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Abstract

Background: Determining differentially expressed genes (DEGs) between biological samples is the key to
understand how genotype gives rise to phenotype. RNA-seq and microarray are two main technologies for
profiling gene expression levels. However, considerable discrepancy has been found between DEGs detected using
the two technologies. Integration data across these two platforms has the potential to improve the power and
reliability of DEG detection.

Methods: We propose a rank-based semi-parametric model to determine DEGs using information across different
sources and apply it to the integration of RNA-seq and microarray data. By incorporating both the significance of
differential expression and the consistency across platforms, our method effectively detects DEGs with moderate
but consistent signals. We demonstrate the effectiveness of our method using simulation studies, MAQC/SEQC data
and a synthetic microRNA dataset.

Conclusions: Our integration method is not only robust to noise and heterogeneity in the data, but also adaptive
to the structure of data. In our simulations and real data studies, our approach shows a higher discriminate power
and identifies more biologically relevant DEGs than eBayes, DEseq and some commonly used meta-analysis
methods.
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Background
Detection of differentially expressed genes (DEGs) between
biological samples is the key to understand how genotype
gives rise to phenotype. With the rapid accumulation of
consortium studies (e.g. ENCODE [1]) and public repositor-
ies (e.g. NCBI GEO [2]), a large number of RNA-seq and
microarray data collected on similar samples from different
sources have been made publicly available. Such collections
make it possible to integrate similar studies from different
sources and platforms in transcriptome analyses, poten-
tially increasing statistical power and reliability in DEGs
detection [3–6], while decreasing the cost of the analyses.

Despite these well-known benefits, combining gene ex-
pression data from different sources involves many intricate
issues. For example, if data are collected from different plat-
forms, the scales of measurements on individual studies
may not be comparable. Even though many normalization
methods have been developed, normalization across plat-
forms still remains a challenge [7–10]. Furthermore, hetero-
geneity is often present in studies from different sources.
Lab effects often are still retained among datasets produced
by different laboratories even after normalization [11].
A convenient way to handle heterogeneity and noise in

the data is to use rank-based approach, since rank is robust
to outliers and is always comparable across platforms. It
has been shown that ranking fold changes of differential
gene expression produces better agreement of DEG lists
across labs and platforms than using p-values in microarray
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gene expression studies [12]. Recently, several rank-based
data integration methods have been developed, for ex-
ample, RankProd [13], RankSum [13], product of ranks,
[14] and sum of ranks [14]. They have been found effective
in overcoming the heterogeneity among datasets. However,
these methods typically are nonparametric methods with
fixed rules for combining studies, such as, computing con-
volution of (transformed) ranks of fold change, hence are
not adaptive to the structure of the data.
In this work, we develop a rank-based semi-parametric

statistical method to integrate gene expression profiles from
different sources. Our model emphasizes the biological
intuition that true signals from samples measuring the
same biological mechanism should have concordant signals.
It builds in a strong preference for concordance of differen-
tial directionality and significance across sources, such that
the genes that have moderate but consistent signals across
studies can be effectively detected. Unlike meta-analysis
methods based on fixed rules, our method explicitly models
the structure of the data through a copula mixture model,
making it both adaptive to the data and robust to noise.
We illustrate our method in the integration of microarray

and RNA-seq data for DEG detection. Microarray has been
the major experimental platform for gene expression study
since mid-1990’s [15, 16]. Despite its huge success, it is
known to suffer from some limitations such as reliance on
existing knowledge of transcript sequences, high back-
ground noise, and limited dynamic range of detection. Re-
cently, RNA-Seq has emerged as a new experimental
platform for transcriptome profiling and has been flourish-
ing since then. Though it is believed that RNA-seq over-
comes the major limitations of microarray [17], RNA-seq
still demonstrates excessive variability [18], especially when
sequencing depth is low or the gene expression level is low
[1, 5]. Considerable differences have been reported between
the DEGs detected in these two platforms [19–24]. In
addition, due to cost constraints, many RNA-seq experi-
ments nowadays still have no replicates, which limits the
power and reliability of its inference. When both micro-
array and RNA-seq data are available for the same sample,
it is natural to investigate whether integrating the data from
these two platforms will combine the strengths of the
platforms and improve the reliability of DEG identification.
We apply our method to microarray and RNA-seq data

from the Microarray Quality Control (MAQC) [12] and
Sequencing Quality Control (SEQC) [3] projects, as well as
a synthetic microRNA dataset [25]. Our results show that
our method substantially improved the accuracy for detect-
ing DEGs.

Methods
Statistical model for gene expression profiles across platforms
Our goal is to develop a data integration method that is
both robust to noise and heterogeneity in the data, and

adaptive to the structure of data. We develop our
method based on a copula mixture model in Li et al
(2011) [26]. This model is originally developed for asses-
sing the reproducibility of rank orders between two rank
lists from high-throughput experiments. It has been
successfully applied to the analysis of ChIP-seq data
in ENCODE for comparing peak callers, identifying
suboptimal experiments, and determining reporting
thresholds for ChIP-seq peaks [27, 28].
Though this method was originally proposed for asses-

sing reproducibility, it can also be viewed as a semi-
parametric aggregation method that combines rank lists
from different studies. The signals that are consistent
across studies are weighed more favorably than those
with similar significance but inconsistent across studies.
However, this model only clusters the entries into two
groups, with the top - ranked ones as interesting signals
and the bottom - ranked ones as noise; whereas, for
gene expression studies, DEGs reside on both ends of
the rank lists, and both ends would be of interest.
Here we extend this model to the context of gene ex-

pression studies. We assume that the sample consists of
non-DE, up-regulated, and down-regulated DE genes.
We use the level of differential expression (e.g. fold
change) as our data, such that the up-regulated, down-
regulated, and non-DE genes are concentrated on the
top, bottom, and middle part of the rank lists, respect-
ively. For simplicity of discussion, we focus on the case
of two studies in what follows, and provides the exten-
sion to the case with more studies in Additional file 1.
Suppose the level of differential expression for

gene i on two studies are (xi,1, xi,2), we assume that
Xj = (x1,j, x2,j,…, xn,j), j = 1, 2 is an independent and
identically distributed sample with CDF Fj, where Fj
is unknown and can vary across studies. Let Ki

denote whether the i th gene is non-DE (Ki = 0), up-
regulated (Ki = 1) or down-regulated (Ki = 2), and let
π0, π1 and π2 = 1 − π0 − π1 denote the corresponding
proportions.
Because differentially expressed genes are expected to

be concordant in both the direction of differentiation
and the level of significance across studies, we expect
the differential expression level of a gene to be positively
correlated across studies for DEGs but not for non-
DEGs. To model this dependence structure, we assume
that, given Ki = k, the dependence across studies for the
genes in the k th component is induced by a latent bi-
variate Gaussian random variable, zk = (zi,1,zi,2)|Ki = k.
The correlation coefficient between the two studies ρk is
positive for z1 and z2, and 0 for z0. Though the marginal
distribution of observed differential expression level, Fj,
may be different across studies, it is natural to assume
zi,1|Ki = k and zi,2|Ki = k have the same marginal distribu-
tions, as different studies are assumed to measure the
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same underlying biological process. To reflect up-
and down-regulation, we assume z1 has a higher
mean than z0, and z0 has a higher mean than z2. Fi-
nally, as the scales of the marginal distributions are
unknown, only the difference in means between two
latent variables and the ratio of their variances can be
identified, but not their actual means and variances.
Thus, we set z0 to have mean 0 and variance 1. Put-
ting the above together, the model that generates the
dependence structure is

zi;1
zi;2

� �jKi ¼ k e hk ¼ N
μk
μk

� �
;

σ2
k ρkσ

2
k

ρkσ
2
k σ2k

� �� �
ð1Þ

where μ0 = 0, σ0
2 = 1, ρ0 = 0, μ1 > 0 > μ2, 1 > ρk > 0 for

k = 1, 2. Let ui;j≡G zi;j
� � ¼ X2

k¼0
πkΦ zi;j − μk

� �
=σk

� �
,

where Φ(·) is the CDF of the standard normal dis-

tribution. Then our actual observations xi,j are

xi;j ¼ F−1
j ui;j
� �

:

Our model can be parameterized by θ = (π0, π1, π2, μ1,
μ2, σ1, σ1, ρ1, ρ2) and (F1, F2), where F1 and F2 will be
substituted by the empirical distributions if they are un-
known. Thus it is scale-free. The corresponding mixture
likelihood for the data is

L θð Þ ¼
Yn
i¼1

X2
k¼0

πkhk G−1 F1 xi;1
� �� �

;G−1 F2 xi;2
� �� �� �" #

;

where hk is the bivariate normal density function
with parameters μk, σk

2 and ρk. The parameters θ can
be estimated by maximizing the mixture likelihood
using an estimation procedure similar to Li et al
[26], with adaptation to three components. The de-
tailed algorithm is provided in Additional file 1,
Section 1.

Determination of differential expression
Given the parameter θ, the posterior probability that a
gene i is in the k th group can be computed as

pk xi;1; ; xi;2
� � ¼ πkhk G−1 F1 xi;1

� �� �
;G−1 F2 xi;2

� �� �� �X
k¼0;1;2

πkhk G−1 F1 xi;1
� �� �

;G−1 F2 xi;2
� �� �� �

The classification of a gene is determined by the com-
ponent that possesses the highest posterior probability.
To determine the cutoff for DEGs, we follow a selection
procedure similar to the selection based on the IDR (ir-
reproducible discovery rate) criterion in [26] with adap-
tation to three components, as follows:

1. Rank genes from low to high by p0(xi,1, xi,2), i = 1, … n

2. For the i th ordered gene, compute Pr nonDGjl∈Iið Þ ¼X
l∈Ii

p0 xl;1; xl;2
� �

=i, where Ii = {(xl,1, xl,2) : p0(xl,1, xl,2) <

p0(x(i),1, x(i),2)}.
3. For a desired control level α, let imax =max{i :

Pr(nonDEG|l∈ Ii) < α}, then differentially expressed
genes can be selected by selecting the genes
(x(l),1, x(l),2) with l = 1, …, imax. This set of genes will
have an expected rate of nonDEG discoveries no
greater than α.

Pr(nonDEG|l ∈ Ii) represents the expected proportion
of nonDEG genes in the claimed DEGs, when the cutoff
is set at the i th ordered gene.

Properties of this model
This model has several desirable properties as a data in-
tegration method. First, by modelling the two DEG com-
ponents with positive correlation, the model builds in a
strong preference for common directionality of signifi-
cance across studies while not requiring the differential
direction is known a priori. This is desirable, as the
genes with concordant differentiation across studies are
more likely to be real than the discordant ones. Second,
the three-component clustering framework allows our
method to estimate the two tails adaptively according to
the data. When the proportions of up- and down-
regulation are unequal, the asymmetry can be reflected
in the clusters. In contrast, commonly-used meta-
analysis methods, such as Fisher [29], Stouffer [30], and
RankProd [13], implicitly assume that the rejection re-
gions are symmetric on both sides, thus making it likely
to lose power when asymmetry is present. Third, this
model is scale-free, thus it is suitable for combining
measurements on different scales or platforms. In our
simulation and real data analyses, we will compare with
both single-platform DEG detection methods and several
commonly-used meta-analysis methods to illustrate the
effectiveness of our method.

Results and discussion
Simulation studies with violation of model assumptions
We first examine the performance of our approach using
a simple simulation study. In this simulation, the log fold
changes are generated from a model similar to our model
but with some violation of model assumptions. Our goal
is to assess the robustness of our method against violation
of model assumptions and to compare with commonly-
used meta-analysis methods in this scenario.
Here we use model (1) as the basis to simulate the

log fold changes on the two platforms. However, in-
stead of assuming that the log fold change of all the
up-regulated (or down-regulated) genes have the same
distribution as in our model, we allow them to have
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different means and correlations, by letting μk and ρk
(k = 1, 2) drawn from uniform distributions. This set-
ting is more flexible than model (1) and introduces
mild violation to our model assumptions. Here we
choose μ1 ~ unif(0.58, 1.58), μ2 ~ unif(−1.58, 0.58),
ρ1 ~ unif(0.80, 0.88) and ρ2 ~ unif(0.80, 0.88). For each
gene, we obtain a p-value on each platform from a
two-sided z-test for H0 : μ = 0 vs H1 : μ ≠ 0.
To compare our method with commonly-used meta-

analysis methods, we combine the p-values using Fisher’s
method and Stouffer’s method, and combine the log fold
changes using our method and RankProd. RankProd is a
non-parametric statistic that detects items that are con-
sistently highly ranked in a number of lists [13]. Denote
ri,j as the rank of the fold change of the i th gene in the
jth platform and nj as the total number of genes in the jth

platform, RankProd is computed as RPi;j ¼
Y
j¼1;2

ri;j
nj
. A

small value of RP indicates that a gene is consistently
highly ranked across platforms.
We evaluate the performance in four scenarios: (S1)

data with same proportion of up- and down-regulated
DEGs, (S2) data with different proportions of up- and
down-regulated DEGs, (S3) data with a small proportion
of DEGs, and (4) data with low inter-platform consistency.
The parameter setting is shown in Additional file 1:
Table S1. For each parameter setting, we simulate 100
data sets, each of which consists of two replicates
with 5,000 genes on each replicate.

Results of simulation studies with violation of model
assumptions
In all simulations, our estimates for μk and ρk (k = 1, 2) are
close to the means of the corresponding uniform distribu-
tions, and the other estimated parameters are close to the
true parameters (Additional file 1: Table S1). As a guide for
the selection of the signals, the error rate of non-DEG dis-
coveries estimated from our method should be well cali-
brated. To check the calibration, we compare the actual
frequency of false calls (i.e. empirical FDR) with the esti-
mated error rate, Pr(nonDEG|l ∈ Ii). As shown in Fig. 1a
and Additional file 1: Figure S1, our method is well-
calibrated in all the scenarios. In addition, we also evaluate
the trade-off between the numbers of correct and incorrect
calls made at various thresholds for all methods. As shown
in Fig. 1b and Additional file 1: Figure S2, our method
shows the highest discriminative power among all the
methods of comparison. These results indicate that our
method is robust to mild violation of model assumptions.

Real data-based simulation studies
In this simulation, we simulate RNA-seq data and
microarray data based on a real data set, following [31]

and [32], respectively, and compare the performance of
our method with single-platform DEG identification
methods and some commonly-used meta-analysis
methods in this more realistic setting.
To identify DEGs from a single-platform, we use

DEseq for RNA-seq [33] and eBayes for microarray [34].
DEseq is one of the most commonly-used tools for iden-
tifying differentially expressed transcripts in RNA-seq
data. It models the read counts based on a negative
binomial model, with variance and mean linked by a
data-driven local regression, and infers the significance
of differentiation using an approach analogous to the
Fisher’s exact test. eBayes is a popular method for deter-
mining DEGs for microarray data. It estimates mean and
variance of gene expression levels based on an empirical
Bayes framework, and determines the significance of
differentiation according to the empirical Bayes mod-
erated t-statistics and their associated p-values. To
compare our method with commonly-used meta-analysis
methods, we combine the p-values from DEseq and
eBayes using Fisher’s method and Stouffer’s method, and
combine the fold changes using RankProd and our
method.
In an attempt to simulate realistic data, we estimated

the parameters for simulation from a real dataset in
Marioni et al [23], which consists of microarray and
RNA-seq measurements of the same biological samples
from two cell types (kidney and liver), and then simu-
lated the distribution of the gene expression levels on
each platform based on the estimated parameters.

Simulation procedure for real data-based simulation
studies
Here we provide a brief description of the simulation
procedure. A detailed description and parameter settings
can be found in Additional file 1, Section 2. Briefly, our
simulation procedure consists of three parts, namely,
simulation of the distribution of RNA-seq data, simula-
tion of the expression levels of microarray data, and
coupling of RNA-seq and microarray data. The counts
of RNA-seq data are simulated from a negative binomial
model following Kvam et al [31], with the mean param-
eter based on an estimate from the RNA-seq measure-
ments of the kidney/liver samples in [23] and the over
dispersion parameter drawn from a gamma distribution
following Hardcastle and Kelly [35]. The microarray data
is simulated following Xiao et al [32], where both the
gene expression levels and the log-fold changes are sim-
ulated based on the estimates from the microarray mea-
surements of the kidney/liver samples in [23]. After
obtaining the distributions of RNA-seq and microarray
data, the expression level of a gene on each platform
then is generated by sampling the same quantile from
the corresponding distribution.
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Here we evaluate the performance in several scenarios,
in particular, the scenarios when two platforms have
similar versus different data quality, when data quality is
high versus low, and when the proportions of up- and
down-regulated genes are equal versus unequal. For each
scenario, three replicates are simulated under two condi-
tions for each platform, with 10,000 genes for each
replicate. Simulated expression levels then undergo the
standard pre-processing procedure (Additional file 1,
Section 3) prior to the application of DEG detection
methods.

Results of real data-based simulation studies
As the significance levels from different methods may
not be directly comparable, we evaluate the accuracy of
DEG identifications for the top 10 %, 20 % and 30 %
genes ranked by each method. At all three cutoffs, our
method identifies more true DEGs than eBayes and
DEseq. For example, when the cutoff is at 30 %, our
method identifies 2626/3844 = 68.3 % true DEGs,
whereas eBayes and DEseq identify 2508/3844 = 65.4 %
and 2519/3844 = 65.9 %, respectively (Fig. 2). Among the
true DEGs identified by our method, 28 were detected
by our method exclusively. A close examination shows
that the differential expression levels for these genes are
moderate on both platforms; however, they are consist-
ent across platforms (Fig. 3). Because our method not
only takes account of the significance on individual plat-
forms but also the consistency across platforms, these
genes are ranked higher than the genes that are more

significant in a single platform but inconsistent across
platforms.
As shown in Fig. 4 and Additional file 1: Table S2,

when the data consists of similar proportions of up-
and down-regulated genes (Fig. 4a-c), our method
and the other meta-analysis methods perform simi-
larly. However, when the proportions of up- and
down-regulated genes are considerably different (Fig. 4d-f),
our method outperforms all the other methods and
shows the highest area-under-the-curve (AUC) in the ROC
curve (D: AUCour = 0.812 vs AUCother = 0.756-0.796; E:
AUCour = 0.785 vs AUCother = 0.675-0.766; F: AUCour =
0.753 vs AUCother = 0.678-0.733; see Additional file 1:
Table S2 for details). This is because our method is
adaptive to the data and can effectively determine its
rejection region according to the shapes of tails.
One concern in data integration is that integration

may be deteriorated if data from one platform has poor
quality. We therefore investigate how the quality of data
from individual platforms affects the identification by
simulating data with different quality. We consider two
scenarios: the two platforms have similar data quality,
and one platform has lower quality than the other. As
shown in Fig. 4b (symmetric) and e (asymmetric), when
one platform has apparently lower quality than the other,
integrating the two platforms does not necessarily im-
prove the discriminative power over using only the data
from the platform with better quality. However, even in
this scenario, our method (AUC = 0.790 for B and 0.785
for E) still shows a discriminative power that is as
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Fig. 1 Calibration and comparison of discriminative power in the simulation with violation of model assumption. a. The estimated error rate is
compared with the empirical FDR for the simulation setting S1. Results from other simulation settings are similar (Additional file 1: Figure S1). b.
The percentage of correct and incorrect calls at various thresholds for our method, Fisher’s method, Stouffer’s method and RankProd, for the
simulation setting S1. Results from other simulation settings are similar (Additional file 1: Figure S2)
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competitive as the better one of the single-platform
methods (AUC = 0.799 for B and 0.766 for E). When the
two platforms have similar quality (Fig. 4a, c, d and f,
Additional file 1: Table S2), our method shows a more
obvious gain over both single-platform methods regard-
less if the data quality is high or low.

Application to MAQC/SEQC project data
We apply our method to a dataset from MAQC/
SEQC project [3, 12]. In this dataset, the mRNA sam-
ples were generated for universal human reference
RNA (Stratagene) and human brain reference RNA

(Ambion). The gene expression levels of each sample were
measured by microarray and RNA-seq at multiple sites
using multiple commercial platforms on multiple repli-
cates, and were validated by qRT-PCR. Thus this dataset
provides an ideal benchmark for objectively assessing the
performance of our method. Here we use the microarray
data generated using Affymetrix array platform at
Affymetrix and the RNA-seq data generated using
Illumina Hi-seq 2000 platform at BGI. Detailed infor-
mation on the data can be found in [3, 12]
As the features measured by microarray data and

RNA-seq data do not completely overlap, we only
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included features shared by both platforms in our ana-
lysis. After data processing (Additional file 1, Section 3),
we obtained 14546 genes that are measured on both
platforms. Among them, 836 genes were validated by
Taqman PCR.
We ran DEseq and eBayes using three replicates with

their default parameter settings. We then integrated the
p-values from DEseq and eBayes using Fisher’s method
and Stouffer’s method, and integrated the fold change of

the same three replicates across platforms using our ap-
proach and RankProd. Because the significance measures
from these methods are not directly comparable, we
rank the genes according to the significance measure
from each method, and evaluate the Spearman rank cor-
relation between these rankings and the fold change
measured by PCR for the 836 PCR-validated genes in
our comparison. As shown in Table 1, our method
shows the highest rank correlation (0.872) with the fold

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

0.0 0.2 0.4 0.6 0.8 1.0
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

0.0 0.2 0.4 0.6 0.8 1.0
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

False positives

Tr
ue

 p
os

iti
ve

s

Our method
Ebays
DEseq
Fisher
Stouffer
Rankprod

A B C

D E F

Fig. 4 Comparison of discriminative power in the real data-based simulation study. Figures show the percentage of correct and incorrect calls at
various thresholds for six simulation settings. The AUCs are shown in Additional file 1: Table S2. a. 20 % genes are up-regulated and 20 % genes
are down-regulated. Both platforms have high data quality. b. 20 % genes are up-regulated and 20 % genes are down-regulated. One platform
has high data quality and the other platform has low data quality. c. 20 % genes are up-regulated and 20 % genes are down-regulated. Both
platforms have low data quality. d. 10 % genes are up-regulated and 30 % genes are down-regulated. Both platforms have high data quality.
e. 10 % genes are up-regulated and 30 % genes are down-regulated. One platform has high data quality and the other platform has low data
quality. f. 10 % genes are up-regulated and 30 % genes are down-regulated. Both platforms have low data quality

Table 1 Spearman correlation between PCR measured fold change /EST enrichment score and significance of differentiation for
MAQC/SEQC analysis

Spearman correlation Our method DEseq eBayes Fisher Stoufferc Rankprod

Taqman PCRa 0.872 0.761 0.714 0.765 - 0.730

EST enrichment scoreb 0.276 0.111 0.169 0.106 0.201 0.281
aCorrelation is calculated based on the 836 genes that are validated by Taqman PCR
bCorrelation is calculated based on 118 brain specific genes obtained from TiGER database
cCorrelation is not computed for Stouffer method as it generates many p-values at 0
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change measured by PCR, and is substantially higher
than the correlations from either individual platforms or
meta-analysis methods (0.714–0.765). Furthermore, we
calculated the average ranks of the fold change measured
by PCR for top 10, 50 and 100 differentially expressed
genes identified by each method (Table 2). This quantity
measures how well the significance of DEGs and the
PCR fold change correspond to each other in ranks for
top DEGs, which are often of primary scientific interests.
A smaller value of the average rank (i.e. a top rank) indi-
cates a better enrichment of the genes with high PCR
measured fold change among the top DEGs. For the top
10 DEGs, RankProd (avg. rank = 18.2) and our method
(avg. rank = 21.8) show a substantially better enrichment
than all the other methods (avg. rank = 40.5–52.1). For
the top 50 and 100 DEGs, our method (avg. rank = 45.7
and 69.4, respectively) shows the highest enrichment
among all the methods of comparison in both cases
(avg. rank of other methods = 55.2–71.3 and 89.3–99.4,
respectively).
To evaluate the functional relevance of identified

DE genes, we obtained the EST (Expressed se-
quence tag) enrichment score of brain preferentially
expressed genes, which consists of 118 genes specif-
ically expressed in brain, from the TiGER database
(TiGER: http://bioinfo.wilmer.jhu.edu/tiger/db_tissue/
est/brain-index.html). The EST enrichment score re-
flects the specificity of gene expression in a tissue

and is expected to be correlated with the differen-
tial expression levels measured in the experimental
data [36]. Here we calculated the Spearman correlation
between the significance measures assigned by each
method and the TiGER EST enrichment (Table 1).
Though the correlation is low for all the methods
(0.111–0.281), our method and RankProd show the
highest correlation (our: 0.276, RankProd: 0.281, others:
0.111–0.201).

Application to synthetic microRNA data
We next illustrate the usefulness of our method for ana-
lyzing microRNA expression, for which effective sequen-
cing technology is still under development [35]. Here we
apply our method to a dataset consisting of synthetic
microRNA samples with known concentrations, mea-
sured on both microarray and sequencing platforms
[25]. As the amount of RNA is known in this dataset, it
enables us to compare the detected DEGs with the true
DEGs. Note that there is no replicate sample in this
dataset, which is in fact quite common in practice for
RNA-seq studies. It thus imposes challenges for the
DEG detection methods based on a single platform to
produce reliable statistical inference. Integrating infor-
mation across platforms nevertheless may improve the
reliability of DEG detection in this situation.
This dataset consists of two samples, A and B, each of

which is a mixture of synthetic RNA oligos with various
concentrations, including 11 differential gene expression
levels, ranging from −4 to 4. In total, there are 281 genes
with log2 fold change of ±4, ±3 or ±2, 278 genes with
log2 fold change of ±1 or ±0.5, and 185 genes with log2
fold change 0. Detailed experimental design can be
found in [32].
Since no replicates are available, eBayes cannot be

applied, and DEseq can only be used with the single-
replicate option. Consequently, Fisher’s method and

Table 2 Average ranks of PCR measured fold change for top
DEGs identified by different methods

DEGs Our method DEseq eBayes Fisher Rankprod

Top 10 21.8 52.1 40.5 47.4 18.2

Top 50 45.7 57.2 71.3 55.2 56.9

Top 100 69.4 91.5 92.5 89.3 99.4

Small values represent top rankings
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Fig. 5 Comparison of discriminative power in the analysis of synthetic microRNA data. Figures show the percentage of correct and incorrect calls
at various thresholds for two levels of classification stringency. The AUCs are shown in Additional file 1: Table S3. a. Genes with no fold change as
true non-DEGs and the rest as true DEGs. b. Genes with a log2 fold change less than ±0.5 as true non-DEGs and the rest as true DEGs. Fold
changes measured by microarray and RNA-seq are denoted as Fold change_A and Fold change_S, respectively
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Stouffer’s method cannot be applied, due to lack of the
p-values from eBayes. Only our method and RankProd
can still be applied to combine the fold changes across
platforms. Therefore, we only compare the performance
of our method with RankProd but not with Fisher’s
method and Stouffer’s method. To evaluate the gain over
using a single platform, we also compare our method
with the fold change of microarray, the fold change of
RNA-seq, and the p-values from DEseq generated using
the single-replicate option.
Similar to the MAQC/SEQC analysis, we use the rank

correlation between the significance assigned by each
method and true fold changes of RNA oligos, as an assess-
ment of the performance. Our method shows the highest
rank correlation (0.930) among all methods of comparison
(DEseq: 0.888, fold change of RNA-seq: 0.888, fold change
of microarray: 0.840, and RankProd: 0.894).
As true fold changes are known, the sensitivity and

specificity of the identification of DEGs at various
thresholds can be evaluated. Here we consider classifica-
tion of DE and non-DE genes at two levels of stringency.
One treats the genes with identical expression levels in
both samples as true non-DEGs, and the rest as true DEGs;
and the other treats the genes with log 2 fold change less
than ±0.5 as true non-DEGs, and the rest as true DEGs. As
shown in the ROC curve (Fig. 5), our method has the
highest area under the curve (AUC= 0.957 for cutoff = 0;
AUC = 0.978 for cutoff = ±0.5) among all methods of
comparison in both cases (Other methods: AUC =
0.885–0.919 for cutoff = 0 and AUC = 0.927–0.958 for
cutoff = ±0.5, see Additional file 1: Table S3).

Conclusions
In this paper, we present a semi-parametric statistical
model for integrating gene expression profiles across
studies. This method has several desirable properties as
a data integration method. First, it is rank-based, thus is
robust to noise in the data and offers a natural way to
overcome the heterogeneity across datasets, especially
datasets across different platforms. Second, it builds in a
strong preference for common directionality of signifi-
cance across samples, thus allowing genes that have
moderate differential expression levels, but are consist-
ent across studies, to be effectively identified. Third,
comparing with the commonly-used nonparametric
meta-analysis methods, it is adaptive and can reflect the
asymmetry in its rejection regions, when the proportions
of up- and down-regulation are asymmetric.
As shown in our application to integrate gene expres-

sion levels measured on microarray and RNA-seq plat-
forms, our method effectively improved the biological
relevance of the identified DEGs. Therefore, this method
provides researchers a tool that can take advantage of
the gene expression data on different platforms. Though

we only illustrate the integration across microarray and
RNA-seq platforms, this method is generic and can be
applied to integrate rank lists from different sources
in other high-throughput settings. The R code for this
method is available upon request.

Additional file

Additional file 1: Supplementary materials. Section 1: Estimation
algorithm for our model. Section 2: Simulation procedure for the real
data-based simulation study. Section 3: Pre-processing procedure for
MAQC/SEQC data. Section 4: Extension of our model to the case of
more than two samples. Section 5: Tables S1-S3. Section 6: Figure S1-S2.
(PDF 415 kb)
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