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Abstract

Background: Genome-wide association studies (GWAS) have effectively identified genetic factors for many diseases.
Many diseases, including Alzheimer’s disease (AD), have epistatic causes, requiring more sophisticated analyses to
identify groups of variants which together affect phenotype.

Results: Based on the GWAS statistical model, we developed a multi-SNP GWAS analysis to identify pairs of variants
whose common occurrence signaled the Alzheimer’s disease phenotype.

Conclusions: Despite not having sufficient data to demonstrate significance, our preliminary experimentation
identified a high correlation between GRIA3 and HLA-DRB5 (an AD gene). GRIA3 has not been previously reported in
association with AD, but is known to play a role in learning and memory.
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Background
Until recently linkage studies were the best approach to
identify genes responsible for genetic diseases. However,
linkage studies are most successful in monogenic disor-
ders with highly penetrant variants, and were most often
only possible in families. Unfortunately, the majority of
genetic diseases are complex and therefore their genetic
architectures could not be studied with linkage stud-
ies. Following completion of the human genome and the
development of accurate SNP arrays, the Human HapMap
project [1] cataloged the majority of common variants in
the human genome. This catalog of SNPs facilitated the
creation of genome-wide association studies (GWAS) [2].
In a GWAS, the co-occurence of a given SNP and a phe-
notype are assessed. SNPs present (or absent) significantly
more often in individuals with a particular phenotype or
more extreme phenotype, are reported as disease mark-
ers (i.e., genomic variation correlated with a trait, but not
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necessarily causative). GWAS can be used to study both
quantitative and binary phenotypes, and were the first
effective approach for studying the genetics of complex
traits.
In 2005, Haines et al. [3] conducted the first GWAS,

examining statistical significance between single SNPs
and age-related macular degeneration. In the decade
since, the success of this technique has been used to
identify genetic factors associated with dozens of traits
(e.g., coronary heart disease, type-1 diabetes, type-2 dia-
betes, rheumatoid arthritis, Crohn’s disease, bipolar dis-
order, hypertension, Alzheimer’s disease, and others [4]).
The GWAS catalog co-curated by the National Human
Genome Research Institute and the European Bioinfor-
matics Institute contains reported associations for thou-
sands of GWAS [5].
Unfortunately, GWAS have several limitations. First,

most GWASmarkers are thought to be non-functional, so
while the marker may provide insights into regions of the
genome important to a particular phenotype, unless the
marker is functional it typically does not provide infor-
mation about the specific biological mechanisms driving
disease. Second, the majority of GWASmarkers have only
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a very modest effect on risk for disease. Third, despite
thousands of GWAS performed using progressively big-
ger datasets, collectively GWAS SNPs only explain a
portion—often a small portion—of the total estimated
genetic variance for a given trait [6].
A number of explanations exist for the unexplained

genetic variance. One possibility is that gene-gene (i.e.,
epistasis) interactions are a feature of the genetic architec-
ture of these traits. GWAS assume an additive model (i.e.,
SNPs confer disease risk independent of other SNPs) and
therefore cannot be used to detect epistatic interactions.
Numerous approaches have been attempted to identify
epistasis including multifactor dimensionality reduction,
regression (i.e., GWAS with interaction terms), and others
[7], each with different pros and cons. In this manuscript
we present a novel multi-SNP GWAS approach for iden-
tifying epistatic interactions and demonstrate its utility in
Alzheimer’s disease (AD).
AD is the most common cause-of-death with no effec-

tive treatments and has a rapidly increasing incidence
worldwide [8]. Additionally, AD is the ideal phenotype to
use to demonstrate the utility of our approach for two
reasons: 1) epistasis has a role in the genetic architec-
ture of AD [7, 9, 10], and 2) despite very large GWAS
(Table 1) and the identification of several rare SNPs
[11–13], a substantial portion of the genetic variance
remains unexplained [14].

Methods
Dataset
This research used 802 whole genomes (279 con-
trol, 191 case, 332 unknown, and 444 males and 358
females) from the Alzheimer’s Disease Neuroimaging
Intiative (ADNI). The genomes were processed by ADNI
using the Burrows-Wheeler aligner (BWA) [15] and the
best practices of the Genome Analysis Toolkit (GATK)
[16]. Genomes were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early AD. For
up-to-date information, see www.adni-info.org.

Single-SNP GWAS analysis
Single-SNP GWAS uses a modified form of linkage dis-
equilibrium (LD) to infer relationships between single
SNPs and observed phenotypes. In order to understand
this approach, it is necessary to understand LD and how
it is usually applied in genetic analyses. LD is a measure
of how often two genomic features are inherited together

Table 1 Genes most highly associated with Alzheimer’s disease

Gene dbSNP ID Chr:Pos

APOE e2 rs7412 19:45412078

APOE e4 rs429358 19:45411940

CR1 rs6656401 1:207692048

BIN1 rs6733839 2:127892809

CD2AP rs10948363 6:47487761

EPHA1 rs11771145 7:143110761

CLU rs9331896 8:27467685

MS4A6A rs983392 11:59923507

MS4A4E rs670139 11:59971794

PICALM rs10792832 11:85867874

ABCA7 rs4147929 19:1063442

CD33 rs3865444 19:51727961

HLA-DRB5/HLA-DRB1 rs9271192 6:32578529

PTK2B rs28834970 8:27195120

SORL1 rs11218343 11:121435586

SLC24A4/RIN3 rs10498633 14:92926951

DSG2 rs8093731 18:29088957

INPP5D rs35349669 2:234068475

MEF2C rs190982 5:88223419

NME8 rs2718058 7:37841533

ZCWPW1 rs1476679 7:100004445

CELF1 rs10838725 11:47557870

FERMT2 rs17125944 14:53400628

CASS4 rs7274581 20:55018259

We only included SNPs that are consistently replicated in AD GWAS studies
(Lambert et al. [17] and http://www.AlzGene.org)

within a population of interest, compared to how often
they “should” be inherited together (i.e., the difference
between the observed co-occurence of two SNPs and the
expected co-occurence of the two SNPs). LD D, the co-
occurrence of events (SNPs) A1 and B1 (as opposed to A2
and B2, respectively) is calculated as:

D = p(A1 ∧ B1) − p(A1) ∗ p(B1)

In the simple case often seen in genetics, these events
are different nucleotides (A, C, T, or G) that exist at spe-
cific positions in the genome. We would like our LD to
reflect the likelihood of observing both SNPs together
(e.g., if A1 occurs then we know confidently that B1 also
occurs, and vice versa). Unfortunately, D does not pro-
vide this information. However, a second measure of LD,
r2, based on D, is a measure of how closely related the
two events (SNPs) are. A measure of r2 = 1.0 means they
provide the exact same information, or always co-occur.D

http://www.AlzGene.org
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is converted to the Pearson correlation coefficient r by the
following:

r = D/
√
p(A1) ∗ p(A2) ∗ p(B1) ∗ p(B2)

In GWAS, LD is used to select which SNPs from the
genome to analyze. For example, if two SNPs provide
the exact same information (i.e., they always or almost
always are inherited together), then only one of the SNPs is
analyzed. This reduces the total number of tests (i.e., pre-
serves statistical power) by eliminating redundant tests.
In our research, rather than using p-values from a

regression to assess the relationship between a SNP (or
multiple SNPs) and AD case/control status (i.e., which
SNPs are correlated with AD), we calculated r2 between
each SNP in the dataset and AD case/control status. In
this approach, the two events we are measuring are the
co-occurence of a SNP and AD case/control status (i.e.,
do case status and a particular SNP co-occur with high
confidence). We accomplished this by writing our own
algorithm that computes LD between each SNP and AD
case/control status.
An outline of our single-SNP GWAS algorithm is given

in Algorithm 1. Note that there are multiple genotype
values of Ai because there are two haplotypes. The com-
putation of Pearson’s r is as described above given the
computed probabilities. This approach on a set of individ-
uals, S, and a set of SNPs, L, runs in O(‖S‖ × ‖L‖) time
and with O(1) space.

Algorithm 1 SINGLE-SNP GWAS
Input: Genotypes for a set of SNP loci, L and phenotypes

for a set of individuals, S
1: for SNP location l in L do
2: initialize Counts
3: for individual s ∈ S do
4: Bj ← phenotype of s
5: for genotype Ai at l do
6: increment Counts(Ai,Bj)
7: end for
8: end for
9: compute p(Ai ∧ Bj) for all values of Ai, Bj

10: compute p(Ai) and p(Bj) for all values of Ai, Bj
11: D ← p(A1 ∧ B1) − (p(A1) × p(B1))
12: compute and report Pearson’s r
13: end for

Multi-SNP GWAS analysis
To extend to multi-SNP GWAS, we calculate LD between
two SNPs and a phenotype. Comparing the co-occurence
of two SNPs and a trait results in eight different
calculations for D of the form:

Di, j, k = p(Ai ∧ Bj ∧ Ck) − p(AiBj) ∗ p(Ck)

Unlike in the single-SNP case, the magnitude of D may
differ between each of the eight comparisons. Because we
are concerned with the possibility of a specific combina-
tion of alleles impacting the trait, we take the maximum
among all eight values forD. Next we calculate r2 using the
specific combination of alleles as one event and any other
combination (three possibilities, in the two SNP case) as
the alternate outcome for that event:

di, j, k =
√
p(AiBj) ∗ (1 − p(AiBj)) ∗ p(C1) ∗ p(C2)

This results in the following equation for r:

r = maxi, j, k(Di, j, k/di, j, k)

To calculate the correlation of all SNPs with every other
SNP would have exceeded our computational resources.
We therefore calculated correlations between all SNPs
and a subset of the SNPs that were located in genes
with strongest and most consistent associations with AD
(Table 1). Even this matrix was too large to fit into mem-
ory, so we computed subsections of the matrix in parallel
on different machines. We found 2101 pairs of SNPs with
an r2 correlation greater than 0.04. These we plotted using
R(Studio) to look for genes that had a (relatively) high
correlation with other SNPs, as the relationship between
two genes could provide important insights into disease
processes.

Algorithm 2MULTI-SNP PARALLELIZED GWAS
Input: Genotypes for a set of SNP loci, L and phenotypes

for a set of individuals, S, and SNP IDs START, END
1: for SNP location l in Lwithin partition {START, END}

do
2: for SNP locationm in L do
3: initialize Counts
4: for individual s ∈ S do
5: Ck ← phenotype of s
6: for genotype Ai at l do
7: for genotype Bi atm do
8: increment Counts(Ai,Bj,Ck)
9: end for

10: end for
11: end for
12: compute p(Ai ∧ Bj ∧ Ck) for all values of Ai,

Bj, Ck
13: compute p(Ai), p(Bj), and p(Ck) for all val-

ues of Ai, Bj, Ck
14: D ← p(A1∧B1∧Ck)−(p(A1∧Bj)×p(Ck))
15: compute and report Pearson’s r
16: end for
17: end for
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An outline of our multi-SNP parallelized GWAS algo-
rithm is given in Algorithm 2. The required START and
END allow the task to be partitioned and run in parallel.
There are multiple genotype values of Ai and Bj because
there are two haplotypes. Our solution on on a set of indi-
viduals, S, and a set of SNPs, L, runs in O(‖S‖ × ‖L‖2/k)
time and withO(‖L‖) space for each of k parallel runs (for
our run k = 201 with each run allocated 32GB of RAM
and a wall time of 6 h).

Results
Single-SNP GWAS analysis
We knew in advance that our dataset would be insuffi-
cient to achieve statistical significance and present our
results as a demonstration of how it could be used in
a larger dataset. Although Manhattan Plots are usually
calculated using p-values, we used the r2 values to com-
pare different SNPs (calculated using our algorithm).

For each chromosome we computed and plotted the
r2 of each SNP in all gene-coding regions (regardless
of previous implication in AD). This analysis provided
a comparison to traditional GWAS analyses as well
as a comparison to our subsequent multi-SNP analysis
(Fig. 1).
In this demonstration of our approach, we report 29

different SNPs with r2 ≥ 0.025 (a very conservative cut-
off, which corresponds to a p = 1.578e − 5 (Fig. 2))
in 14 genes (Table 2). Of these 14 genes, we found 3
(APOE, TOMM40, and PVRL2) that have been previously
implicated in AD.

Multi-SNP GWAS analysis
We calculated correlations between all SNPs and genic
SNPs located in genes previously associated with AD (i.e.
Table 1), without regard to minor allele frequency (i.e.
included both rare and common SNPs). We selected 0.04
as a cutoff for the multi-SNP GWAS analysis (Fig. 3). Of

Fig. 1 Squared Pearson’s coefficient for all SNPS in gene-coding regions. Note the outlying values in chromosome 19 which correspond to the
regions of the APOE_e2/3/4 and PVRL2 gene-coding regions
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Fig. 2 Single-SNP r2 distribution. Histogram reflecting the frequency of binned r2 values or correlations between single SNPs and AD phenotype

4 million randomly selected SNPs from the distribution,
only 3 had r2 ≥ 0.04 (p = 7.501e − 7). In practice, a
Bonferroni correction could be performed by choosing
different r2 cutoffs based on the corrected alpha.We iden-
tified 192 pairs correlated with AD with an r2 ≥ 0.04.
Additional file 1 lists the AD SNP together with the non-
AD SNP and the r2 correlation with the AD phenotype.
The table is sorted by r2 value (most to least significant).
For each pair of genes, only SNP pair with the highest r2
value was included. The final column indicates how many
total significant SNP pairs were found for the given pair
of genes. For example, the highest correlation had an r2
value of 0.0730273 and was found between rs72508453
(in AD gene HLA-DRB5) and a SNP on chromosome 16
at position 6110138 (in non-AD gene RP11-509E10.1).
There were 15 significant SNP pairs between these
two genes. This could suggest an epistatic relationship
between these two genes that is correlated with the AD
phenotype.
To visualize our results, we plotted the correlation of

AD SNPs (on the X axis) against all genic SNPs (on

the Y axis) in Fig. 4. Only SNP pairs with significant r2
values are shown. Plotting the significant pairs revealed
two very clear bands, and an additional three bands
of interest. A vertical band indicates that an AD gene
has significant epistatic interaction with other non-
AD genes. The two clearest bands correspond with
SNPs in HLA-DRB5/HLA-DRB1 and FERMT2, the other
three bands correspond with SNPs in INPP5D, SORL1,
and RIN3/SLC24A4. All but two known AD genes
(MS4A6A and CD33) had correlated SNP pairs. 12 dif-
ferent non-AD genes had 44 or more correlated SNP
pairings.
Among the 10 SNP pairs with strongest correlation, half

of the pairings include a SNP from HLA-DRB5, two from
INPP5D, two from FERMT2, and one from PTK2B. All
but one of the SNPs from the top 10 pairs mentioned
comes from a unique SNP with no prior reported AD
involvement. Among the top 10, ELF4 had two SNPs with
significant pairings. The first (rs6637686) was correlated
with rs78623109 in FERMT2. The second (rs3788847) was
correlated with rs377610860 in PTK2B.
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Table 2 SNPs with r2 ≥ 0.025

Gene Chr:Pos r^2

KHDRBS2KHDRBS2 6:62728214 0.027466

KHDRBS2 6:62728218 0.0318925

CBWD1 9:136147 0.0306714

RP11-347H15.1 11:50136388 0.0360252

RP11-886D15.1 11:104457155 0.0313399

C12orf23 12:107350959 0.0253392

RP11-220C2.1 17:31004608 0.0258624

NFATC1 18:77243594 0.0269173

ABHD17A 19:1879687 0.0336168

PVRL2 19:45392254 0.0295325

TOMM40 19:45406673 0.0298293

APOE 19:45410002 0.0415463

APOE 19:45411941 0.0553697

APOC1 19:45418790 0.0289349

APOC1 19:45421254 0.0340441

APOC1 19:45422160 0.0425822

RP11-265P11.1 X:39085516 0.0293786

RP11-265P11.1 X:39086096 0.0301775

RP11-265P11.1 X:39086353 0.0288563

RP11-265P11.1 X:39098097 0.031864

GS1-256O22.5 X:142421475 0.0288961

GS1-256O22.5 X:142422021 0.0254872

GS1-256O22.5 X:142426750 0.0275156

GS1-256O22.5 X:142429074 0.0276677

GS1-256O22.5 X:142430401 0.026733

GS1-256O22.5 X:142439000 0.0268576

UBL4A X:153713451 0.0260031

UBL4A X:153713787 0.0253136

UBL4A X:153714030 0.0259109

Discussion
Although our sample size is too small to identify
statistically significant correlations, this work demon-
strates the utility of taking a linkage disequilibrium
approach in our single- and multi-SNP GWAS. First,
we identified APOE as an important AD gene in
the single-SNP GWAS using our new approach. This
is hardly novel as two different APOE SNPs, rs7412
and rs429358, are the most established genetic pro-
tective/risk factors for AD [8]. However, it is signifi-
cant because the APOE effect is strong enough that
we would expect to detect the signal in even a small
dataset. In contrast, all of the other known variations
that affect risk for AD are either very rare (PLD3

[11], APP [13], TREM2 [12], etc.), or have very small
effect sizes [17]. Consequently, because of our sample
size it is not surprising that we did not detect any
other Results of the AD markers in the single-SNP
GWAS.
Next, we applied our multi-SNP GWAS to identify

pairs of SNPs jointly correlated with AD. In principle,
epistatic interactions can exist between two genes that
individually are not correlated with disease. In this study
we tested the pairing of each genic SNP in known AD
genes with every other SNP in the dataset. In this anal-
ysis there were five strong bands corresponding with
AD genes with a large number of identified SNPxSNP
pairings.
Among the 10 strongest correlations, ELF4 had two

correlated SNPs (one with FERMT2 and one with HLA-
DRB5). ELF4 (E74-like factor 4) is a transcription factor
involved in immunity and cell cycle control [18–20]. The
function of FERMT2 is unknown. However, HLA-DRB5
has a direct role in immunity [21]. From a biological
standpoint, an interaction between HLA-DRB5 and ELF4
makes sense, and the immune system has a known role in
AD [22].
GRIA3 (glutamate receptor, ionotropc, ampa 3) is

another gene with SNPs of potential interest. A SNP
in GRIA3 (rs7061304) was the second strongest cor-
relation in our analyses (paired with rs67588672 in
HLA-DRB5), and GRIA3 is among the non AD genes
with the highest number of correlations. GRIA3 is a
glutamate receptor. Glutamate receptors are the pri-
mary neurotransmitter receptors in human brains and
GRIA3 specifically has a role in learning and mem-
ory. Furthermore, GRIA3 has been implicated in numer-
ous disorders in the brain including bipolar disorder,
mental retardation, and encephalopathy with epilep-
tic seizures (Rasmussen encephalitis) [23, 24]. Finally,
mutations in GRIA3 have been associated with cogni-
tive impairment [25]. Although GRIA3 has not been
associated with AD, glutamate receptors have been
studied (including members in the same family of
genes as GRIA3) for their effect on Alzheimer’s dis-
ease based on the hypothesis that malfunction of glu-
tamate receptors leads to AD-specific cell loss [26].
When considering the function of GRIA3, especially
in relationship with a known AD SNP (HLA-DRB5),
GRIA3 is an attractive candidate gene for further
studies.

Conclusions
In summary, we developed a novel multi-SNP GWAS
method and demonstrated its utility in an AD dataset.
Using this approach we identified potential epistatic
interactions that affect risk for AD. GRIA3, in par-
ticular, is especially intriguing and warrants followup
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Fig. 3Multi-SNP r2 distribution. Histogram reflecting the frequency of binned r2 values or correlations between pairs of SNPs and AD phenotype

studies in larger datasets. Due to the difficulty iden-
tifying epistatic interactions, relatively few interactions
are known. Future work will focus on developing
an appropriate dataset with experimentally validated
epistatic interactions for testing new models, integrating

known biology of genes in identified interactions to
identify mechanisms of synergistic functionality, and
modification of the approach to more appropriately
ascbribe statistical significance (i.e., p-values) to identified
interactions.

Fig. 4 Results of the Multi-SNP GWAS analysis. SNP pairs with r2 values >0.04 were plotted. SNP ID is based on SNP order, not SNP position. For
genes with several correlated SNP pairs, gene names roughly indicate corresponding SNP IDs (see Additional file 1 for more detailed information).
On the X-axis, any AD gene that had correlated SNP pairings is labeled, and on the y-axis any gene that had 44 or more correlated SNP pairings is
labeled. To avoid plotting all SNP positions, SNP IDs were used. SNP IDs reflect the same ordering as the associated SNP positions but are limited to
include only analyzed, gene-coding SNPs
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Additional file 1: Table 3. Gene pairs with SNP pairs having r2 ≥ 0.04.
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