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Abstract
Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important
roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric
mGluR ligands are particularly promising drug targets because of their modulatory effects –
enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this
modulation occurs is not known. Here, we propose the hypothesis that positive and negative
modulators will differentially stabilize the active and inactive conformations of the receptors,
respectively. To test this hypothesis, we have generated computational models of the
transmembrane regions of different mGluR subtypes in two different conformations. The inactive
conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as
template and the active conformation was created based on a recent model of the light-activated
state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is
experimentally known were docked to the modeled mGluR structures using ArgusLab and
Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping
with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active
and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative
modulators bound the inactive conformations with significant preference using both docking
programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations.
Considering results by the individual programs only, even higher correlations were observed: 12/
14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings
strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of
different conformations analogous to those identified in rhodopsin where they are induced by
photochemical isomerization of the retinal ligand – despite the extensive differences in sequences
between mGluRs and rhodopsin.
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Background
Glutamate is the most important excitatory neurotrans-
mitter in the brain. Glutamatergic neurotransmission pro-
ceeds primarily via ion gated channels (ionotropic
glutamate receptors). In addition, there are metabotropic
glutamate receptors (mGluRs), which belong to the G
protein coupled receptor (GPCR) family and play modu-
latory roles in neuronal processes such as anxiety, learn-
ing, memory and perception of pain [1]. Because of these
roles they form attractive drug targets for treatment of
neuronal dysfunction including seizures, epilepsy, Parkin-
son's disease and night blindness [2-4]. Both types of
glutamate receptors share a common extracellular ligand
binding architecture, albeit different topology and protein
family membership. X-ray crystallographic structures are
available for the soluble extracellular domains of mGluRs
[5-8] and ionotropic glutamate receptors [9-11]. Because
of the common ligand recognized by these extracellular
domains, targeting mGluRs specifically without interfer-
ing with the ubiquitous glutamatergic neurotransmission
therefore requires designing allosteric ligands that bind in
the transmembrane domains of mGluRs. Being members
of the GPCR superfamily, mGluRs are structurally charac-
terized by seven transmembrane helices that divide each
protein into an extracellular, cytoplasmic and transmem-
brane domain. Based on sequence homology and phar-
macological considerations the GPCR family is
subdivided into several classes. Class A, the largest sub-
family, is the rhodopsin like family. Members of other
GPCR classes share very little sequence homology with
class A members and some also differ in the length of their
N-termini. In particular, the ligand binding domain of
class C GPCRs is located in a 500 amino acid long addi-
tion to the N-terminus. This is unusual for the GPCR fam-
ily where the ligand binding domain is typically located in
the transmembrane domain, near its interface with the
extracellular domain. The prototypical members of class C
GPCRs are the mGluRs. In human, there are eight sub-
types, divided into three groups based on their pharmaco-
logical and signaling properties. Group I mGluRs
(subtypes 1 and 5) are primarily localized postsynapti-
cally where they modulate ion channel activity and neuro-
nal excitability. Groups II (subtypes 2 and 3) and III
(subtypes 4, 6, 7, and 8) are primarily located presynapti-
cally and regulate the release of neurotransmitters, includ-
ing glutamate [12].

For Group I mGluRs it was shown by mutagenesis that
allosteric modulators bind in the transmembrane domain
near the interface between the transmembrane and extra-
cellular domains similar to the ligand binding pockets in
class A GPCRs [13,14]. Allosteric mGluR ligands act as
positive or negative modulators of mGluR activity in
response to glutamate or glutamate analogs, enhancing or
suppressing the responses respectively [15]. Small

changes in the chemical structures of ligands can switch
their modulatory effects. For example, 4,4'-difluoroben-
zaldazine (4,4'-DFB) is a negative modulator for mGluR5,
while 3,3'-difluorobenzaldazine (3,3'-DFB) is a positive
modulator for the same receptor [16]. Being able to pre-
dict if a given ligand will have positive or negative modu-
latory effects on mGluRs would be highly beneficial in the
design of future drug candidates targeted at these recep-
tors. With the long-term goal of building such a predictor,
we here propose the hypothesis that positive and negative
modulators can be distinguished by their higher affinities
for the active and inactive conformations of the receptors,
respectively. To test this hypothesis, we have generated
computational models of the transmembrane regions of
different mGluR subtypes in two different conformations.
The inactive conformation was modeled using the crystal
structure of the inactive, dark state of rhodopsin as tem-
plate [17] and the active conformation was created based
on a recent model of the light-activated state of rhodopsin
[18]. We find that in the majority of ligand-receptor pairs,
binding energies for positive modulators are more favora-
ble when docked to the active conformation than the
inactive conformation and vice versa for negative modula-
tors.

Results
Identification and analysis of the ligand binding pocket
A total of 24 ligands were identified that bind to three
mGluR subtypes, the Class I mGluRs mGluR1 and
mGluR5, the Class II mGluR, mGluR2 and the Class III
mGluRs, mGluR4 and mGluR7. The structures of the lig-
ands are shown in Figure 1. Receptor modulation was
reported in human and in rat receptors (for references, see
Table 1) and docking was performed with homology
models of the mGluR of the respective species. We com-
pared the results from two different docking programs,
ArgusLab and AutoDock. Of the rank-ordered list of
bound ligand conformations, we have chosen in each case
the ligand conformation where the ligand was most bur-
ied and had minimum energy in comparison to all other
conformations in the same binding pocket. In some cases,
ligands were predicted not to bind, but this was only the
case for one of the two programs in each case. If a ligand
did not dock in AutoDock, it did dock in ArgusLab, and
vice versa, so that for all ligands binding could be exam-
ined. The unbiased searching of the whole receptor with
each of the modulators studied revealed that all of the lig-
ands preferentially bound in a region similar to that of ret-
inal in rhodopsin (Figure 2), in the transmembrane
domain including helices 3, 5–7 near the interface with
the extracellular domain, especially extracellular loop 2.
The binding pocket was similar for all ligands docked to
all receptors, and is exemplary described in more detail for
mGluR5, below.
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The structures of the ligands studiedFigure 1
The structures of the ligands studied. (A) EM-TBPC (B) Ro67-7476 (C) Ro01-6128 (D) Ro67-4853 (E) R214127 (F) triazaflu-
orenone (G) CPCCOEt (H) YM298198 (I) MPEP (J) SIB-1757 (K) SIB-1893 (L) Fenobam (M) MTEP (N) DFB-derivatives. The 
positions of the fluorine atoms are indicated for DFB-2,2' and DFB-4,4'. DFB-3,3' is shown. (O) PTEB (P) NPS2390 (Q) CPPHA 
(R) 5MPEP (S) MPEPy (T) PHCCC (U) AMN082. For definition of ligand names, see abbreviations list. Images were created 
using ArgusLab software [58].
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In order to compare the residues in contact with different
ligands, we analyzed the residues predicted to be located
within 5 Å distance from the docked ligand. The results
obtained with ArgusLab are listed in Table 2 and are
shown in Figure 3 for mGluR5 in the active and inactive
conformations. To demonstrate the similarities and differ-
ences between positive and negative modulators, we com-
pared specifically the negative modulator MPEP with the
positive modulator 3,3'-DFB. Analysis of the binding
pocket residues in the mGluR5 subtype revealed that
W784 was in closest proximity to both docked ligands
and in both conformations, active and inactive. W784 is
highly conserved in all mGluRs and in class A GPCRs in
general. This tryptophan corresponds to W265 in rho-
dopsin. In addition to W784, residues R647, Y658, L743
and F787 were found to be part of the binding pocket
regardless of the type of modulator and conformation of
the receptor. In addition, C732, V788, M801 and S804 are
found frequently in the binding pockets. In contrast,
S657, L785, C781 and T734 were found to be unique for
the positive modulator 3,3'-DFB (Figure 3C,D; Table 2)
and were not found in the binding pocket of the negative
modulator MPEP. Conversely, R726 and V805 were
unique to the binding pocket of MPEP (Figure 3A,B; Table
2).

Validation of the ligand binding pocket with experimental 
data
Site-directed mutagenesis was used previously to identify
residues in mGluR5 that are critical for ligand binding
[14,19]. Table 2 summarizes the comparison between
these experimentally identified ligand binding pocket res-
idues and those predicted by our docking studies with

ArgusLab. The results for AutoDock are not shown
because the overlap between the predicted binding pock-
ets and those experimentally determined was significantly
less. The previous experimental studies with mGluR5 have
shown that residues P654, Y658, L743, T780, W784,
F787, Y791 and A809 are crucial for binding of the nega-
tive modulator MPEP [14]. Our prediction of MPEP bind-
ing to both active and inactive GRM5 models predicted all
of the above residues to be within 5 Å of the ligand, except
A809, T780 and Y791 (colored in red in Table 2). Addi-
tionally there are several residues that are predicted to be
important for MPEP binding but that have not yet been
experimentally verified (colored green in Table 2). For the
binding of the positive modulator 3,3'-DFB, it was con-
cluded from site-directed mutagenesis that M801, S657
and T780 are critical for binding and modulatory function
[19]. There was also evidence that P654, S657, L743 and
N733 may contribute more weakly to 3,3'-DFB binding.
All of these residues are predicted to be part of the 3,3'-
DFB binding pocket in the inactive model, but S657 and
T780 are not present in the active model. In addition, we
predict several residues to be part of the binding pockets
that have not been investigated previously (shown in
green in Table 2). Thus, the comparison of the predicted
ligand binding pockets in mGluR5 inactive and active
models with the available experimental site directed
mutagenesis data strongly validates our models. In addi-
tion, we generated testable hypotheses on important resi-
dues previously not investigated, and provide evidence
that there may be differences in the roles of the amino
acids in the binding pocket depending on the conforma-
tion of the receptor.

Analysis of binding energies
The above in-depth analysis of the mGluR5 binding
pocket suggests that there may be significant differences
between the interactions made by negative and positive
modulators with mGluRs depending on the conforma-
tion state of the receptor. To test if there is a general trend
that distinguishes the action of positive and negative
modulators on the receptors, we quantified the overall
binding energies for the 24 different ligands with known
modulatory nature (positive versus negative). Table 1
shows the binding energies of the ligand-protein com-
plexes calculated by ArgusLab and AutoDock and Figure 4
plots the difference between the respective energies for
active and inactive conformations. Where the energies for
the active and inactive conformations were very similar,
the docking was repeated three times to estimate the error
on the predictions (indicated in Table 1 and Figure 4). In
general, the results obtained with ArgusLab were less var-
iable between repeated runs than those obtained with
AutoDock. A total of 9 ligands were experimentally shown
to act as positive modulators of specific subtypes, 14 lig-
ands were negative modulators and one ligand was neu-

Cartoon representation of the mGluR5 receptor (A) active and (B) inactive models docked with negative modulator MPEPFigure 2
Cartoon representation of the mGluR5 receptor (A) active 
and (B) inactive models docked with negative modulator 
MPEP. MPEP is colored in dark blue and is rendered in 
spheres. MPEP refers to 2-methyl-6-(phenylethynyl)-pyridine. 
Images were created using Pymol Software [83].
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 1):S16 http://www.biomedcentral.com/1471-2105/9/S1/S16
tral. In general, the positive modulators bound with more
favorable energy to the model of the active mGluR confor-
mation based on the rhodopsin ANM model [18], while
the negative modulators bound with more favorable
energy to the model of the inactive mGluR conformation
based on the rhodopsin inactive, dark-state [17]. The neu-
tral ligand, 5MPEP, showed relatively little differences
between the energies of the inactive and the active mod-
els, but was consistently better docked to the active model
using both programs. ArgusLab predicted 12 of the 14
(86%) negative modulators to bind with more favorable
energy to the inactive model and 8/9 (89%) positive mod-
ulators to the active model, while the numbers for Auto-
Dock were less correlated: 10/14 (71%) and 7/9 (78%).
There were also more incidences in which AutoDock was
not able to predict binding for the ligands. Five of the pre-
dictions for negative modulators and one positive modu-
lator obtained with AutoDock were near or beyond the
accuracy limit of AutoDock as judged by the error
obtained when multiple independent docking experi-
ments were carried out. In contrast, in the case of
ArgusLab only one difference between docking to active
and inactive models was within the noise level. We con-
clude that the relative difference between the binding
energies of the docked ligands for the active and inactive

models is highly predictive of the nature of the modula-
tor, positive or negative. Positive modulators in most
cases appear to strongly prefer the active conformation
over the inactive conformation and negative modulators
vice versa.

Discussion
So far, the only available three-dimensional structure of
any GPCR is that of rhodopsin [17]. Previous approaches
to docking of ligands to GPCRs have therefore used
mostly receptor models based on the rhodopsin structure
[13,14,20-43]. The advantages and disadvantages of this
approach have been discussed [44,45] and it was shown
that in some cases alternative approaches such as the
Membstruk modeling approach provides more useful
models than those based directly on homology to rho-
dopsin [46-55]. In particular, it was observed recently that
there is a difference in the structures obtained after short
molecular dynamics simulations depending on whether
receptor agonists or antagonists were docked [56,57].
These observations indicate that the conformation of the
receptor will be important for the stability and nature of a
receptor-ligand complex. To our knowledge however
there has been no previous attempt to predicting different
conformations of the receptors first, and then docking lig-

Table 1: List of predicted binding energies for mGluR subtypes 1, 2, 4, 5 and 7 with different positive and negative modulators shown in 
Figure 1.

Binding energies ArgusLab Binding energies AutoDock

Class Receptor Modulation Ligand Species Active 
model

[kcal/mol]

Inactive 
model

[kcal/mol]

Active 
model

[kcal/mol]

Inactive 
model

kcal/mol]

I mGluR1 Positive Ro67-7476 [70] Rat -10.02 -9.18 -8.56 -6.88
Ro01-6128 [70] Rat -12.54 -11.06 -7.06 Did not dock
Ro67-4853 [70] Rat -11.16 -10.73 -7.53 Did not dock

Negative R214127 [71] Human -11.53 -12.09 Did not dock -7.34
R214127 [71] Rat -11.09 -11.97 -9.24 -10.11

Triaza-fluorenone [72] Human Did not dock -7.81 Did not dock -6.08 ± 0.15
CPCCOEt [71] Rat -8.60 -9.37 -6.8 -7.46
YM298198 [73] Rat -7.98 ± 0.09 -8.04 ± 0.02 -6.41 ± 0.25 -5.8 ± 0.08
NPS2390 [72] Rat -9.43 ± 0.01 -10.46 ± 0.17 -8.41 ± 0.00 -8.72 ± 0.03

EM-TBPC [13, 14] Rat -8.51 Did not dock -6.68 ± 0.09 -6.82 ± 0.11
mGluR5 Negative MPEP [74, 75] Human -12.83 -13.14 -6.73 -7.77

DFB-4,4' [16, 76] Human -10.47 -11.28 -6.83 ± 0.03 -6.86 ± 0.03
SIB-1757 [75] Human -9.41 -9.74 -6.44 -6.94
SIB-1893 [75] Human -11.71 ± 0.03 -11.82 ± 0.00 -5.83 ± 0.32 -6.63 ± 0.04
MPEPy [16] Human -7.94 ± 0.00 -7.68 ± 0.11 -6.15 ± 0.03 -6.1 ± 0.02

Fenobam [77] Human -7.64 -9.20
MTEP [78] Rat -9.03 -9.40 -6.2 ± 0.07 -6.21 ± 0.01

Neutral 5MPEP [79] Rat -9.52 ± 0.00 -9.41 ± 0.04 -7.04 ± 0.06 -6.66 ± 0.00
Positive DFB-3,3' [16, 76] Human -11.05 -10.06 -7.06 -6.43

DFB-2,2' [16, 76] Human -10.70 -10.02 -6.87 ± 0.04 -6.81 ± 0.01
CPPHA [76] Human -11.38 -9.96 -6.78 ± 0.41 -7.32 ± 0.37

II mGluR2 Positive PTEB [80] Human -13.94 -12.16 -5.83 -5.1
III mGluR4 Positive PHCCC [81] Human -9.37 ± 0 -9.31 ± 0.003 -8.07 ± 0.08 -6.16 ± 0.09

mGluR7 Positive AMN082 [82] Human -11.27 -13.11 Did not dock -7.56
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 1):S16 http://www.biomedcentral.com/1471-2105/9/S1/S16
ands to these conformations. We describe here the dock-
ing of ligands to two different conformations of mGluR
receptors, active and inactive, using two docking pro-
grams, ArgusLab [58] and AutoDock [59].

AutoDock is a stochastic Grid-based approach that uses
the genetic algorithm to sample different populations of
ligand conformations in their binding to the receptor.
Each bound conformation is energetically evaluated by a
series of energy minimization steps, in which unsuccessful
docking results are discarded. While the genetic algorithm
is a widely used and reliable algorithm, it has known lim-
itations [60], among the most significant is the possibility
of the optimization of the ligand conformations getting
trapped in local minima [61]. This is also confirmed by
our observation that individual runs may give different

results (Figure 4 and Table 1). ArgusLab therefore pro-
vides both algorithms, the stochastic search, analogous to
the genetic algorithm provided by AutoDock, as well as an
exhaustive search method based on identification of com-
plementary shapes of the ligand and the receptor, referred
to as "ShapeDock" or "ArgusDock". When using ArgusLab
with the ArgusDock algorithm, 12 of the 14 (86%) nega-
tive modulators were predicted to bind with more favora-
ble energy to the inactive model. Due to the high
reproducibility between different runs, the error margins
are small and in all cases but one the errors were signifi-
cantly smaller than the differences observed between
docking to active and inactive models. Similarly, 8/9
(89%) positive modulators bound significantly more
favorably to the active model with ArgusLab. The results
obtained for AutoDock were less correlated, as expected:

Amino acid residues within 5 Å of the docked ligands MPEP and 3,3'-DFB in mGluR5Figure 3
Amino acid residues within 5 Å of the docked ligands MPEP and 3,3'-DFB in mGluR5. The active receptor conformation is 
shown in A, C and the inactive receptor conformation is shown in B, D. Models were docked with negative modulator MPEP 
(A, B) and positive modulator 3,3'-DFB (C, D). The ligands are colored in blue for the active models and in red for the inactive 
models. Images were created using Pymol Software [83].
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10/14 (71%) and 7/9 (78%) bound the predicted confor-
mation more favorably. We consider the AutoDock results
less reliable than those obtained with ArgusLab for several
reasons. In six of the predictions, where the differences
between docking to active and inactive models were
small, docking energy differences were close to or smaller
than the noise level. There were also more incidences in
which AutoDock was not able to predict binding for the
ligands at all. Finally, the ligand binding pockets pre-
dicted by AutoDock showed less agreement with the
experiments than ArgusLab. However, one should keep in
mind that some ligand/binding site types are problematic
because the shape does not match if the starting ligand
conformation is not correct and/or if the scoring function
is not appropriate. This could be the case in the prediction
of AMN082, where both algorithms incorrectly predicted
this ligand to be a negative modulator, because the ligand
did not dock at all to the inactive conformation. Such dif-
ficulties may also give rise to larger errors when docking
one ligand as compared to another. For example, the
docking energies of ligand YM298198 were associated
with a larger error when using both algorithms. If we were
to equally weigh predictions made by ArgusLab and Auto-
Dock, we would still have agreement between the two
methods and strong preferences (i.e. strong differences in
both AutoDock and ArgusLab) in 8 out of 14 cases (57%),
where the negative modulators bound the inactive confor-
mations with significant preference using both docking
programs, and 6 out of 9 cases (67%), supporting the
hypothesis.

In addition to comparing predicted ligand binding ener-
gies, we also investigated the details of the interactions
between the ligand binding pockets and the ligands for

mGluR5. Of the experimentally known ligand binding
residues of MPEP, our prediction identified all residues,
except A809, T780 and Y791 (colored in red in Table 2).
These three residues are more than 6.2 Å away from any
atom within the ligand, and are not simply missed due to
a too short cut-off distance in the definition of ligand
binding residues. Furthermore, A809 and T780 are facing
the outside of the helical bundle, and it is possible that the
experimental effects reported might have been secondary
effects. In the case of 3,3'-DFB all known ligand binding
residues are also predicted. For both ligands on the other
hand, we predict a number of residues to be important for
ligand binding that have not been tested experimentally.
Finally, we show that while there are several residues in
the ligand binding pocket that are shared between active
and inactive conformations, there are also residues that
bind ligand only in one conformation, and that are spe-
cific for positive versus negative modulators. Thus, our
models provide useful, experimentally testable hypothe-
ses.

The dependence of the properties of ligand binding on
receptor conformation has important functional implica-
tions. Recently, it was shown for rhodopsin that the dark-
state inactive structure already contains the information
needed to form the light-activated structure [18]. This sup-
ports the notion that all-trans retinal in rhodopsin stabi-
lizes a conformation that is already partially accessible to
the 11-cis retinal bound dark, inactive state of the recep-
tor. Translated to other GPCRs, this suggests that receptors
may partially form activated conformations and that ago-
nists could stabilize such conformations, while inverse
agonists would destabilize such conformations. In
mGluRs, the situation is slightly different from other

Table 2: Residues within 5 Å distance from the MPEP and 3,3'-DFB ligands in active and Inactive models of mGluR5 in comparison to 
the experimental results published. Residues colored in red – were not predicted in our docking, green – additional residues predicted 
and black – residues correctly predicted.

MPEP Data [14] mGluR5/MPEP 
Active Model

mGluR5/MPEP 
Inactive Model

3,3'-DFB Data 
[19]

mGluR5/3,3'-DFB 
Active Model

mGluR5/3,3'-DFB 
Inactive Model

TM3 Arg-647, Pro-654, 
Tyr-658

Arg-647, Ile-650, 
Tyr-658

Arg-647, Ile-650, 
Pro-654, Tyr-658

Arg-647, Pro-654, 
Ser-657, Tyr-658

Arg-647, Pro-654, 
Tyr-658

Arg-647, Pro-654, 
Ser-657, Tyr-658

EC2 Asn-733 Arg-726, Glu-727, 
Ile-731, Cys-732, 
Asn-733, Asn-736

Ile-731, Cys-732, 
Asn-733

Asn-733 Arg-726, Ile-731, 
Cys-732, Asn-733

Cys-732, Asn-733, 
Thr-734, Asn-736

TM5 Leu-743 Leu-737, Leu-743, 
Pro-742

Pro-742, Leu-743 Leu-743 Leu-737, Gly-738, 
Leu-743, Gly-744, 
Pro-742

Leu-743

TM6 Thr-780, Trp-784, 
Phe-787, Val-788, 
Tyr-791

Trp-784, Phe-787, 
Val-788

Trp-784, Phe-787 Thr-780, Trp-784, 
Phe-787, Val-788, 
Tyr-791

Trp-784, Phe-787, 
Val-788

Thr-780, Trp-784, 
Phe-787, Cys-781, 
Leu-785, Val-788, 
Tyr-791

TM7 Met-801, Ala-809 Met-801, Cys-802, 
Ser-804, Val-805

Thr-800, Met-801, 
Cys-802, Ser-804, 
Val-805

Met-801 Thr-800, Met-801, 
Cys-802, Ser-804

Met-801, Ser-804
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GPCRs because their ligand binding domain is located in
an extracellular domain added to the conserved GPCR
seven-transmembrane helical scaffold. In this case, lig-

ands also bind to the transmembrane/extracellular
domain interface but here they act as modulators for lig-
and binding in the extracellular domain. However, it was

Differences in energy between active (ANM based) and inactive (rhodopsin crystal-structure based) models of mGluRs docked with the ligands shown in Figure 1 and listed in Table 1Figure 4
Differences in energy between active (ANM based) and inactive (rhodopsin crystal-structure based) models of mGluRs docked 
with the ligands shown in Figure 1 and listed in Table 1. Green bars indicate positive modulators, red bars negative modulators 
and the yellow bar represents a neutral ligand. Where values of 2 are shown, the ligand did not dock to the active model, 
where values of -2 are shown, the ligand did not dock to the inactive model. Error bars indicate standard deviation in three 
docking experiments each for the respective active and inactive models. If an error bar is placed at a -2 or 2 bar, the error rep-
resents the standard deviation of the ligand and model combination where docking was observed. A. Results from docking with 
Autodock software. B. Results from docking with ArgusLab software.
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shown that in the absence of the extracellular domain,
positive and negative modulators act as agonists and
inverse agonists, respectively. Thus, the findings reported
here for mGluRs are likely to have functional implications
for the GPCR family in general, implying that agonists
and antagonists are likely to prefer the active and inactive
conformation of GPCRs, respectively.

Conclusion
Here we proposed the idea that allosteric ligands can be
docked to inactive and active conformational models of
mGluRs. We found that the relative difference in binding
energy between the two conformations is highly predic-
tive of whether the ligand is a positive or a negative mod-
ulator. A positive modulator will bind more favorably to
the active conformation, while the negative modulator
will bind more favorably to the inactive conformation.
Furthermore, we identified similarities and differences in
the interactions made between ligand and receptor
depending on the nature of the modulator and the confor-
mation of the receptor. The findings are likely to have gen-
eral utility in predicting functional classification of
ligands, such as classification as agonists or antagonists.

Methods
Alignment
An alignment of the seven-transmembrane helices of rat
and human mGluR1, mGluR2, mGluR4, mGluR5 and
mGluR7 with respect to the transmembrane helices of
bovine rhodopsin (Protein Data Bank code 1f88[17]) was
generated using ClustalW [62]. The alignment was manu-
ally validated by comparison with the alignment pro-
posed in previous molecular modeling studies of mGluRs
[13,14,63]. Sequences were obtained from SWISS-PROT:
mGluR1 ( (rat),  (human)), mGluR2 (), mGluR4 (),
mGluR5 ( (rat),  (human)) and mGluR7 (). The sequence
of bovine rhodopsin was read directly from the rhodopsin
crystal structure [17].

Structure prediction using homology modeling
Using the generated sequence alignment, three-dimen-
sional models of the different mGluR subtypes were built
by homology modeling using the MODELLER software
[64,65]. The crystal structure of dark, inactive bovine rho-
dopsin with pdb id 1f88[17] and the ANM generated
model of the activated state of rhodopsin [18] were used
as the structural templates for generating the inactive and
active models of mGluRs, respectively. All models were
evaluated using PROCHECK [66], MOLPROBITY [67]
and WHAT-IF [68].

Docking with ArgusDock
We assembled from literature a list of ligands for which
their effect (positive or negative modulation) is known
(listed in Table 1). All ligands were docked to inactive and

active models of the respective mGluR subtypes using
ArgusLab software, version 4.0 [58]. Ligand pdb files were
generated using JME Molecular Editor software [69].
Hydrogen atoms were added to the ligand coordinate file
prior to docking using ArgusLab. The docking between
each receptor subtype and ligand was performed using the
"Dock a ligand" option. All the residues of the receptor
were defined to be part of the binding site i.e, cubic boxes
measuring 151 × 123 × 145 points for the inactive model
and 111 × 151 × 151 for the active model were built to
include the entire protein in each case, allowing no bias
towards the binding pocket. A spacing of 0.4 Å between
the grid points was used. Docking simulations were per-
formed by selecting "ArgusDock" as the docking engine.
"Dock" was chosen as the calculation type, "flexible" for
the ligand and the AScore was used as the scoring func-
tion. The AScore function, with the parameters read from
the AScore.prm file was used to calculate the binding ener-
gies of the resulting docked structures. This file contains
the coefficients for each term in the scoring function.
Structures were visualized and the best docked structure
was chosen based on lowest energy and minimal solvent
accessibility of the ligand, as follows. First, the top 150
unique poses were retrieved. Typically, 20% of these con-
formations were ligands docked to the surface of the pro-
tein, highly water accessible. These conformations were
discarded manually. In at least ~2/3 of the remaining
structures, the ligand was bound in a pocket analogous to
the retinal binding pocket. Those ligands that were only
partially buried in the protein interior, with parts of the
ligand facing the outside of the helical bundle, were also
discarded. Only ligands with maximal burial in the pro-
tein interior were retained. This typically included a list of
50 structures. These structures were rank-ordered by min-
imum energy and the structure with the lowest energy was
chosen as the predicted receptor-bound conformation of
the ligand.

Docking with AutoDock
All ligands shown in Figure 1 were docked to inactive and
active models of the various mGluR subtypes, using the
Lamarckian Genetic algorithm (LGA) provided by the
AutoDock program, version 3.0 [59]. Solvation parame-
ters were added to the protein coordinate file with the
"Addsol" option in AutoDock, and the ligand torsions
were defined using the "Ligand torsions" menu option of
AutoDock. The grid maps representing the protein were
calculated using the "AutoGrid" option. A cubic box was
built around the protein with 126 × 126 × 126 points; a
spacing of 0.403 Å between the grid points was used. The
protein was centered on the geometric center prior to
docking. Docking simulations were carried out with an
initial population of 300 individuals, and a maximum
number of 50,000,000 energy evaluations. Apart from
this a maximum number of 27,000 generations, a transla-
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tion step of 2 Å, a quarternion step of 50° and a torsion
step of 50° were used as the docking parameters for
obtaining the final docked structures. Resulting orienta-
tions that have less than or equal to 0.5 Å root mean
square deviation were clustered. In addition to returning
the docked structure, AutoDock also calculates an affinity
constant for each ligand-receptor configuration. The best
ligand-receptor structure from the docked structures was
chosen based on lowest energy and minimal solvent
accessibility of the ligand, analogous to the procedure
described above for ArgusLab, with the difference being
that only the top 10 most favorably bound ligand struc-
tures were analyzed.

List of abbreviations
mGluR, metabotropic glutamate receptor; GPCR, G pro-
tein coupled receptor; CPCCOEt, cyclopro-
pan[b]chromen-1a-carboxylate; DFB,
difluorobenzaldazine; fenobam, N-(3-chlorophenyl)-N'-
(4,5-dihydrol-1-methyl-4-oxo-1-H-imidazole-2-yl)-urea;
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fluoro-phenyl)-1-(toluene-4-sulphonyl)-pyrrolidine;
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trile; PTBE, (1-(2-hydroxy-3-propyl-4,4-[4-(2H-tetrazol-
5-yl)phenoxy]butoxyphenyl)ethanone); NPS2390, 2-qui-
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