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Abstract

Background: Identifying molecular signatures of disease phenotypes is studied using two mainstream approaches:
(i) Predictive modeling methods such as linear classification and regression algorithms are used to find signatures
predictive of phenotypes from genomic data, which may not be robust due to limited sample size or highly correlated
nature of genomic data. (i) Gene set analysis methods are used to find gene sets on which phenotypes are linearly
dependent by bringing prior biological knowledge into the analysis, which may not capture more complex nonlinear
dependencies. Thus, formulating an integrated model of gene set analysis and nonlinear predictive modeling is of

great practical importance.

Results: In this study, we propose a Bayesian binary classification framework to integrate gene set analysis and
nonlinear predictive modeling. We then generalize this formulation to multitask learning setting to model multiple
related datasets conjointly. Our main novelty is the probabilistic nonlinear formulation that enables us to robustly
capture nonlinear dependencies between genomic data and phenotype even with small sample sizes. We
demonstrate the performance of our algorithms using repeated random subsampling validation experiments on two
cancer and two tuberculosis datasets by predicting important disease phenotypes from genome-wide gene

expression data.

Conclusions: We are able to obtain comparable or even better predictive performance than a baseline Bayesian
nonlinear algorithm and to identify sparse sets of relevant genes and gene sets on all datasets. We also show that our
multitask learning formulation enables us to further improve the generalization performance and to better
understand biological processes behind disease phenotypes.

Keywords: Gene set analysis, Nonlinear predictive modeling, Disease phenotypes, Multiple kernel learning, Cancer,

Tuberculosis

Background

Predictive modeling is frequently used to find molecu-
lar signatures of disease phenotypes from genomic data,
which helps us better understand underlying biological
processes behind phenotypes and reduce data acquisition
cost for future clinical samples by doing targeted profiling
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instead of genome-wide screens. To this aim, supervised
machine learning methods such as linear classification
and regression algorithms are trained to predict disease
phenotypes, and features with relatively higher impor-
tance values (e.g. features with larger magnitude weights)
in these parametric models are included into the signa-
ture. However, as illustrated by existing studies [1, 2],
molecular signatures identified by such algorithms may
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not be robust due to small sample size or highly correlated
nature of genomic data.

Gene set analysis methods try to identify gene sets on
which disease phenotypes are dependent by calculating an
enrichment score for each gene and transforming these
scores into gene set scores using a summarization pro-
cedure [3]. The main advantage of these approaches is
the ability to bring prior biological knowledge into the
analysis in the form of biological pathways or sets of
genes with similar biological functions [4], leading to more
robust and clinically interpretable results than predictive
modeling approaches. However, they usually assume lin-
ear dependencies between genomic data and phenotype,
which may not reflect the underlying biology of disease,
and have difficulties in using very small or large gene sets
in the analysis.

To benefit from the best of both worlds, integrating gene
set analysis and predictive modeling is already considered
in many existing studies [5-7], which modify linear clas-
sification and regression algorithms to include gene set
information while doing feature selection for molecular
signature extraction. Even though this family of methods
capture dependencies between genes, they still fail to cap-
ture nonlinear dependencies between genomic data and
phenotype.

We suggest to integrate these two components using a
nonlinear framework by extending our earlier Bayesian
formulation [8]. Here, we develop a novel Bayesian mul-
tiple kernel learning algorithm, which trains a binary
classifier with a sparse set of active gene sets using a
sparsity-inducing prior, i.e. the spike and slab prior [9].
Using gene sets within a probabilistic formulation helps
us identify more robust signatures even with small sample
sizes. Using a kernel-based formulation enables us to cap-
ture nonlinear dependencies between genomic data and
phenotype, and to use overlapping gene sets and gene sets
with different sizes without any major concern. We also
generalize our proposed formulation to multitask learning
setting to model multiple related datasets (e.g. different
patient cohorts profiled against the same phenotype) con-
jointly, leading to better predictive performance and more
robust molecular signatures. To the best of our knowl-
edge, [10] provides the first joint formulation of gene set
analysis and nonlinear predictive modeling, which per-
forms a survival analysis on breast cancer patients using
both clinical and genomic data, using an existing discrim-
inative multiple kernel learning algorithm. However, our
approach has important advantages over their method:
(i) more robustness on clinical datasets with small sample
size due to its probabilistic nature, (ii) its ability to perform
automatic model selection (e.g. determining the sparsity
level of kernel weights) due to its fully Bayesian inference
mechanism and (iii) its ability to model multiple related
datasets conjointly due to its multitask learning variant.
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We perform repeated random subsampling validation
experiments on two cancer and two tuberculosis datasets
to demonstrate the better predictive performance of our
two algorithms over a baseline Bayesian nonlinear algo-
rithm and to show the biological relevance of the genes
and gene sets selected to disease phenotypes modeled.

Materials

In this study, we use two cancer and two tuberculosis
datasets, where we solve binary classification problems
to predict phenotype values from genomic data and to
extract molecular signatures of disease phenotypes.

Diagnosis of micro-satellite instability in colorectal and
endometrial carcinomas

Micro-satellite instability is a hypermutable phenotype
caused by the loss of DNA mismatch repair activity. It
is frequently observed in several tumor types such as
colorectal, endometrial, gastric, ovarian and sebaceous
carcinomas [11]. Tumors with micro-satellite instability
do not respond to chemotherapeutic strategies developed
for micro-satellite stable tumors, leading to its clinical
importance. That is why we address the problem of pre-
dicting micro-satellite instability status of cancer patients
from their gene expression data. We use two publicly
available datasets provided by ‘the Cancer Genome Atlas’
(TCGA) consortium: (i) ‘colon and rectum adenocarci-
noma’ (COADREAD) patients [12] and (ii) ‘uterine corpus
endometrial carcinoma’ (UCEC) patients [13].

The phenotype values of cancer patients for both
datasets are downloaded from the TCGA website
(https://tcga-data.nci.nih.gov), which groups the patients
into three categories: (i) ‘micro-satellite instability
high’ (MSI-H), (ii) ‘micro-satellite instability low’ (MSI-L)
and (iii) ‘micro-satellite stable’ (MSS). The prepro-
cessed genomic characterizations of primary tumors
from the patients (ie. mRNA gene expression) are
downloaded from https://www.synapse.org/#!Synapse:
syn300013, where 20,530 normalized gene expression
intensities are provided for each profiled primary tumor.
We remove the patients with missing phenotype value
or genomic data from further analysis. At the end, there
are 261 and 330 patients with available phenotype value
and genomic data for COADREAD and UCEC datasets,
respectively. Table 1 summarizes the final datasets by
listing the numbers of patients in each category together
with the total number of patients.

Diagnosis of tuberculosis in adult and pediatric individuals
Tuberculosis is responsible for 1.5 million deaths in 2013
according to the World Health Organization, which makes
it the second greatest killer due to a single infectious
agent after HIV. It is also the leading cause of death for
HIV-infected people. Its diagnosis is currently based on
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Table 1 Summary of two cancer datasets

Number of patients

Dataset MSI-H MSI-L MSS Total
COADREAD 37 43 181 261
UCEC 108 27 195 330

MSI-H Micro-satellite instability high, MSI-L Micro-satellite instability low,
MSS Micro-satellite stable

clinical and radiological features, sputum microscopy and
tuberculin skin testing, which usually give false results
in HIV-infected individuals [14]. New clinical diagnos-
tic tests, especially for resource poor settings such as
low-income countries with high rates of HIV, are needed
to identify tuberculosis cases correctly for proper treat-
ment. That is why we address the problem of predicting
tuberculosis status of individuals from genome-wide RNA
expression in host blood. We use two publicly available
datasets of HIV-infected and -uninfected individuals from
South Africa and Malawi: (i) adult individuals (ADULT)
[14] and (ii) pediatric individuals (PEDIATRIC) [15].

The phenotype values and the genomic data for ADULT
and PEDIATRIC datasets are downloaded from NCBI’s
Gene Expression Omnibus using GEO Series accession
numbers GSE37250 and GSE39940, respectively, where
the individuals are grouped into three categories: (i) ‘active
tuberculosis’ (ATB), (ii) ‘latent tuberculosis infection’
(LTBI) and (iii) ‘other disease’ (OD). These repositories
contain background subtracted and quantile normalized
intensities of 47323 probes for each individual. There
are 537 and 334 individuals with available phenotype
and genomic data for ADULT and PEDIATRIC datasets,
respectively. Table 2 summarizes the datasets by listing the
numbers of individuals in each category together with the
total number of individuals.

Methods

We consider the problem of predicting phenotype val-
ues from genomic data using classification algorithms.
Instead of training classifiers that use all available fea-
tures, we want to develop classifiers that use very few but
biologically relevant input features to identify a molec-
ular signature of the phenotype and to reduce the data
acquisition cost for test samples. However, the molecular
signatures identified from, for example, gene expression

Table 2 Summary of two tuberculosis datasets

Number of individuals

Dataset ATB LTBI oD Total
ADULT 195 167 175 537
PEDIATRIC 1 54 169 334

ATB Active tuberculosis, LTBI Latent tuberculosis infection, OD Other disease
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data are not robust when we have limited training data
[1, 2]. In such cases, we obtain different molecular signa-
tures from different subsets of the same training set due
to highly correlated nature of data, which makes knowl-
edge extraction quite difficult. Instead, we can use our
prior biological knowledge to group the input features and
pick the relevant groups that are predictive of the pheno-
type while training the classification algorithm. We first
discuss our proposed method that can learn a classifier
and identify predictive gene sets simultaneously on a sin-
gle dataset. We then explain how we extend our method to
model multiple related datasets by identifying a common
set of predictive gene sets across them.

Sparse Bayesian multiple kernel learning

We formulate the prediction task as a binary classification
problem defined on the genomic data, denoted as domain
X, and the phenotype, denoted as domain ). We are given
an independent and identically distributed sample {x; €
X}f\il and a class label vector y = {y; € y}fil, where N
is the number of data points, and V = {—1,+1}. We are
also given a list of gene sets {Im}l};:l, which encode our
prior biological knowledge in terms of gene names, where
I list the names of genes in the gene set m, which may be
a set of genes from a biological pathway or a set of genes
with similar biological functions, and P is the number of
gene sets.

We choose to develop a nonlinear classifier to predict
phenotype from genomic data using a kernel-based for-
mulation due to its three main advantages [16]: (i) We can
learn robust classifiers for tasks with very high dimen-
sional representations such as genomic data and small
sample size (i.e. large p, small »). (ii) We can learn bet-
ter classifiers using nonlinear kernels such as the Gaussian
kernel (i.e. kernel trick). (iii) We can use domain-specific
kernels (e.g. graph and tree kernels for structured objects)
to better capture the underlying biological processes [17].
To calculate similarities between the data points, we have
multiple kernel functions defined over gene sets, namely,
{kp: X x X — R}I;,:p which are used to calculate the
kernel matrices {Km}I,:,=1~ For each gene set, the corre-
sponding kernel ki, (x;, %j|Z,,) considers only the features
extracted from or related to the genes in Z,,. We choose
to learn a weighted combination of the input kernels
{K,, }I;l: 1 while training a binary classifier, which is known
as multiple kernel learning [18], by extending our earlier
Bayesian formulation [8] with a sparsity-inducing prior on
the kernel weights. Figure 1 gives a schematic description
of the proposed model.

Probabilistic model

Our proposed probabilistic model, called ‘sparse Bayesian
multiple kernel learning’ (SBMKL), has three main parts:
(i) finding kernel-specific latent variables using the same
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Fig. 1 Schematic description of sparse Bayesian multiple kernel
learning. For each gene set, the corresponding kernel considers only
the features extracted from or related to the genes in this gene set.
We then learn a weighted sparse combination of these kernels while
training a binary classifier to predict the phenotype values

set of sample weights over the input kernels, (ii) assigning
sparse weights to these latent variables using the spike and
slab prior [9] and (iii) generating predicted outputs using
the latent variables and these sparse weights together with
a bias parameter.

The first part has the following distributional assump-
tions:

Ai ~ Gamma(Az; @, Bi) Vi
ailA; ~ Normal (a,'; 0, )»i_l) Vi

g"|a, ky,,; ~ Normal (gim;a—rkm,,-, 02) Y(m, i),

g

where the superscript indexes the rows, the subscript
indexes the columns, Normal(:; u, X) represents the nor-
mal distribution with the mean vector g and the covari-
ance matrix ¥, and Gamma(-;«, 8) denotes the gamma
distribution with the shape parameter o and the scale
parameter 8. We generate the latent variables g for each
input kernel K,,, using the same set of sample weights a.
Note that we need to use a small noise parameter o, while
generating the latent variables to better generalize to test
data points.
The second part has the following distributional
assumptions:
k ~ Beta(k; §ic, Nic)
Smlic ~ Bernoulli(s,,; ) Vm
o ~ Gamma(w; &y, Bw)
em|w ~ Normal (em; 0, w_l) VYm,

where Beta(+; ¢, n) denotes the beta distribution with the
shape parameters ¢ and 7, and Bernoulli(-; ) represents
the Bernoulli distribution with the success probability
parameter 7. We generate a binary indicator variable s,
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and a normally distributed weight e, for each input ker-
nel. The product of these two variables s,,ey, is a simple
parameterization of the spike and slab prior, which is more
amenable to approximate inference.

The third part has the following distributional assump-
tions:

y ~ Gamma(y;ay, B)
bly ~ Normal(b;0,y 1)

filb,e,s,g; ~ Normal (ﬁ; (so e)Tgi + b, 1) Vi
yilfi ~ Kronecker(f;y; > v) Vi,

where o represents the Hadamard product, and
Kronecker(-) denotes the Kronecker delta function that
returns 1 if its argument is true and 0 otherwise. The
predicted outputs f, similar to the discriminant outputs
in support vector machines, are introduced to make the
inference procedures efficient [19]. The nonnegative
margin parameter v is introduced to resolve the scaling
ambiguity and to place a low-density region between
two classes, similar to the margin idea in support vector
machines, which is generally used for semi-supervised
learning [20].

Figure 2 illustrates the proposed probabilistic model for
binary classification with a graphical model.

Inference using variational Bayes

We need to infer the posterior distribution over the model
parameters and the latent variables, which we denote
as ® = {A,a,G,k,s w,ey,b,f}, given the input kernel
matrices {Km}ﬁ,:1 and the class labels y to find the pre-
dictive distribution for test data points. Unfortunately,
exact inference for our proposed probabilistic model is
intractable. Instead of using a computationally expensive

OO
OROS
O OO0

Fig. 2 Graphical model of sparse Bayesian multiple kernel learning.
Random variables are shown as empty circles, whereas observed
variables are shown as filled circles. Hyper-parameters are ignored for
simplicity

~
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Gibbs sampling approach [21], we choose to perform vari-
ational inference, which maximizes a lower bound on
the marginal likelihood using an ensemble of factored
posteriors to infer the joint parameter distribution [22].

We approximate the posterior distribution over the
model parameters and the latent variables by a variational
distribution:

pOIKu_1,9) ~ q(©),

where we assume that the variational distribution has
a simpler form than the posterior distribution to make
inference tractable. The inference problem can be defined
as finding the nearest variational distribution to the pos-
terior distribution with respect to a distance function.
We perform mean-field variational Bayes, which mea-
sures the distance between distributions g and p using
‘the Kullback-Leibler divergence’ denoted as KL(g||p).
We can decompose the log evidence as

P
logp(yHKW’}I;l:l) :/Q(®) log%d®
q(®)
L(q)
P (OHK)P_1y)
—q(©) log———— =240,
+/ q(0) log 76
KL(llp)

where we assume without loss of generality that all model
parameters and latent variables are continuous variables,
and see that minimizing K L(¢q||p) amounts to maximizing
the lower bound L(g).

We start by writing ¢(®) as a factorized approximation:

q(0) = qM)q(a)q(G)q(k)q(s)g(w)qlels)q(y)qb)q(f),

where we couple the weights e with the binary indicator
variables s due to their strong correlation. Note that we
choose not to have the factorization as g(e)g(s) because
it gives a unimodal distribution, but the true posterior
distribution may have exponentially many modes. To cap-
ture this multimodal structure, we choose to formulate
the factorization as g(e|s)q(s), which can be approxi-
mated efficiently [23]. We then write £(g) in the form of
expectations:

L(q) = Eqo)[1og p(®,y|{Kp};,—1)] ~Eqe) [ log 4(®)],
where we iteratively maximize £(g) with respect to each

factor until convergence. The approximate posterior dis-
tribution of a specific factor t can be found as

q(1) o exp (Egone) [logp (8, 71{Km}h—1)]) -
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Inference details
We define the factors for the first part of our probabilistic
model as

N

q) = [ | Gamma(r; e (20), B(1)
i=1

q(a) = Normal(a; u(a), X(a))

N
q(G) = 1_[ Normal(g; u(g;), (g,)),

i=1

where «a(-), (), u(-), and X(-) denote the shape
parameter, the scale parameter, the mean vector and the
covariance matrix of their arguments, respectively. The
approximate posterior distributions can be updated as

a(h) = a5 +1/2
B = (1B + (ad)/2) "

p -1
Y(a) = (diag(m) +o, 2y KmK;)

m=1

P
(@) = % (a) (ag—z > 1<m<<g’”)T>)

m=1
-1
2(@) = (o7 1+ (s0oe)s00))
1@ = 2@ (o ki - kel (@)
+{fi)isoe) — (b)(soe)),

where (/(-)) denotes the posterior expectation as usual,
ie. Eq(.)[l’l(-)].

The factors for the second part of our probabilistic
model are defined as

q(k) = Beta(ic; £ (k), n(x))
q(s) = ﬁ Bernoulli(s;,; 77 (S1,1))
q(w) = Z;nma(w; a(w), f(@))
qlels) = ]ﬁl Normal(ey [$y; (4 (emlsm), Z (€msm))

m=1

where ¢(-), n(-) and 7 (-) denote the shape parameters and
the success probability parameter of their arguments. We
can update the approximate posterior distributions as
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P
L) =G+ Y (sm)

m=1

P
() =1 +P =Y (sm)

m=1
7T(sm) = 1/(1 + exp(—74))
a(w) =a, +P/2

P -1
Bw) = (1//3w + (1= sp) (€}, 10) + <sm><eﬁ,|1>)/2>

m=1
S(eml0) = 1/(w)
1(em|0) = 0
S(emll) = 1/((w) + (g"(@™ ")

N
HICHINDY [((ﬁ)—(bmg{”)—

plemll) =
i=1

D s ted) (gig™) :| ,

I#m

where the auxiliary variable r,, is defined as

1
£ >— ~(e 1" @)
—K 2
N

+ (eml )Y | () — (b)) & — D (s el (gle™)

i=1 I#m

Ty = <Iog i

We define the factors for the third part of our probabilistic
model as

= Gamma(y; a(y), B(y))
= Normal(b; u(b), (b))

q(y)
q(b)

N
q(f) = 1_[ TruncatedNormal(f;; w(f}), (), o (1)),

i=1

where TruncatedNormal(-; u, X, p(-)) denotes the trun-
cated normal distribution with the mean vector u, the
covariance matrix X and the truncation rule p(:) such
that TruncatedNormal(-; , 2, p(-)) o« Normal(-; u, X) if
p () is true, and TruncatedNormal(-; i, 2, p(-)) = 0 oth-
erwise. The approximate posterior distributions can be
updated as

a(y) =a, +1/2

B(y) = (1/By + (b*)/2)"
() = ({y)+N) !

1(b) = =(b) (Z(f ((soe)’ <gl->>
i=1

Z(ﬂ) =1

B = (soe) ) g,) + (b

o(f) = fyi > v,

where we can fortunately calculate the expectation of the
truncated normal distribution in closed-form.
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Prediction scenario

We can replace p(al{l(m}m vy ) with its approximate
posterior distribution g(a) and obtain the posterior pre-
dictive mean of the latent variables g, for a new data
point x, as

(g,) =lkiy ... kp,]" (a).

The posterior predictive mean of the predicted output
f« can also be found by replacing p(b, e, s| {Km}m 1»¥) with
its approximate posterior distribution q(b)g(e|s)q(s):

() =((soe))g,) +

where we use (f;) to predict the class label by looking at its
sign.

Sparse Bayesian multitask multiple kernel learning

We formulate the joint modeling of prediction tasks on
multiple datasets using a multitask learning approach,
which models distinct but related tasks conjointly to
improve overall generalization performance. We are given
T datasets, and, for each dataset, we have an independent
and identically distributed sample {x;; € X }?ﬁl and a class
label vector y, = {y:; € y}?ﬁl, where N; is the num-
ber of data points in the dataset £. We also have a list of
gene sets {Z,, }1;,:1, which are shared across the tasks, and
the corresponding kernel functions {k;(:, -|Im)}ly;=1 for
each task.

Probabilistic model
Our single-task learning model SBMKL is extended
towards multitask learning to obtain ‘sparse Bayesian mul-
titask multiple kernel learning’ (SBMTMKL).

The distributional assumptions of the first part can be
modified as

}"t,i ~ Gamma()"t,i; (0%} ,3)») V(t, l)
azil%i ~ Normal (at,i; 0, x;}) V(t, i)
g{,’é lat, Kt,m,i ~ Normal (g{,’;; ﬂ;rkt,m,ix Cf;) V(¢ m, i),

where we have task-specific model variables and latent
variables.

The distributional assumptions of the second part are
written as

K ~ Beta(x; &, i)

S|k ~ Bernoulli(s,; k) VYm
w; ~ Gamma(wy; Uy, Bw) Vit
et m|wy ~ Normal(ez,; 0, a)t_l) Y(t, m),

where the binary indicator variables are shared across the
tasks, which helps us transfer information between them.
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The distributional assumptions of the third part can be
modified as

y¢ ~ Gamma (yt;a),, ﬁy) Vvt

b¢|yr ~ Normal (bt; 0, yt_1> vt
foilbi, e1,5,g,; ~ Normal (ft,i; (soe) g, +bi 1) V(i)
Yeilfti ~ Kronecker (ft,iyt,i > v) Y(t, i),

where we have task-specific bias parameters and predicted
outputs.

Inference using variational Bayes

We approximate the posterior distribution over the model
parameters and the latent variables by a variational distri-
bution:

P (OHKemlor 3 ) ~ a(©),

where we start inference by writing g(®) as a factorized
approximation:

T

T
4(®) = [ [[a1009(@)a(Gn |ata® [ [[awnateds |

t=1 t=1
T
x [1[a0wawoas,)]:
t=1

Inference details

The update equations of the approximate posterior distri-
butions for all model parameters and latent variables are
very similar to those of SBMKL except for the binary indi-
cator variables. We can update the approximate posterior
distribution of them as

7 (sm) = 1/(1 + exp(—7m))
where the auxiliary variable r,, is defined as
K 1 d 2 m myT

-5 2 (el @)

1—« 2
t=1

P = <log

T N;
+Y lemll) ) {(m,»—w») <g{,”,»>—2<sz><et,11><gf,ig:§>} :

t=1 i=1 I#m

Prediction scenario

We can use the approximate posterior distribution g(a;)
instead ofp(atl{{l(t,m}zzl,yt}le) and obtain the poste-
rior predictive mean of the latent variables g, , for a new
data point x;, in the task ¢ as

(@) =lkeiwe - kepal (@)

The posterior predictive mean of the pre-
dicted output f;. can also be found by replacing

P <bt, e, s| {{Kt,m}fn:l,yt}til) with its approximate
posterior distribution q(b;)q(e¢|s)q(s):

(fix) = ((s0€) ") g,,) + (be),
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where we use (f;.) to predict the class label by looking at
its sign.

Baseline algorithm

We use a kernelized Bayesian classification algorithm,
which is known as relevance vector machine [24], as
the baseline algorithm. Its distributional assumptions are
defined as

Ai ~ Gamma (Aj; a;, B) Vi
a;|A; ~ Normal (ai; O,Ai_l) Vi

y ~ Gamma (y; oy, By)
b|y ~ Normal (b; 0, y_l)

fila, b, ki ~ Normal (ﬂ; a'k;+b, 1) Vi
yilfi ~ Kronecker (fiyi > v) Vi,

where the predicted outputs of data points are modeled
as a linear function of their kernel representations (i.e.
a'k; + b). We again learn the posterior distribution over
the model parameters and the latent variables using a
deterministic variational approximation as we do for our
methods. We call this algorithm ‘Bayesian relevance vec-
tor machine’ (BRVM). We have three main reasons for
choosing this particular baseline algorithm: (i) BRVM can
make use of kernel functions to obtain nonlinear models
like our methods. (ii) We can see the effect of using gene
set information by comparing our methods to BRVM.
(iii) BRVM uses the same type of inference mechanism
with our methods.

Results and discussion

To illustrate the effectiveness of our proposed methods
SBMKL and SBMTMKL, we report their results on four
datasets (i.e. two cancer and two tuberculosis datasets)
and compare them to the baseline algorithm BRVM,
which does not make use of gene set information, using
repeated random subsampling validation experiments.

Experimental settings

For each dataset, we create 100 random train/test splits to
obtain robust results. For each replication, the training set
is defined by randomly selecting 75 % of the data points
with stratification on the phenotype, and the remaining
25 % of the samples are used as the test set. The train-
ing set is normalized to have zero mean and unit standard
deviation, and the test set is then normalized using the
mean and the standard deviation of the original training
set.

We extract gene sets from ‘the Molecular Signatures
Database’ (MSigDB) [3], which contains curated pathway
gene sets from online databases such as ‘the Kyoto Ency-
clopedia of Genes and Genomes’ (KEGG) [25] and ‘the
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Pathway Interaction Database’ (PID) [26]. In our experi-
ments, we use 196 PID pathways reported in MSigDB as
our gene set collection.

To calculate similarity between data points for all meth-
ods, we use the Gaussian kernel:

KGaussian (%i, 27) = exp (—lx; — xjl|3/(25%)),

where || - |2 denotes the £5-norm, and we set the ker-
nel width s to the mean of pairwise Euclidean distances
between the data points:

| NN
5= EZZIIxi—lelz-

i=1 j=1

For BRVM, we calculate a single kernel over all input
features. For SBMKL and SBMTMKL, we calculate a sepa-
rate kernel function for each gene set over the correspond-
ing features. Note that the Gaussian kernels calculated on
the gene sets take values between 0 and 1 by definition,
and there is no need for eliminating small/large gene sets
or performing additional normalization steps to remove
the effect of gene set size.

The hyper-parameter values of BRVM are selected as
(@, B) = (LD, (@), 8)) = (1,1) and v = 1. The
hyper-parameter values of SBMKL and SBMTMKL are
selected as (), 8.) = (1,1),0, = 0.1,(%,m) =
(1,999), (0w, Bw) = (1, 1), (), By) = (1,1) and v = 1.
Note that (¢, 7n.) are set to these particular values to
produce very sparse binary indicator variables, leading to
classifiers with very few gene sets used for prediction. For
BRVM, we perform 200 iterations during variational infer-
ence, whereas we perform 50 iterations for SBMKL and
SBMTMKL.

We use ‘area under the receiver operating character-
istic curve’ (AUROC) to compare classification results.
AUROC is used to summarize the receiver operating char-
acteristic curve, which is a curve of true positives as a
function of false positives while the threshold to pre-
dict labels changes. Larger AUROC values correspond to
better performance.

Classification results on the cancer datasets

On the cancer datasets, we run binary classification exper-
iments to separate MSI-H patients from others (i.e. MSI-L
and MSS), which is in agreement with the earlier stud-
ies that combine MSI-L and MSS tumors into the same
group [11]. For BRVM and SBMKL methods, we train
a separate classification model on each dataset, whereas,
for SBMTMKL, we train a joint model on both datasets.
Figure 3 compares the performance of BRVM, SBMKL
and SBMTMKL on both datasets in terms of AUROC over
100 replications using box-and-whisker plots, and also
reports the average AUROC value for each experiment.
We clearly see that our methods with sparse gene set
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Fig. 3 AUROC values on the cancer datasets for MSI-H versus others
classification. The box-and-whisker plot shows the results over 100
replications in repeated random subsampling validation experiments
of BRVM, SBMKL and SBMTMKL on both datasets. The numbers just
below the dataset names give the average AUROC value for each
experiment

weights, leading to classifiers with very few active features,
obtain results comparable to or even better than BRVM.
Note that BRVM uses all available input features of the
genomic data for classification. For example, SBMKL falls
behind BRVM just by 0.1 % on COADREAD dataset, but
obtains 2.9 % higher average AUROC on UCEC dataset.
The average AUROC values become even higher if we
model both datasets together using our multitask learn-
ing method SBMTMKL, which outperforms BRVM by
1.0 and 3.4 % on COADREAD and UCEC, respectively.
Our sparse classifiers obtain these results using very few
active features (i.e. features related to the genes in the gene
sets with nonzero binary indicator variables); SBMKL uses
154.19 (3.40) and 403.03 (8.27) out of 20530 (196) input
features (gene sets) on the average, whereas SBMTMKL
uses 484.03 (9.96) features (gene sets) on the average (i.e.
less than 2.5 % of the input features) and obtains bet-
ter classification results than BRVM and SBMKL on both
datasets.

Classification results on the tuberculosis datasets

On the tuberculosis datasets, we perform binary clas-
sification experiments to separate individuals with ATB
from others (i.e. individuals with LTBI or OD), which is
critical in clinical settings because we should correctly
identify individuals who need tuberculosis treatment [14].
Figure 4 compares the performance of BRVM, SBMKL
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Fig. 4 AUROC values on the tuberculosis datasets for ATB versus
others classification. The box-and-whisker plots show the results over
100 replications in repeated random subsampling validation
experiments of BRVM, SBMKL and SBMTMKL on both datasets. The
numbers just below the dataset names give the average AUROC
value for each experiment

and SBMTMKL on both datasets. We see that our meth-
ods obtain results better than BRVM. On ADULT and
PEDIATRIC datasets, SBMKL outperforms BRVM by 0.8
and 0.2 % using 782.21 (11.41) and 569.51 (7.88) out of
47, 323 (196) input features (gene sets) on the average,
respectively. Our multitask learning method SBMTMKL
again has the highest AUROC values on both datasets and
outperforms BRVM by 1.5 % on ADULT and 1.3 % on
PEDIATRIC using 1 102.65 (16.07) features (gene sets) on
the average.

Page 131 of 135

Biological results on the cancer datasets

To illustrate the biological relevance of our methods,
we analyze their abilities to identify relevant gene sets
based on the binary indicator variables inferred dur-
ing training. For each gene set, we count the num-
ber of replications in which the corresponding binary
indicator variable is nonzero. Table 3 lists the top 10
most frequently selected gene sets together with their
selection frequencies for three scenarios: (i) SBMKL on
COADREAD, (ii) SBMKL on UCEC and (iii) SBMTMKL
on COADREAD and UCEC. We see that SBMKL is
able to identify WNT NONCANONICAL PATHWAY and
TGFBRPATHWAY as the top two gene sets in the first
scenario, which are reported to be involved in the ini-
tiation and progression of colorectal cancer [12]. How-
ever, their selection frequencies are quite low (i.e. less
than or equal to 0.10). Similarly, for UCEC, it is able
to identify two apoptosis-related gene sets, namely,
P53DOWNSTREAMPATHWAY and NOTCH PATHWAY, as
the top gene sets with more than 0.80 frequencies, which
are known to be associated with endometrial cancer [13].
When we jointly model both datasets using our multi-
task learning method SBMTMKL, we are able to iden-
tify P53DOWNSTREAMPATHWAY, NOTCH PATHWAY and
WNT NONCANONICAL PATHWAY as the top gene sets
with increased frequencies compared to those of SBMKL.
We see that multitask learning decreases the effect of
random subsampling by picking relevant gene sets more
frequently, leading to more robust knowledge extraction
for both datasets.

We also count the number of replications for each
gene in which it is included in the final classifier.
Figure 5 displays the top 50 most frequently selected
genes together with their selection frequencies for three
scenarios. CREBBP, EP300, JUN and MDM2 are among
the top 50 genes for all scenarios, which is reasonable

Table 3 Gene set selection results on the cancer datasets for MSI-H versus others classification

SBMKL on COADREAD SBMKL on UCEC SBMTMKL on COADREAD and UCEC

Gene set name Frequency Gene set name Frequency Gene set name Frequency
WNT_NONCANONICAL_ PATHWAY 0.10 P53DOWNSTREAMPATHWAY 0.92 P53DOWNSTREAMPATHWAY 0.99
TGFBRPATHWAY 0.09 NOTCH_PATHWAY 0.83 NOTCH_PATHWAY 092
DELTANP63PATHWAY 0.07 NFAT TFPATHWAY 0.26 WNT_NONCANONICAL PATHWAY 061
TAP63PATHWAY 0.07 IL5_PATHWAY 0.24 NFAT_TFPATHWAY 041
RB_1PATHWAY 0.07 P53REGULATIONPATHWAY 0.24 AR_PATHWAY 0.34
NFAT_3PATHWAY 0.06 CDC42_REG_PATHWAY 0.20 RHOA PATHWAY 0.21
ATF2_ PATHWAY 0.06 AVB3_OPN_PATHWAY 0.15 REG_GR_PATHWAY 0.21
SMAD2_ 3NUCLEARPATHWAY 0.05 WNT_NONCANONICAL_ PATHWAY 0.14 UPA_UPAR_PATHWAY 017
P73PATHWAY 0.05 REG_GR_PATHWAY 0.13 BMPPATHWAY 017
MYC_ ACTIVPATHWAY 0.05 UPA _UPAR_PATHWAY 0.1 RAC1 PATHWAY 0.14

The table displays the top 10 most frequently selected gene sets together with their selection frequencies for three scenarios
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Fig. 5 Gene selection results on the cancer datasets for MSI-H versus others classification. The bar plots display the top 50 most frequently selected

genes together with their selection frequencies for three scenarios. Blue bars show the genes that are in the top 50 for all scenarios, and orange bars

show the genes that are in the top 50 only for multitask learning scenario

considering their functions in cell cycle. We see that the
selection frequencies of the first two scenarios are lower
than those of the third scenario, which is consistent with
our gene set selection results. Our multitask learning
method SBMTMKL includes several genes in the top 50
that are not selected by SBMKL in two other scenar-
ios, which may lead to interesting findings. For example,

E2F1, E2F2 and E2F3 are used in the final classifier in all
replications, which are reported to be related to cellular
proliferation [27].

Biological results on the tuberculosis datasets
We also evaluate the gene set selection results of our
methods on the tuberculosis datasets. Table 4 lists the top

Table 4 Gene set selection results on the tuberculosis datasets for ATB versus others classification

SBMKL on ADULT SBMKL on PEDIATRIC SBMTMKL on ADULT and PEDIATRIC
Pathway name Frequency  Pathway name Frequency  Pathway name Frequency
ERBB_NETWORK PATHWAY 0.73 A6B1_A6B4 INTEGRIN_ PATHWAY 0.31 RHODOPSIN_PATHWAY 0.67
AP1_ PATHWAY 0.55 RAS PATHWAY 0.27 ERBB_NETWORK PATHWAY 0.63
CONE_PATHWAY 044 INTEGRIN1 PATHWAY 0.24 AP1 PATHWAY 0.60
AR _TF_PATHWAY 042 RAC1_PATHWAY 0.21 SYNDECAN_1_ PATHWAY 0.51
CERAMIDE_ PATHWAY 0.31 RHODOPSIN_PATHWAY 0.20 PLK1_ PATHWAY 0.50
RHODOPSIN_PATHWAY 0.31 SYNDECAN_1 PATHWAY 0.17 CERAMIDE PATHWAY 042
SYNDECAN_ 1 PATHWAY 0.29 ATM PATHWAY 0.16 ATM PATHWAY 0.41
FANCONI_PATHWAY 0.25 ATF2_ PATHWAY 0.15 AR_TF_PATHWAY 0.40
RXR VDR_PATHWAY 0.24 THROMBIN PAR1 PATHWAY 0.15 ATF2_ PATHWAY 037
HNF3BPATHWAY 0.23 IL12 2PATHWAY 0.13 HNF3APATHWAY 035

The table displays the top 10 most frequently selected gene sets together with their selection frequencies for three scenarios
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10 most frequently selected gene sets together with their
selection frequencies for three scenarios: (i) SBMKL on
ADULT, (ii) SBMKL on PEDIATRIC and (iii) SBMTMKL
on ADULT and PEDIATRIC. We see that the gene set
selection frequencies of SBMKL on PEDIATRIC dataset
are quite low (i.e. between 0.13 and 0.31) compared to
those on ADULT dataset. However, when we model both
datasets using our multitask learning method SBMTMKL,
the selection frequencies of the top 10 gene sets become
significantly higher (i.e. between 0.35 and 0.67), leading to
more robust gene set signatures.

Figure 6 displays the top 50 most frequently selected
genes together with their selection frequencies for three
scenarios. We see that the genes that are part of signaling
mechanisms such as MAPK1, MAPK3, MAPKS, PIK3CA,
PIK3R1 and RACI are selected in the top 50 genes for all
scenarios. Similar to the results on the cancer datasets, the
selection frequencies of the first two scenarios are lower
than those of the third scenario, which shows the robust-
ness of multitask learning approach. As an interesting
finding, SBMTMKL includes three genes from interleukin
family, namely, IL8, IL2 and IL6, in the top 50, which are
shown to be diagnostically associated with tuberculosis
[28-30], whereas they are not picked in the top 50 by
SBMKL in single dataset experiments.
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Conclusions

Integrating gene set analysis and predictive modeling
is already considered by many existing studies, which
fail either to capture nonlinear dependencies between
genomic data and phenotype or to model multiple related
datasets conjointly.

In this study, we integrate gene set analysis and non-
linear predictive modeling of disease phenotypes by cast-
ing this problem into a binary classification framework
defined on the gene sets with a sparsity-inducing prior on
their weights. To this aim, we propose a Bayesian multiple
kernel learning algorithm, which produces a classifier with
sparse gene set weights, by extending our earlier Bayesian
formulation [8]. We then generalize this new algorithm
to multitask learning to be able to model multiple related
datasets conjointly, leading to better generalization per-
formance and to more robust molecular signatures. The
main novelty of our methods is the integration of gene
set analysis and nonlinear predictive modeling using a
probabilistic formulation, which enables us to robustly
capture nonlinear dependencies between genomic data
and phenotype even with small sample sizes, and to use
overlapping gene sets and gene sets with different sizes
without any major concern. Our approach brings us two
side advantages: (i) We can identify very few gene sets
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predictive of the phenotype, which may shed light on
underlying biological processes. (ii) We can reduce the
data acquisition cost for test samples in clinical settings by
collecting only the features used in our classifier.

To demonstrate the performance of our algorithms
SBMKL and SBMTMKL, we perform repeated random
subsampling validation experiments on four datasets of
two major human diseases, namely, cancer and tuberculo-
sis. On the two cancer datasets [12, 13], we decide whether
a colorectal or endometrial tumor displays micro-satellite
instability using its mRNA gene expression data. On the
two tuberculosis datasets [14, 15], we diagnose whether
an adult or pediatric individual has an active tuberculosis
infection using his/her whole blood RNA expression data.
We compare our two methods to a baseline Bayesian non-
linear algorithm that is trained on all available genomic
data without using gene set information. Our methods
obtain comparable or even better predictive performance
using very few features (i.e. less than 2.5 % of the input
features) on all datasets. We also show that we are able to
identify biologically relevant genes and gene sets for can-
cer and tuberculosis phenotypes, which are validated by
the existing studies from the literature. The results of our
multitask learning algorithm show that modeling multiple
related datasets conjointly enables us to further improve
the generalization performance and to better understand
biological processes behind disease phenotypes.

In the experiments reported, we use real-valued gene
expression measurements as genomic data. Our methods
can also be applied to discrete data such as mutation pro-
files of tumors, which are hard to use in classical gene
set analysis methods due to their very sparse nature. As
a possible extension, we plan to use our kernel-based
formulations on cancer datasets to identify driver muta-
tions using kernels for discrete data such as the Jaccard
similarity coefficient.
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