all of them are based on an initial
count of the total number of reads mapping on each
transcript [19,24-26]. This procedure, in principle robust
to random noise, might be error-prone if reads are not
uniformly distributed along sequences, as happens
indeed due to both sequencing errors and ambiguity in
read mapping.

Non-uniformity of read coverage is mainly due to biases
associated to the different steps of RNA-seq protocols. For
instance, fragmentation methods based on restriction
enzymes have recently been reported to be sequence-spe-
cific and far from being random [27]. Reverse-transcrip-
tion performed with poly-dT oligomers, which bind to
poly-A tails, is strongly biased towards 3’ end of transcripts
[3,4]. Conversely, reverse-transcription with random hex-
amers results in an under-representation of 3’ ends [4,27].
This bias is due to the reduced number of priming posi-
tions from which the reverse transcriptase enzyme can
start cDNA synthesis. Furthermore, depending on their
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sequence, RNAs and ¢cDNAs can form secondary struc-
tures that alternatively obstruct or facilitate the binding of
reverse-transcription primers and sequencing adapters,
resulting in different efficiency of the sequencing process
[28]. Since the first RNA-seq experiment [3], several
changes in library preparations and sequencing protocols
have been proposed pursuing the aim of having an
unbiased representation of transcript abundances (e.g.
postponing reverse transcription after fragmentation), but
the non-uniformity of read coverage along transcripts
remains an issue of state-of-the-art technologies [29].

In this study, we propose a novel method for computing
counts, called maxcounts, with the aim of reducing sys-
tematic errors. Once reads have been aligned to a feature
of interest (exon or single-isoform transcript), we exploit
read coverage to obtain counts for every position in its
sequence and we quantify its expression as the maximum
of its “positional” counts. We assess maxcounts perfor-
mance in comparison with the standard approach, which
considers the total number reads mapped on an exon
(called totcounts in the following). To do this we consid-
ered three human data sets [19,30,31], in which samples
are taken from different tissues or cellular compartments,
or from cells subjected to different growth conditions or
treatments. All samples were sequenced with the Illumina
technology (http://www.illumina.com), which is now the
most commonly used NGS platform for RNA-seq [32].
Data were sequenced with single- and paired-end proto-
cols, and have different characteristics, which allow us to
test our approach with respect to different features. In par-
ticular, in Jiang’s experiment [31], endogenous RNAs were
sequenced together with spike-in RNAs, which are single-
isoform transcripts with known nucleotidic sequences and
concentrations. We used these data as gold-standard
to benchmark and compare totcounts and maxcounts
estimates of RNA abundances.

Methods

Data sets

The MAQC?2 data set [19] consists of single-ended RNA-
seq reads obtained from two different biological samples:
(i) Ambion’s Human Brain Reference RNA ("Brain”), a
standard pooled from multiple donors and several brain
regions; (ii) Stratagene’s Universal Human Reference
RNA ("UHR”), a mixture of total RNA extracted from ten
different human cell lines (see “Additional file 1“ for
further details on data).

Griffith’s data set [30] contains paired-end reads obtained
sequencing two fluorouracil (5-FU)-resistant ("MIP5FU”)
and (5-FU)-sensitive ("MIP101”) human colorectal cancer
cell lines.

A subset of replicates from Jiang’s data set [31] is also
considered, in which paired-end RNA-seq libraries were
sequenced after mixing endogenous RNA from a K-562
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cell line, extracted from nucleus ("nucleus”) or whole cell
("cell”), with RNA standards developed by the External
RNA Control Consortium (ERCC). ERCC standards are in
vitro synthesized RNAs whose nucleotidic sequences and
concentrations are known. They can be used to assess
whether the final quantification of an RNA-seq experiment
correctly represents the composition of the original input.

Pre-processing analysis pipeline

We defined and implemented a pipeline to pre-process
and map reads, and to discard low-similarity alignments
and multireads (i.e. reads mapping to multiple positions
of the reference). The analysis pipeline implemented in
this study is depicted by the flowchart of Figure 1 (see
“Additional file 1 for further details on pipeline imple-
mentation). A simplified version of the same pipeline
was applied to single-end data.

In the first phase, reads were pre-processed to remove
adapter sequences and read ends whose Phred quality was
lower than 20, and to discard reads whose length after
trimming was less than 33 bp. Output FASTQ files were
re-formatted to recover the correspondence of paired-end
reads, and to store in a separate file the singleton reads,
whose mate was discarded during pre-processing.

In the second phase, paired-ends and singletons were
mapped with TopHat [33] in a two-steps procedure.
First, paired-end reads were mapped on the reference
sequence to generate a BAM file of alignments and a
file of junctions. Then, singletons were mapped with
TopHat exploiting the information provided by junc-
tions (see “Additional file 1“ for further details on read
mapping). Alignment files from paired-end and single-
ton reads were finally merged in a single BAM file using
the merge utility of samtools [34].

In the last phase of post-processing, a filtered set of
alignments was obtained after discarding multireads and
reads whose similarity with the reference was lower than
97%. This analysis was performed using SAMsieve, a java
in-house developed program (available upon request),
which allows the user to filter alignments stored in SAM
or BAM files based on several criteria (see “Additional file
1“ for additional information about SAMsieve).

Computation of counts and normalization
Totcounts were computed using bedtools [35]. Exons (or
spike-in transcripts of Jiang’s data set) with average tot-
counts across replicates lower than 0.5 were discarded
from our analysis. Before comparing or averaging repli-
cates, differences in library sizes were corrected through
Trimmed Mean of M-values (TMM) normalization [13].
For each exon i in library j, maxcounts were computed as:

maxcountsi; = max(Njjp)
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Figure 1 Analysis pipeline. 1) Read pre-processing (trimming and
filtering) and re-mating of paired-ends. 2) Separate mapping of paired-
end and singleton reads, and merging of alignments. 3) Removal of
low similarity alignments and multireads.
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where, Nj;, is the number of reads covering position p
along the exon. We implemented the method for com-
puting maxcounts in a new patch for bedtools that can
be downloaded from http://www.dei.unipd.it/~finotell/
maxcounts/ (see additional details in “Additional file 1%).
Also in this case, exons with average maxcounts across
replicates lower than 0.5, were discarded and differences in
library sizes were corrected with TMM normalization. In
the following, we will refer to TMM-normalized totcounts
and maxcounts simply as “totcounts” and “maxcounts”.
Although providing an assessment of normalization
methods is beyond the scope of the present work, we
acknowledge that length bias can be corrected trough nor-
malization. Thus, to guarantee a fair comparison with cur-
rent standards, we applied, when necessary, two
normalization approaches: Reads Per Kilobase of exon
Model per million mapped reads (RPKM) [16], which is
widely used in RNA-seq studies, and within-lane full-quan-
tile normalization, using exon length as covariate, since it
has been proposed as preferred method in a recent work
by Risso et al. [24]. RPKMs for each exon i in library j were
calculated as follows:

Li/103 - Nifyg6

where, Nj; are counts for exon i in library j (not normal-
ized via TMM), L; is the length of exon i and N,; = ¥; Nj;
is the sum of all counts in library j.

Within-lane full-quantile normalization of counts on
exon length was performed using EDASeq [24]. In order
to correct for differences in library sizes, this normaliza-
tion was used together with between-lane full-quantile
normalization, also implemented in EDASeq.

In this work we consider exons instead of genes or
transcripts as we intend to evaluate the different sum-
marization methods described above without biases,
possibly introduced by the choice of a transcription
model (e.g. how overlapping genes or alternative spliced
exons are considered).

RPKM;; =

Results and discussion

Ideally, a measure of gene expression should: (i) be inde-
pendent of gene-specific covariates such as transcript
length and GC-content; (ii) be unbiased towards highly
expressed genes; (iii) be an accurate estimate of the true
gene expression levels; (iv) show low technical variance;
(v) be robust to possible variations in the quality of align-
ments. In the following we assess the above properties for
maxcounts in comparison with totcounts. Plots are shown
for Jiang’s data, since this data set allows also the assess-
ment of accuracy in transcript quantification thanks to
spike-in RNAs; results on MAQC2 and Griffith’s are
reported in Additional Files.
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Length and GC-content biases

To investigate exon length bias, we used smoothed scat-
ter-plots of counts (averaged across replicates) versus
exon-length (Figure 2A and Additional Files 2, 3, 4, 5, 6).

In all data sets, plots show an increasing trend of tot-
counts as exon length increases (see the cubic-spline fit
represented by the orange line), revealing that longer
exons tend to have higher counts than shorter ones. This
bias is reduced, but not completely removed, in max-
counts. Plots for Jiang’s data ("nucleus” libraries), depicted
in Figure 2A, show no dependency of maxcounts on
exon length. Conversely, for maxcounts in Griffith’s and
MAQC?2 data sets a slight under-representation of exons
shorter than 50 bp is still visible. We believe this behavior
is explained by the difference in read length among the
three data sets and the ability of TopHat to map them on
splice junctions. Indeed, we observed that in MAQC2 and
Griffith’s data sets (36 bp reads) only 0.25-0.50% of aligned
reads are mapped on splice junctions, as opposed to 2.5-
11.5% of reads in Jiang’s data set (75 bp reads). As a conse-
quence, there is a decrease of counts over exons bound-
aries, which mainly affects short exons. In all the
considered data sets, RPKM-normalized totcounts show
a negative relationship with exon length due to an over-
correction for length bias on short exons. On the opposite,
full-quantile normalization completely removes exon
length bias. Similarly, if applied to maxcounts, full-quantile
normalization completely removes exon-length bias even
on short exons (plots not shown).

We used the same approach to investigate GC-content
effect, revealing a moderate bias due to GC-composition
on almost all data sets (Figure 2B and Additional Files 2, 3,
4, 5, 6). As noted in previous studies, GC-content effect is
not consistent across data sets [20,24,25,36]. Interestingly,
the correction for exon length bias via full-quantile nor-
malization also corrects for GC-content bias all the con-
sidered data sets.

In the following assessments, we always show raw tot-
counts and their RPKM- and full-quantile-normalized ver-
sions. Given the low length bias characterizing maxcounts,
we consider their raw, not-normalized version.

Bias due to highly expressed genes

We assessed the distribution of counts to detect possible
biases due to highly transcribed genes, which may affect
detection power of differentially expressed exons [17,37].
As evident from Table 1, Figure 3 and Additional File 7,
we confirm that most of the reads are generated by a
small subset of highly expressed genes.

In particular, Table 1 reports the percentage of exons
accounting for 50% and 90% of total counts or RPKMs in
a sample, highlighting that, less than 40% of exons con-
tain more than 90% of all totcounts in a library. RPKM-
normalized fotcounts are more evenly distributed across
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-

exons, but the least biased distribution is that of max-
counts, with a marked improvement on the more biased

data sets (see, for example, how this bias is reduced on
Griffith’s data).

Quantification of spike-in RNAs

We estimated abundances of spike-in RNAs on Jiang’s
data, by averaging totcounts and maxcounts across all
technical replicates within each group (Figure 4).

Table 1 Summary of count distribution across exons

Exons (%)

Data set Group counts (%) maxcounts totcounts RPKM
Jiang Cell 50 6 5 5
90 34 31 31

Nucleus 50 7 5 7

90 42 37 39

Griffith MIP101 50 9 4 8
90 44 33 40

MIP5FU 50 9 4 8

90 45 33 40

MAQC2 Brain 50 6 3 5
90 38 26 33

UHR 50 5 3 4

90 37 27 33

Summary of the distributions of maxcounts, totcounts and RPKM-corrected
totcounts (RPKM) across exons in Jiang's, Griffith’s and MAQC2 data sets. Table
reports the percentage of exons accounting for 50% and 90% of total counts/
RPKMs (average values across libraries belonging to the same condition).

For all measures, plots show higher agreement with
the gold-standard on Jiang’s “nucleus” data, probably
because of the higher number of replicates (six libraries)
with respect to “cell” data (two libraries). All measures,
with the exception of full-quantile-normalized totcounts,
obtain high correlation with true concentrations, with
RPKM-normalized totcounts and maxcounts having
slightly better results than fotcounts. Full-quantile nor-
malization performed on totcounts, although eliminating
length bias, possibly over-corrects data. Correlations
with true concentrations of maxcounts, totcounts and
RPKM-normalized fotcounts, computed on all libraries
of Jiang’s data set, do not significantly differ (two-sided
t-test, p-value > 0.05). On the contrary, full-quantile-
normalized fotcounts present the lowest correlation with
spike-in RNAs concentrations (two-sided t-test, p-value
< le-10). All methods do not depend on transcript
abundances, except for full-quantile-normalized tot-
counts, which are less robust in estimating low-abun-
dance transcripts (Additional File 8).

Jiang’s data set is particularly interesting because it
allows the investigation of the non-uniformity of read
coverage along spike-in RNAs, which was also reported
in previous studies [28,31] (Figure 5). Changes in read
coverage are not justified by alternative splicing since
spike-in RNAs are single-isoform, and show reprodu-
cible patterns on the same transcript sequenced in
different libraries and conditions. As previously noted
by Li et al. [28], reads are not randomly sequenced
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from transcripts, but some positions present a larger
“sequencing preference” and result in higher (positional)
counts.

Figure 5 highlights differences in read coverage along
two transcripts having very similar concentrations,
ERCC-00033 (7.06-e-07 nmol/pul) and ERCC-00046
(7.08-e-07 nmol/pl), with the latter having a more uni-
form coverage. To have a measure of how much those
patterns affect maxcounts and totcounts quantification
(for which an overall comparison is given in the pre-
vious paragraph), we can compute the variation of max-
counts/totcounts estimates on these two transcripts as:

X33 — X
AL DB 46

= - 100
X33 + X456

where X; are totcounts or maxcounts, averaged across
libraries, for each transcript here considered. Ideally, A
should be very small, to reflect the closeness of the true
concentrations. Whereas totcounts produce a variation of
39%, maxcounts have a much smaller variation of 2%,
overcoming read-coverage bias and providing very similar
estimates for the transcripts here used as example. It is
interesting to note that both transcripts show a reduced
read coverage in correspondence to 3’ end (Figure 5),

log(concentrations) log(concentrations)

Figure 4 Quantification of spike-in RNAs. Counts/RPKMs obtained
against true concentrations (log-log scale). Counts/RPKMs are computed
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a bias that is introduced during the reverse-transcription
step performed with random hexamers (see “Back-
ground”). This bias is present in all transcripts of Jiang’s
data set (results not shown). Maxcounts approach is
robust to 3’ bias since it considers the bases with the high-
est read coverage along transcripts.

Data variance
To easily compare variance of fotcounts (and its normal-
ized versions) versus maxcounts, at different expression
intensities, we quantized the estimated average expres-
sion intensities in intervals of equal size and, for each
interval, we calculated the average intensity and the
average variance as explained in [38]. Finally we fitted
data using a cubic spline (Figure 6 and Additional Files
9 and 10).

Maxcounts show the lowest variance at low and mean
expressions, while totcounts present slightly lower variance
at high expressions. In order to account for differences in

the range of values, we also considered the coefficient of
variation (CV, ratio between standard deviation and
mean). Totcounts and maxcounts obtain comparable CV
curves. Totcounts normalized with full-quantile are charac-
terized by larger variance and CV with respect to both
maxcounts and totcounts, while totcounts normalized with
RPKM-normalized totcounts have the highest variance
and CV.

Robustness to alignment quality

An important criterion for the evaluation of reproducibil-
ity is the robustness of totcounts and maxcounts to varia-
tions in the quality of alignments. Results presented so
far refer to a filtered set of alignments obtained using the
analysis pipeline defined for this study, in which multi-
reads and low-similarity alignments were discarded (see
“Methods” for additional details). To investigate how this
choice impacts on quantification, for each exon i in each
library j, we measured the relative variation between
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Figure 6 Data variance and coefficient of variation. Variance and coefficient of variation (CV) of Jiang's data: variance vs. mean of log-counts/
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counts X(i, j) obtained from the original set of alignments
and from the filtered set, as follows:

Xarigi,7) — X (1)

. 100
Xorig (i) + 1

relative variation =

where the expression at the denominator is used to
avoid possible divisions by zero. Ideally, if a measure is
stable to alignment filtering (that depends on the speci-
fic analysis pipeline defined by users), relative variation
should be 0%. Here we consider raw maxcounts and

totcounts, not subjected to any normalization, since we
want to assess the direct impact that changes in align-
ment filtering have on count summarization.

On all data sets, the fraction of exons for which max-
counts have 0% variation is always higher than that of tot-
counts (one-tailed t-test, p-value = 0.02). In particular, on
Griffith’s data, more than 80% of exons are not affected by
alignment filtering (Figure 7A). In addition, histograms of
relative variations show that only a small fraction of exons
are affected by medium-high variation (Figure 7B and
Additional File 11). For visualization purpose, exons with
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Figure 7 Effect of alignment quality. Relative variation of non-normalized totcounts (blue) and maxcounts (red) when low-similarity alignments and
multireads are discarded: percentage of exons with null variation (A) and superimposed histograms of non-null variations affecting exons (B).

null variations are not represented by histograms, since
they would result in a very high bar in correspondence of
0%, making it harder to assess variations greater than 0%.
Moreover, alignments filtering also impacts on the
number of reads that can be used for quantification.
Indeed, by applying this filter to any of the three data
sets, about 30% of reads are discarded. Hence, the
results reported above highlight that maxcounts are
robust to variations in the number of considered reads.

Conclusions

Thanks to the advent and progress of NGS technologies,
RNA-seq has rapidly become the method of choice for
measuring and comparing gene transcription levels. In this
methodology, the expression of a coding unit, such as a
gene, transcript or exon, is estimated by considering the
total number of reads that can be aligned on its sequence
(totcounts). Despite being widely adopted, this digital mea-
sure of expression is not free from biases, and efforts are
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underway by the scientific community to develop novel
methods for data normalization and bias correction. Here
we propose an alternative approach for computing RNA-
seq counts: maxcounts. We exploit read coverage along an
exon to compute maxcounts as the maximum of its posi-
tional counts, i.e. the number of reads covering each base
along its sequence.

We characterized and compared fotcounts and max-
counts considering the desired features of a measure of
expression, irrespectively of downstream applications: no
dependence on covariates, such as exon length and GC-
content, no over-representation of highly transcribed
exons, accurate and precise estimation of true expres-
sion levels, low variance and high reproducibility.

Overall, totcounts always need normalization for exon-
length since they present a strong bias. On the contrary,
exon-length bias in maxcounts is strongly reduced, so
they do not necessarily require normalization. If exon-
length bias is corrected through within-lane full-quantile
normalization, further correction for GC-content is not
needed neither for totcounts nor for maxcounts. More-
over, with maxcounts the over-representation of highly
expressed exons is reduced with respect to totcounts.
When focusing on accuracy and precision of measure-
ments, maxcounts together with RPKM-corrected tot-
counts most accurately reproduce real data, whereas
maxcounts together with fotcounts normalized with the
full-quantile approach show the lowest variance. Finally,
although the quality of alignments has a great impact on
both methods, maxcounts approach outperforms tot-
counts in terms of robustness to variations in alignment
filtering.

Consequently, we believe that maxcounts approach
represents a valuable alternative to fotcounts for measur-
ing exon expression from RNA-seq data, since it has
comparable or higher performance on all the evaluation
criteria.

Although several improvements have been made to
understand and correct for possible biases in the RNA-
seq experimental protocol, read coverage along tran-
scripts still shows sequence-specific variability and
under-representation of specific regions. Maxcounts
approach can overcome biases due to the non-unifor-
mity of read coverage, selecting the best-represented
transcript regions. Nevertheless, RNA-seq is a methodol-
ogy still under active development, which will experi-
ence a fast improvement of experimental protocols and
evolution of data characteristics. We made available the
code for calculating maxcounts (see “Methods”), thus
enabling its benchmarking on different data sets.

A possible limitation of the current implementation is
represented by the use of exons, since the final user
might be interested in a having gene or transcript
counts. Future work will focus on the definition of
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transcription models that can be used to combine exon
maxcounts into an accurate measure of gene or tran-
script expression. Finally, an important issue to be
addressed in the near future is the impact of maxcounts
on differential expression analysis. At the moment, a
complete assessment is difficult because of the lack of
good benchmarks: microarrays and quantitative PCR
can be used to measure maxcounts precision, but might
not capture the complete picture of gene expression
since they present a lower sensitivity with respect to
RNA-seq. For these reasons, we are currently generating
an ad hoc data set to assess both differential expression
at exon and transcript level and to focus on expression
of alternative splicing variants.

Additional material

Additional file 1: Supplementary materials and methods.

Additional file 2: Exon length bias and GC-content effect (Jiang,
“cell”). Smoothed scatter-plots showing the relationship between log-
counts/RPKMs and exon length (log scale, A) or GC-content (B), in Jiang's
data ("cell” libraries). The orange curve represents a cubic-spline fit
computed on log-counts, averaged in bins of 5000 exons each (black
crosses between vertical lines, indicating bin bounds). Counts or RPKMs
are computed using totcounts, maxcounts, RPKM-corrected totcounts
(RPKM) and totcounts corrected with within-lane full-quantile
normalization over exon length (FullQ), and averaged across libraries.

Additional file 3: Exon length bias and GC-content effect (Griffith,
“MIP5FU”). Smoothed scatter-plots showing the relationship between
log-counts/RPKMs and exon length (log scale, A) or GC-content (B), in
Griffith’s data ("MIP5FU” libraries). The orange curve represents a cubic-
spline fit computed on log-counts, averaged in bins of 5000 exons each
(black crosses between vertical lines, indicating bin bounds). Counts or
RPKMs are computed using totcounts, maxcounts, RPKM-corrected
totcounts (RPKM) and totcounts corrected with within-lane full-quantile
normalization over exon length (FullQ), and averaged across libraries.

Additional file 4: Exon length bias and GC-content effect (Griffith,
“MIP101”). Smoothed scatter-plots showing the relationship between
log-counts/RPKMs and exon length (log scale, A) or GC-content (B), in
Griffith’s data ("MIP101" libraries). The orange curve represents a cubic-
spline fit computed on the average log-counts in bins of 5000 exons
each (black crosses between vertical lines, indicating bin bounds). Counts
or RPKMs are computed using totcounts, maxcounts, RPKM-corrected
totcounts (RPKM) and totcounts corrected with within-lane full-quantile
normalization over exon length (FullQ), and averaged across libraries.

Additional file 5: Exon length bias and GC-content effect (MAQC2,
“Brain”). Smoothed scatter-plots showing the relationship between log-
counts/RPKMs and exon length (log scale, A) or GC-content (B), in
MAQC2 data ("Brain” libraries). The orange curve represents a cubic-spline
fit computed on log-counts, averaged in bins of 5000 exons each (black
crosses between vertical lines, indicating bin bounds). Counts or RPKMs
are computed using totcounts, maxcounts, RPKM-corrected totcounts
(RPKM) and totcounts corrected with within-lane full-quantile
normalization over exon length (FullQ), and averaged across libraries.

Additional file 6: Exon length bias and GC-content effect (MAQC2,
“UHR”). Smoothed scatter-plots showing the relationship between log-
counts/RPKMs and exon length (log scale, A) or GC-content (B), in
MAQC2 data ("UHR" libraries). The orange curve represents a cubic-spline
fit computed on log-counts, averaged in bins of 5000 exons each (black
crosses between vertical lines, indicating bin bounds). Counts or RPKMs
are computed using totcounts, maxcounts, RPKM-corrected totcounts
(RPKM) and totcounts corrected with within-lane full-quantile

normalization over exon length (FullQ), and averaged across libraries.
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Additional file 7: Distribution of counts across exons. Distribution of
maxcounts, totcounts and RPKM-corrected totcounts (RPKM) across exons,
in Griffith's and MAQC2 data sets. Plots represent cumulative counts/
RPKMs (y-axis, percentage referred to total counts/RPKMs in a library)
assigned to exons (x-axis, percentage referred to the number of exons
with more than zero counts/RPKMs). Each curve represents one library
and different colours identify different groups. Dashed lines represent
50% and 90% of total counts/RPKMs and are summarized in Table 1.

Additional file 8: Quantification of spike-in RNAs: residues.
Quantification of spike-in RNAs concentrations, in all libraries of Jiang's
data set, with totcounts, maxcounts, RPKM-corrected totcounts (RPKM) and
totcounts corrected with within-lane full-quantile normalization over exon
length (FullQ). Plots show the residues of the linear regression of counts/
RPKMs over true concentrations (log-log scale), plotted against true
concentrations in log scale.

Additional file 9: Data variance and coefficient of variation
(MAQC2). Variance and coefficient of variation (CV) of MAQC2 data:
variance vs. mean of log-counts/RPKMs (left plots) and CV vs. log-mean
of counts/RPKMs (right plots). Curves represent cubic-spline fits
computed on variances/CVs, averaged in bins of 5000 exons each. Since
maxcounts, totcounts, and totcounts normalized with RPKM (RPKM) and
within-lane full-quantile normalization over exon length (FullQ)

order to make them comparable.

Additional file 10: Data variance and coefficient of variation
(Griffith). Variance and coefficient of variation (CV) of Griffith's data:
variance vs. mean of log-counts/RPKMs (left plots) and CV vs. log-mean
of counts/RPKMs (right plots). Curves represent cubic-spline fits
computed on variances/CVs, averaged in bins of 5000 exons each. Since
maxcounts, totcounts, and totcounts normalized with RPKM (RPKM) and
full-quantile (FullQ) approaches are compared, x-values are scaled to
cover the range [0, 1] in order to make them comparable.

Additional file 11: Effect of alignment quality. Superimposed
histograms of relative variation of non-normalized totcounts (blue) and
maxcounts (red) when low-similarity alignments and multireads are
discarded (only null-variations are reported) for MAQC2 (A) and Griffith's
data (B).

approaches are compared, x-values are scaled to cover the range [0, 1] in
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cDNA: complementary DNA; NGS: Next-Generation Sequencing; RNA-seq:
RNA sequencing; RPKM: Reads Per Kilobase of exon Model per million
mapped reads; TMM: Trimmed Mean of M-values.
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