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Abstract
Background: Caspases belong to a class of cysteine proteases which function as critical effectors
in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of
such cleavage sites will complement structural and functional studies on substrates cleavage as well
as discovery of new substrates. Recently, different computational methods have been developed to
predict the cleavage sites of caspase substrates with varying degrees of success. As the support
vector machines (SVM) algorithm has been shown to be useful in several biological classification
problems, we have implemented an SVM-based method to investigate its applicability to this
domain.

Results: A set of unique caspase substrates cleavage sites were obtained from literature and used
for evaluating the SVM method. Datasets containing (i) the tetrapeptide cleavage sites, (ii) the
tetrapeptide cleavage sites, augmented by two adjacent residues, P1' and P2' amino acids and (iii)
the tetrapeptide cleavage sites with ten additional upstream and downstream flanking sequences
(where available) were tested. The SVM method achieved an accuracy ranging from 81.25% to
97.92% on independent test sets. The SVM method successfully predicted the cleavage of a novel
caspase substrate and its mutants.

Conclusion: This study presents an SVM approach for predicting caspase substrate cleavage sites
based on the cleavage sites and the downstream and upstream flanking sequences. The method
shows an improvement over existing methods and may be useful for predicting hitherto
undiscovered cleavage sites.

Background
Caspases belong to a unique class of cysteine proteases
which function as critical effectors of apoptosis, inflam-
mation and other important cellular processes such as cell
proliferation, cell differentiation, cell migration and
receptor internalization [1-3]. Caspases contain a cysteine
residue at the active site and cleave substrates at specific

tetrapeptide sites (denoted P4-P3-P2-P1) with a highly con-
served aspartate (D) at the P1 position [4]. To date at least
14 mammalian caspases have been discovered and they
can be grouped into three classes based on their preferen-
tial tetrapeptide specificities [5]. Group I caspases (-1, -4
and -5) recognize the sequence (W/L)EHD; Group II cas-
pases (-2, -3 and -7) prefer the sequence DEXD; while
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Group III caspases (-6, -8, -9 and -10) cleave proteins with
the sequence (L/V)E(T/H)D.

As reviewed in Earnshaw et al. [6] and Fischer et al. [7],
substrates of caspases belong to a myriad of protein
classes such as structural elements of cytoplasm and
nucleus, components of the DNA repair machinery, pro-
tein kinases, GTPases and viral structural proteins.
Although more than 280 caspase substrates have been dis-
covered to date, it is possible that several more remain
undetected [6,7]. The identification and characterization
of caspase substrates are critical for deepening our under-
standing of the role of these enzymes in the various cellu-
lar pathways. However, the accurate detection of caspase
cleavage sites in target proteins requires complex and time
consuming in vivo and in vitro experiments. Given the
readily available sequence data in public databases, a use-
ful alternative is to conduct in silico screening for potential
cleavage sites among proteins. While the preferential
cleavage specificities may be useful here, recently identi-
fied substrates have shown significant variation in their
cleavage sites [7]. Therefore, the development of compu-
tational tools to accurately capture complex sequence pat-
terns and to automate the identification of new cleavage
sites would be valuable.

A number of caspase substrate cleavage prediction meth-
ods currently exist. The pioneering work began with Pep-
tideCutter, a proteases substrates cleavage prediction
server for various families of proteases. Due to the scarcity
of experimental data, PeptideCutter was based only on the
preferential cleavage specificities of certain caspases [8].
Lohmuller et al. [9] developed the peptidase substrate pre-
diction tool (PEPS) based on position specific scoring
matrices (PSSM) for cathepsin B, cathepsin L and caspase-
3 substrates. While useful, the utility of these tools is lim-
ited as they were built on a small dataset of cleavage sites
and the cleavage specificities are confined to certain cas-
pases alone, rather than the entire family. In recent years,
the exponential discovery and characterization of new
substrates and their cleavage sites [7] enabled the develop-
ment of more effective algorithmic tools. Garay-Malpart-
ida et al. [10] developed the CasPredictor software which
exhibited an improvement over previous methods with an
accuracy of 81% on a dataset of 137 experimentally veri-
fied cleavage sites. The CasPredictor software uses an algo-
rithm which analyzes the cleavage sites for amino acid
substitution, amino acid frequency and the presence of
'PEST' sequences [11,12] in the vicinity of the cleavage site
(flanking 10–15 residues). The GraBCas software by
Backes et al. [13] advanced the previous PSSM-based
methods by including an updated set of caspase cleavage
specificities based on the work by Thornberry et al. [5],
and observing conservation at P1' and even P2' positions.
Yang [14] experimented with different neural networks

for predicting cleavage sites such as single-layer percep-
trons, multi-layer perceptrons and the Bayesian bio-basis
function neural networks. They achieved an accuracy of
97% using the Bayesian bio-basis function neural network
with two Gaussian distributions. In the same study, the
SVM method was tested and was found to give excellent
results. However, Yang used a small dataset of 13
sequences and the method is not available for testing.

In this study, we have developed a support vector machine
(SVM) system to predict the caspase substrate cleavage
sites. First introduced by Cortes and Vapnik [15], the SVM
method is a relatively new sub-branch of the machine
learning algorithms. SVM has been shown to perform well
in diverse computational biology applications such as the
prediction of protein secondary structure [16-18]; protein
fold [19]; protein quaternary structure [20]; protein
homology [21]; protein-protein interaction sites [22];
protein domains [23], HIV protease cleavage sites [24]
and T-cell epitopes [25]. It is also used in the classification
and validation of cancer tissue samples [26] and microar-
ray expression data [27]. Other applications of SVMs in
biology have been reviewed by Byvatov and Schneider
[28], and Yang [29]. We have compiled an extensive data-
set of unique (non-redundant) cleavage sites to validate
the SVM method and to further the development of other
computational tools. Using various statistical metrics, we
have shown that the SVM method is a rigorous and effec-
tive approach for predicting cleavage sites of caspase sub-
strates.

Results and Discussion
The prediction of caspase substrate cleavage sites is impor-
tant for our in-depth understanding of the protease-sub-
strate interaction as well as in identifying new caspases
substrates. Since the publication of the preferential
tetrapeptide specificities by Thornberry et al. [5], many
more caspase substrates have been discovered and the
reported cleavage sites have been shown to vary consider-
ably from the preferred sequences [7]. Artificial intelli-
gence-based techniques such as SVM and the neural
network are elegant approaches for the extraction of com-
plex patterns from biological sequence data. As the SVM
methodology was successfully applied in several biologi-
cal problems, we investigated the utility of the SVM
approach in predicting the cleavage sites of caspase sub-
strates.

Based on the work by Fischer et al. and through our own
data mining efforts, we have compiled a database of
experimentally determined caspase substrates annotated
with their cleavage sites. We have obtained a set of 195
unique cleavage sites from Fischer et al. and 24 unique
cleavage sites from recently discovered caspase substrates
reported in literature but were not detailed in Fischer et al.
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The 195 sequences were used for training the SVM classi-
fier while the 24 sequences were used for testing the effec-
tiveness of the SVM method. As there were no
experimentally reported non-cleavage sites for caspases,
we extracted tetrapeptide sequences at random positions
(not including the cleavage sites) on experimentally deter-
mined caspase substrates. One non-cleavage site was
extracted for every cleavage site on the same substrate. The
assumption that an intuitively large proportion of
tetrapeptide sequences other than the cleavage site(s) on
the same substrate should not be recognized and cleaved
by caspases justifies the use of these sequences as non-
cleavage sites. An equal number of these non-cleavage
sites were extracted to match the cleavage sites. Together,
a primary dataset consisting of the tetrapeptide cleavage
sites (positive examples) and non-cleavage sites (negative
examples) was constructed and designated as the P4P1
dataset (Figure 1).

Previously, Backes et al. [13] and Garay-Malpartida et al.
[10] suggested that residues adjacent to the cleavage site
may influence substrate cleavage. Backes et al. reported the
high occurrence of specific amino acids at P1' for caspase-
3 and P1' and P2' for granzyme B, a serine protease
involved in apoptosis and in immune response [30].
Garay-Malpartida et al. reported that a sizeable proportion
of cleavage sites are localized within 'PEST' regions, of
which have been suggested to label proteins for protease
degradation. PEST regions are defined as sequence seg-
ments enriched with proline (P), glutamate (E), aspartate

(D), serine (S) and threonine (T) residues [11,12]. There-
fore, to investigate the influence of the adjacent sequences
on substrate cleavage, we further constructed a dataset
containing tetrapeptide sequences with the P1' and P2' res-
idues and a dataset containing tetrapeptide sequences
flanked by ten residues on either side of the cleavage site.
These datasets were designated as P4P2' and P14P10' respec-
tively (Figure 1). The longer sequence segments would
encapsulate the information contained in the critical
tetrapeptide sequences as well as the P1' and P2' amino
acids and other residues adjacent to the cleavage sites.

Next, we divided the P4P1, P4P2' and P14P10' datasets into
training and test datasets (Figure 2). The training datasets
were used for optimizing the SVM parameters and for
training the SVM classifier, while the test datasets were
used for evaluating the SVM method. We have chosen the
RBF kernel which requires parameters γ and C to be opti-
mized. Using 10-fold cross-validation, the parameters γ
and C were optimized at 0.01 and 100 (for P4P1 training
dataset) and 0.1 and 100 (for both P4P2' and P14P10' train-
ing datasets). For each of P4P1, P4P2' and P14P10' training
datasets, an overall accuracy of 98.97% was obtained dur-
ing the cross-validation.

While the reported accuracy on the training datasets may
indicate the effectiveness of a prediction method, it may
not accurately portray how the method will perform on
novel, hitherto undiscovered cleavage sites. Therefore,
testing the SVM methodology on independent out-of-
sample datasets, not used in the cross-validation is critical.
Here, we applied the SVM classifiers, trained separately
using the entire training datasets from the P4P1, P4P2' and
P14P10' datasets with the optimized γ and C parameters,
on the respective test datasets and evaluated the results. As
shown in Table 1, for the P4P1 test dataset, the SVM
method obtained an accuracy of 95.83% using the RBF
kernel with γ = 0.01 and C = 100. For both the P4P2' and
P14P10' test datasets, the SVM method obtained an accu-
racy of 97.92% using the RBF kernel with γ = 0.1 and C =
100.

Our analysis on the training and test datasets indicated a
large percentage of cleavage sites with the XXXD motif
(~98%) and a very small percentage of cleavage sites with
a non-canonical XXXE motif (~2%). While experimental
cleavage site specificities reported in Thornberry et al. sug-
gest most, if not all, sequences to conform to the XXXD
motif [5], the inclusion of a large proportion of these
sequences in the development of the SVM system could
lead to over-training of the classifier and confound the
results obtained with different sequence representations.
To mitigate this possibility, we further constructed data-
sets identical to P4P1, P4P2' and P14P10' datasets, but with
the P1 residue removed in all the sequences (labelled as

Different subsequence segments for SVM training and testingFigure 1
Different subsequence segments for SVM training 
and testing. For human Mcl-1 [Swiss-Prot:Q07820], a 
sequence window of 24 amino acids in length centred on the 
tetrapeptide cleavage site, TSTD (underlined) is shown. 
Amino acids to the left of the scissile bond (shown by the 
inverted triangle) are labelled from P1 (D) to P14 (L). Amino 
acids to the right of the scissile bond are labelled from P1' (G) 
to P10' (A). Curly brackets indicate the subsequence seg-
ments extracted for SVM implementation. The sequences 
spanning P4 to P1 (TSTD), P4 to P2' (TSTDGS) and P14 to P10' 
(LELVGEGSNNTSTDGSLPSTPPPA) are labelled as P4P1, 
P4P2' and P14P10' respectively.
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P4P1(-D), P4P2' (-D) and P14P10' (-D) datasets respec-
tively). These datasets were further divided into training
and test sets and SVM parameters were optimized in the
manner as reported for the original P4P1, P4P2' and P14P10'
datasets. The trained SVM classifiers were tested on the
respective test datasets. As shown in Table 1, the SVM
method obtained an accuracy of 81.25% for the P4P1 (-D)
test dataset. The performance of the SVM improved signif-
icantly when tested on P4P2' (-D) and P14P10' (-D) datasets
as accuracy readings of 89.58% and 93.75% were
obtained respectively. While the accuracy on all (-D) test
datasets were lower compared to the corresponding origi-
nal datasets, a larger degree of improvement was observed
when the longer sequence representations were used, as
evidenced by the greater spread in both the accuracy and
sensitivity readings for the P4P1(-D), P4P2' (-D) and
P14P10' (-D) datasets. An analysis of the misclassified
sequences showed that cleavage sites such as CLLD2193

from Notch1 [Swiss-Prot:P46531] and PEVD142 from p23
co-chaperone [Swiss-Prot:Q15185], which differ mark-

edly from reported tetrapeptide specificities [5], were mis-
classified by the P4P1 (-D)-trained SVM, but were correctly
predicted when the P4P2' (-D) and P14P10' (-D) datasets
were used. Also, the SVM trained with the P4P1 (-D) and
P4P2' (-D) datasets failed to correctly classify the non-
canonical cleavage site VQPE205 from DIAP1 [Swiss-
Prot:Q24306], but correctly predicted the cleavage site
when trained with the P14P10' (-D) dataset. These results
suggest that the SVM trained with the (-D) datasets may be
useful for identifying hitherto undiscovered cleavage sites
while circumventing the problem of overtraining due to
the high percentage of "XXXD" cleavage sites in the train-
ing datasets. The results also provided further evidence for
the suggestion that the P1', P2' and residues further
upstream and downstream of the cleavage site may influ-
ence substrate cleavage, and by accounting for these flank-
ing sequences, the SVM performance can be improved. It
was also shown that the SVM method can be extended to
predict cleavage sites with residues other than the canoni-
cal aspartate (D) at P1. While the occurrence of the non-

Schematic layout of the datasets used for SVM training and testingFigure 2
Schematic layout of the datasets used for SVM training and testing. The primary dataset consist of non-redundant 
tetrapeptide caspase substrate cleavage sites obtained from literature (see Additional File 1) and an equal number of non-cleav-
age sites. 1The P4P1 sequences consist of all the sequences in the primary tetrapeptide cleavage site dataset. P4P2' and P14 P10' 
datasets were derived by extracting subsequence segments from the parent protein chains in the vicinity of the tetrapeptide 
cleavage sites, as shown in Figure 1. All datasets contain equal number of positive and negative examples.
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canonical cleavage sites remains proportionately small, it
does imply that the sampling space is not limited to the
XXXD motif for cleavage sites. Consequently, the ability to
predict these non-canonical cleavage sites will be a useful
complement to existing computational methods which
assumes the consensus XXXD motif as the basis for their
algorithms.

As other methods were not readily accessible, we were
only able to compare the GraBCas method on our data-
sets. Since the GraBCas method primarily focuses on the
tetrapeptide motif, we have applied it to the P4P1 training
dataset alone. As the GraBCas method can only be applied
to potential cleavage sites with aspartate (D) at the P1
position, we scored the positive sequences in the P4P1
training dataset with the GraBCas matrix values for the
different caspases, selected the highest score and checked
for the percentage of correctly predicted cleavage sites (or
Sensitivity, SE) against a series of cut-off scores. As shown
in Table 2, the sensitivity values declined steadily from
87.43% to 19.76% as the cutoff values were progressively
increased (0.1, 1, 5, 10, 20). We have also tested the GraB-
Cas method on the positive sequences in the P4P1 test
dataset. As there were no recommended cut-off scores for
predicting the cleavage sites, we chose the cut-off score of
0.1, which was used for the granzyme B cleavage site pre-
diction as reported in Backes et al. [13]. At the cut-off score
of 0.1, GraBCas predicted only 16 out of 24 cleavage sites
correctly (SE = 66.67%).

Finally, to investigate how the SVM approach can comple-
ment experimental work on caspase substrate cleavage, we
applied the SVM approach to predict the caspase-medi-
ated cleavage of an anti-apoptotic protein, Livin [Swiss-
Prot:Q96CA5] and its mutant sequences as reported in
Yan et al. [31], based on the prediction of the caspase
cleavage sites. As shown in Table 3, the experimental
cleavage of wild type human Livin and its deletion
mutants were compared to the results predicted by the
SVM trained with the P14P10' (-D) dataset. With the excep-
tion of the LE Δ52–61, Δ51–53 and Δ53–61 mutants, all
other sequences were correctly predicted to be cleaved or
not cleaved by caspases as indicated. For the LE Δ52–61
and Δ51–53 mutants, the flanking sequences upstream
and downstream of the cleavage site were likely to have
influenced cleavage of the substrates, as predicted by the
SVM. However, cleavage of substrates was prevented due
to the absence of the Asp at P1 (DHVD52). While the SVM
predicted the cleavage of Δ53–61 mutant, it was proposed
by Yan et al. that the deleted residues might have led to the
distortion of the structure of a neighboring domain or
affected its signaling function, which subsequently inhib-
ited the substrate cleavage through downstream signaling.
These findings suggest that the SVM-based prediction of
caspase substrate cleavage sites might be helpful in identi-
fying potential caspase substrates.

Conclusion
In conclusion, we have compiled an extensive dataset of
caspase substrates cleavage sites as reported in the litera-
ture for the development and validation of other compu-

Table 1: Results of SVM prediction for various test datasets.

Test datasets γ C Performance Evaluation

AC (%) SE (%) SP (%) MCC

P4P1 0.01 100 95.83 95.83 95.83 0.92
P4P2' 0.1 100 97.92 95.83 100.00 0.96

P14P10' 0.1 100 97.92 95.83 100.00 0.96
P4P1(-D) 0.01 1 81.25 62.50 100.00 0.67
P4P2'(-D) 1 100 89.58 79.17 100.00 0.81

P14P10'(-D) 0.1 1 93.75 87.50 100.00 0.88

The SVM parameters (γ and C) were obtained from the cross-validation conducted on the training datasets.

Table 2: GraBCas prediction on the P4P1 training dataset (positive sequences only)

GraBCas Cutoff SE (%)

0.1 87.43
1.0 69.46
5.0 40.72
10.0 28.14
20.0 19.76
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tational tools. We have rigorously tested the SVM
approach for recognizing the cleavage sites of these sub-
strates. Our results show that the SVM method is comple-
mentary to existing methods, if not more effective. The
prediction accuracy can also be improved by accounting
for sequences at the P1' and P2' positions and further
upstream and downstream of the cleavage site. In addi-
tion, the SVM method may be useful for predicting the
non-canonical cleavage sites lacking aspartate (D) at the
P1 position, such as those found in DIAP1 and other pro-
teins as reported in literature [7]. As the substrate proteins
used in the present method are derived from a variety of
organisms (human, mouse, rat, fruit fly, cow, chicken,
frog, worm and viruses) and are cleaved by various cas-
pases (caspase-1,-3, -6, -7, -8, -9, -12, -13 and -14), our
methodology is applicable to the detection of cleavage
sites in substrates from various organisms and is not cas-
pase-specific.

Together with existing computational tools, our method
will complement on-going experimental efforts in identi-
fying new caspase substrates and further our understand-
ing of the biochemistry of caspase substrate cleavage. This
knowledge will be helpful for resolving the larger role of
these proteases and their targets in critical processes like
apoptosis and inflammation. As more information about
caspases and their substrates becomes available, we will
update and improve the performance of our methodol-
ogy.

Methods
Datasets
Our primary dataset contains 438 unique sequences (219
cleavage sites and 219 non-cleavage sites). Of the 219
cleavage sites, 195 were obtained from Fischer et al. and
24 from literature search. Besides the tetrapeptide cleav-
age site sequences, subsequence segments of varying
lengths centered on the tetrapeptide cleavage sites were

extracted as shown in Figure 1. In total, three groups of
sequences were obtained: tetrapeptide cleavage sequences
(henceforth termed as the P4P1 sequences), tetrapeptide
cleavage sequences with the next two residues, P1' and P2'
residues (P4P2'sequences), and tetrapeptide sequences
with upstream residues up to P14 and downstream resi-
dues up to P10' (P14P10' sequences). The cleavage sites and
the corresponding subsequences were designated as posi-
tive examples for the SVM training and testing.

The 219 non-cleavage sites were obtained by extracting
tetrapeptide sequences at random positions (not includ-
ing the cleavage sites) on caspase substrates. One non-
cleavage site was extracted for every cleavage site on the
same substrate. Subsequence segments centered on these
non-cleavage sites were also extracted in the manner
reported earlier. The non-cleavage sites and the corre-
sponding subsequences were designated as negative
examples for SVM training and testing. Together, the pos-
itive and negative examples in the three group of
sequences were designated as the P4P1, P4P2' and P14P10'
datasets respectively. Each of these datasets were further
divided in the following manner (Figure 2):

1. Training datasets
Training datasets were used for optimizing the SVM
parameters and for training the SVM classifier to predict
unseen test examples. Each training dataset contain 390
sequences (195 positive and 195 negative examples). The
sequences were obtained from Fischer et al. and are avail-
able in Additional File 1.

2. Test datasets
Test datasets were used for evaluating the performance of
the SVM method. Each test dataset contains 48 sequences
(24 positive and 24 negative examples). The sequences
were obtained from recently discovered substrates
extracted from literature search which were not reported

Table 3: SVM prediction of caspase substrate cleavage sites in Livin and mutants.

Substratea Experimental Resultsb SVM Predictionc

Wild type Livin Cleaved Cleaved
LE Δ52–61 Not cleaved Cleaved
Δ53–55 Cleaved Cleaved
Δ55–57 Cleaved Cleaved
Δ57–59 Cleaved Cleaved
Δ60–62 Cleaved Cleaved
Δ52–61 Not cleaved Not cleaved
Δ53–61 Not cleaved Cleaved
Δ52 Not cleaved Not cleaved
Δ51–53 Not cleaved Cleaved

a. Wild type Livin and various deletion mutants as reported in Yan et al. b Experimentally verified cleavage (cleaved) or non-cleavage (not cleaved) of 
Livin and deletion mutants. c. SVM prediction of caspase cleavage sites on Livin and deletion mutants (Cleaved – presence of cleavage site; Not 
cleaved -absence of cleavage site).
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in Fischer et al. Sequences are available in Additional File
2.

Datasets containing sequences identical to the P4P1, P4P2'
and P14P10' datasets but without the P1 residue were also
constructed (designated as P4P1(-D), P4P2'(-D) and
P14P10'(-D) respectively). These datasets were divided into
training and test datasets as mentioned earlier.

Vector encoding schemes
To encapsulate the sequence information into a format
suitable for SVM training and testing, the sequences were
transformed into n-dimensional vectors using an orthon-
ormal encoding scheme. Each amino acid is represented
by a 20-dimensional vector, composed of either zero or
one as elements. For example, alanine was represented as
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] and cysteine as
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]. Therefore, for the
P4P1 dataset, each sequence was represented by an 80-
dimensional vector. Sequences in the P4P2' and P14P10'
datasets were represented by 120 and 480 dimensional
vectors respectively.

SVM implementation
For SVM implementation, we used the freely downloada-
ble LIBSVM package by Chang and Lin [32]. Details of the
SVM methodology can be obtained from the article by
Burges [33]. Briefly, SVM is based on the structural risk
minimization principle from statistical learning theory. A
set of positively and negatively examples can be repre-
sented by the feature vectors xi (i = 1, 2,..., N) with corre-
sponding labels yi ∈ {+1,-1}. To classify the data, the SVM
trains a classifier by mapping the input samples, using a
kernel function in most cases, onto a high-dimensional
space, and then seeking a separating hyperplane that dif-
ferentiates the two classes with maximal margin and min-
imal error. The decision function for new predictions on
unseen examples is given as:

where K (xi·xj ) is the kernel function, and the parameters
are determined by maximizing the following:

under the conditions,

The variable C serves as the regularization parameter that
controls the trade-off between margin and classification

error. As the efficacy of the SVM prediction system is
dependent on the type of kernel used, we explored various
kernels (linear, sigmoid, polynomial and the radial basis
function) commonly implemented in biological prob-
lems on our datasets. We have chosen the widely used
radial basis function (RBF) kernel as it was found to be
most effective (data not shown):

Two parameters are required for optimizing the SVM clas-
sifier; γ, which determines the capacity of the RBF kernel
and the regularization parameter C.

SVM optimization
To optimize the SVM parameters γ and C, we applied 10-
fold cross-validation on each of the training datasets using
various combinations of γ and C. In 10-fold cross-valida-
tion, the training dataset was spilt into 10 subsets where
one of the subsets was used as the test set while the other
subsets were used for training the classifier. The trained
classifier was tested using the test set. The process is
repeated 10 times using a different subset for testing,
hence ensuring that all subsets are used for both training
and testing. SVM parameters γ and C were stepped
through combinations of 0.01, 0.1, 1, 10, 100 for γ, and 1,
10, 100 and 1000 for C in a grid-based manner.

SVM training and testing
The best combinations of γ and C obtained from the opti-
mization process were used for training the SVM classifier
using the entire training dataset. The SVM classifier was
subsequently used to predict the test datasets. Various
quantitative variables were obtained to measure the effec-
tiveness of the SVM method:

(i) TP, true positives – the number of correctly classified
cleavage sites.

(ii) FP, false positives – the number of incorrectly classi-
fied non-cleavage sites.

(iii) TN, true negatives – the number of correctly classified
non-cleavage sites.

(iv) FN, false negatives – the number of incorrectly classi-
fied cleavage sites.

Using the variables above, a series of statistical metrics
were computed to measure the effectiveness of the SVM
method. Sensitivity (SE) and Specificity (SP), which indi-
cates the ability of the prediction system to correctly clas-
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sify the cleavage and non-cleavage sites respectively, were
calculated:

To provide an indication of the overall performance of the
system, we computed Accuracy (AC), for the percentage of
correctly classified sites, and the Matthews Correlation Coef-
ficient (MCC).

Prediction of caspase-mediated cleavage of Livin and 
mutants
The SVM trained using the P14P10' (-D) dataset (RBF ker-
nel, γ = 0.1, C = 100) was used to predict the cleavage of
Livin [Swiss-Prot:Q96CA5] and the various deletion
mutants, based on the prediction of the caspase cleavage
sites, as reported in Yan et al. [30]. 24 amino acids subse-
quence segments centred on the P1 residue of the reported
Livin cleavage site (DHVD52) were extracted from both
wild type and mutant Livin sequences. Mutants used in
this study are: LE Δ52–61, Δ53–55, Δ55–57, Δ57–59,
Δ60–62, Δ52–61, Δ53–61, Δ52 and Δ51–53. In mutants
with Asp-52 deleted, the peptide windows were centred
on the subsequent residue occupying position 52.

Comparison with other available methods
As the CasPredictor method is unavailable from the pub-
lished website, it was not tested. The performance of
GrabCas was compared with the SVM method using the
current datasets. As the GraBCas scoring matrices are spe-
cific for the tripeptide, P4-P3-P2, and assume that P1 is an
Asp (D) residue, the GraBCas matrices were used to score
only the positive sequences (cleavage sites) from the P4P1
training dataset. As GraBCas scores for different caspases
were available, only the highest scores were recorded. The
percentage of correctly predicted cleavage sites (Sensitivity,
SE) were calculated as mentioned earlier. The P4P1 test
dataset was tested in the similar manner and the SE score
was obtained at a GraBCas cut-off of 0.1.
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