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Abstract

Background: Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical
microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple
images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for
merging images from different depths of field into a composite image with all foreground objects in focus.
Composite images generated by EDoF can be applied in automated image processing and pattern recognition
systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for
applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects
typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only
foreground regions are processed to make the composite image. We propose a novel algorithm called object-
based extended depths of field (OEDoF) to address this issue.

Methods: The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification,
3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to
enhance contrast followed by identification of foreground pixels. A composite image is constructed using only
these foreground pixels, which dramatically reduces the computational time.

Results: We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed
algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF
algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The
features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images
processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less
processing time.

Conclusions: This work presents a modification of the extended depth of field approach for efficiently enhancing
microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall
processing time while maintaining the clarity of important image features. The empirical results from parasite-
infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite
images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers
of microscope images, e.g., as required for medical diagnosis.
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Background
Microscopic imaging is a widely used technique in life sci-
ence in which two-dimensional images are acquired from
three-dimensional cellular specimens. An important skill in
microscopy is adjusting the focus in order to obtain clear
images of biological features. A typical biological specimen
will have several different features of interest that are lo-
cated on different depths of field (DoF). Automated image
acquisition can be used to acquire stacking images from dif-
ferent DoFs. The combined images can be processed using
an algorithm to create a composite image that captures all
features in-focus. This type of image is known as an ex-
tended depth of field (EDoF) image. Several algorithms have
been proposed to generate EDoF images based on selecting
regions with high saliency [1]. The research efforts in [2–5]
focused on improving the EDoF algorithm using pixel do-
main and transform domain methods. In 2004, Forster and
colleagues [5] proposed a complex-valued wavelet trans-
formation that can accurately measure the weight of each
detail information from input images. Other computational
methods for obtaining high-quality EDoF images have been
proposed that involve sophisticated selection criteria based
on geometric transformation techniques such as the ridge-
let transform [6], wedgelet transform [7], contourlet trans-
forms [8] and curvelet transform [9]. Although all of these
approaches are capable of generating high-quality EDoF im-
ages, the computational complexity of these algorithms
grows quadratically with the number of pixels in each
image. This high computational demand means that it is
impractical to generate EDoF images from multiple speci-
mens. In some applications of microscopy, for example
medical diagnosis, sample turnaround time is very import-
ant. A more computationally efficient method for acquiring
EDoF images could form the basis of a rapid automated
image acquisition and diagnosis platform.
In a typical microscopic specimen, the features of bio-

logical interest are likely to be spread sparsely and unevenly
over the field of view. Therefore, digital images of micro-
scopic specimens will comprise mostly background and a
minority of foreground pixels. If an image processing algo-
rithm can identify foreground objects and selectively process
only the pixels within these objects, the overall image pro-
cessing time will be dramatically reduced. Microscopy-based
medical diagnosis typical requires detailed observations of

samples involving many fields of view, since features of
interest, e.g., parasites, are sparsely distributed. Therefore, to
confirm diagnosis, standard operating procedure requires
processing of many images. For example, in diagnosis of
malaria infection, greater than 100 fields of view must be ex-
amined [10]. In this work, we present a novel image fusion
technique based on the extended depth of field concept,
called object-based extended depth of field (OEDoF). The
proposed OEDoF workflow constructs the final EDoF com-
posite image by focusing only on specific regions that con-
tain objects of interest and thus dramatically cuts down the
computational time. This algorithm is implemented as an
ImageJ plugin and was used to reconstruct composite im-
ages from multiple optical sectioned images of biological
specimens obtained from a malaria diagnostic laboratory.
The implemented OEDoF software and the images used in
this paper are publicly available for downloading from
http://www4a.biotec.or.th/GI/tools/oedof.

Methods
The data used to test the algorithm comprised 250 images ob-
tained from 45 thick film slides prepared from malaria-
infected blood specimens. The images were obtained using an
in-house automated image-capturing platform, and were pub-
lished previously in [11]. No new samples were collected for
this study, and thus no ethical approval is required. The
resolution of these images was set to 928 × 616 pixels
with 24 bit depth. The computational processing of the
stack images to create composite EDoF images was con-
ducted on a MacBook Pro notebook (Apple Inc., USA)
equipped with an Intel core 2 duo 2.4Ghz processor and
8 GB random access memory.

Object-based extended depth of field (OEDoF) algorithm
The reconstruction process used to create an EDoF image
is computationally intensive as all the picture elements
from multiple stacking images must be checked in order to
select only the in-focus objects to be merged at the end. In
order to obtain a high-quality EDoF image suitable for
accurate biological interpretation with less computational
effort, we propose object-based extended depth of field
(OEDoF). The OEDoF approach comprises four main
modules, namely color conversion, object identification,
detail calculation and detail merging (Fig. 1).

Color
Conversion

Object

Detail
Calculation

Detail
Merging

Focal planes

Fig. 1 Object-based Extended Depth of Field (OEDoF) framework. The OEDoF technique consists of four major procedures, namely color
conversion, region segmentation, detail calculation and detail merging
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Preprocessing: color conversion
Microscopic images generally have low contrast, which cre-
ates difficulty in differentiating foreground objects from the
background. Thus, we enhance the underlying contrast by
projecting all significant information of the RGB color
space into a new color space that is suitable for further ana-
lysis. A color conversion module is employed for this task
that uses independent component analysis [12] to extract
the significant color space information. Eq 1 represents the
C color space calculation in which the weighting coeffi-
cients (a1, a2, a3) are derived from the covariance matrix.

C ¼ a1 þ a2G þ a3B ð1Þ
To calculate the weighting coefficients, an RGB covari-

ance matrix M that represents all pixels is constructed.
This matrix allows adaptive weighting in accordance with
the characteristics of each individual image as follows:

M ¼ 1
n−1

Xn
i¼1

Xi−X
� � ð2Þ

where Xi is each color component in RGB format of the
ith pixel and x represents the mean of the RGB compo-
nents and n is total number of pixels. The elements
along the diagonal of the covariance matrix represent
the weighting coefficients. The image with the highest

variance among those obtained from the focus stack is
selected as a baseline image for reconstructing the com-
posite all in-focus image during the last step of OEDoF.

Object region identification
The major novel feature of the OEDoF algorithm is ob-
ject identification, in which only regions of potential
interest are processed further for the sake of computa-
tional efficiency. Identification of foreground objects first
requires assigning pixels in each focus stack image into
background and foreground. To accomplish this task,
the distribution of pixel brightness values in each image
is determined. We empirically determined that a Z-score
threshold of −1 can be used to assign foreground pixels,
which is fast to calculate and consistent across different
sample images. To obtain this threshold, the combined
pixel brightness distribution was determined from 21
randomly selected thick blood film images. Foreground
objects (cells) were assigned manually by drawing circles
around them. The pixel brightness values were extracted
from the foreground objects, while all other pixels were
assigned as background. Z-scores were calculated for each
pixel using the combined distribution mean and standard
deviation values. Kernel density plots of foreground and
background pixel Z-scores are shown in Fig. 2A. From this
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Fig. 2 Assignment of foreground pixels using Z-score thresholding a. Kernel density plots were made of Z-scores for pixels obtained from 21 images of
malaria thick film specimens. Z-scores were calculated from the distribution of pixel brightness values from the combined 21 images (average brightness
= 0.5640; SD = 0.0849). Foreground objects were assigned by manual inspection of the images and were delimited by drawing circles around them. All
pixels within the boundaries of these objects were assigned as foreground pixels, and all others outside were assigned as background. The Z-score
threshold of −1 (indicated by the dashed line) was incorporated into the algorithm for automatic assignment of foreground pixels for EDoF composite
image construction. b Representative specimen showing foreground pixel assignment using different Z-score thresholds. The original image captured
from the Giemsa-stained specimen is shown on the far right. The adjacent panels show the background masked areas in white and the foreground in
black using Z-score thresholds of −0.5, −1, −1.5, and −2
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plot, it can be seen that the majority of foreground pixels
have Z-scores less than −1. The foreground objects are
darker than the background as the cells are stained with
Giemsa. The results of using different Z-score thresholds
for assigning foreground object pixels in a representative
image are shown in Fig. 2B. In this example, all cells are
assigned as foreground objects when using a Z-score
threshold of −1. The process of assigning foreground and
background pixels is performed on all images in the focus
stack. The union of foreground pixels from all depths of
field is used for the next step of identifying foreground
objects.

Good contrast pixel identification
The aim of this process is to identify good contrast
pixels to be incorporated into the final composite EDoF
image. This is because pixels with higher contrast are
likely to be more in-focus than the ones with lower con-
trast. For each pixel, we calculate the value representing
the pixel contrast by comparing with the eight adjacent
pixel neighbors and the corresponding pixels on the top
and bottom layer depths. We adopted the 3D Sobel ker-
nel operator [13] to compute the underlying contrast
value for each pixel.
The 3 × 3 Sobel kernels Gx performs the vertical

mask on the left and right columns of the target
pixel (the middle column contains zeros). The 3 × 3
Sobel kernels Gy performs the horizontal mask on
the top and bottom row of the target pixel (the mid-
dle row contains zeros).

Gx ¼
þ1 0 −1
þ2 0 −2
þ1 0 −1

2
4

3
5 Gy ¼

þ1 þ2 þ1
0 0 0
−1 −2 −1

2
4

3
5

ð3Þ
We added the third 3 × 3 Sobel kernel Gz to mask the

neighboring pixels above and below the target pixels as
follows:

Gz 1ð Þ ¼
−1 −2 −1
−2 −4 −2
−1 −2 −1

2
4

3
5 Gz 0ð Þ ¼

0 0 0
0 0 0
0 0 0

2
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5

Gz 1ð Þ ¼
þ1 þ2 þ1
þ2 þ4 þ2
þ1 þ2 þ1

2
4
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5

ð4Þ
Finally, the Gradient magnitude G is calculated from

Gx , Gy and Gz as follows:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

I þ G2
y

q
þ G2

z ð5Þ

Note that the above Sobel filtering step only operates
on the foreground pixels; thus the selection of pixels
with high contrast can be done quickly. The pixels of
greatest contrast from all layers are used to reconstruct
the final composite image in the next step.

Detail merging for image reconstruction
We perform the image reconstruction by combining the
pixels of greatest contrast from individual depth fields

a b

Fig. 3 Comparison of composite images before and after color consistency correction Images before (left panel) and after (right panel) color
correction are shown. The shading aberration (see the close-up boxes) can be corrected using 5x5 filtering mask
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together. In particular, the pixels from R, G and B com-
ponents representing the highest gradient magnitude G
are used to construct the final composite image. To
complete the image reconstruction, we replace all pixels
from the baseline image previously selected during the
image preprocessing (color conversion) with the highest
contrast pixels identified by the algorithm.
However, combining these pixels (which may come

from different depths) in the final composite image may
introduce color inconsistency for some objects, as pixels

from different focal planes could have slightly different
color shades. To address this shading aberration, color
consistency correction is required. A 5 × 5 pixel grid is
positioned in foreground regions of the composite image.
For each of the 25 pixels in this window, the original focal
plane is recorded. A majority-voting rule is used to
identify the focal plane that contributes the most
high-contrast pixels to the composite image within
the 5 × 5 grid. The pixel from this focal plane is used to
replace the pixel at the center of the grid in the final
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Fig. 4 The comparison of V-component and C-component variances. A total of 21 RGB images of malaria infected red blood cell specimens were con-
verted and we compared the V-component variance (red curve) of HSV color space with the C-component variance (blue curve) of the proposed C color
space. The mean of C-component variance is higher than the mean of V-component variance, which implies that the C-component has more
contrast information

Fig. 5 The images of each depth of field and the composite image Ten images of the same specimen taken at different depths and the
composite image generated by the OEDoF algorithm are shown. The composite image shows in-focus objects located at different depth fields
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composite image. The 5 × 5 grid is repositioned by sliding
one pixel and the process repeated until all foreground
pixels have been analyzed (Fig. 3).

Software package
We created a software tool to generate a composite fo-
cused image using the proposed OEDoF technique. The
tool is implemented as an ImageJ plugin using Java lan-
guage. This plugin can be downloaded from http://
www4a.biotec.or.th/GI/tools/oedof. The instruction on
how to use the OEDoF plugin in ImageJ as well as the
sample images used in our study are also available from
this website.

Results and Discussion
The performance of the OEDoF algorithm was tested
and compared with the complex wavelet approach [5],
which we considered as the “gold standard” in its ability
to generate high-quality composite images. The algo-
rithms were compared in terms of image quality and
computational time to generate the EDoF image. We
used images of thick-film specimens obtained from
malaria-infected cases for testing the algorithm. Micro-
scopic examination is widely used for malaria diagnosis,

but low accuracy and slow sample turnaround can be a
problem as an automated image acquisition and process-
ing system is not available. Fast and accurate image pro-
cessing algorithms could help diagnosis of malaria and
other diseases requiring microscopic analysis. Rapid and
accurate image processing first requires optimization of
image contrast. We found that the newly created C color
space provides better contrast information from the RGB
than the HSV (Hue, Saturation and Value) color format
that is popularly used in many image processing applica-
tions. To demonstrate this, we converted 21 RGB images
of malaria infected specimens (10 Plasmodium falciparum
and 11 Plasmodium vivax infected specimens) of dimen-
sions 4752 × 3168 pixels and compared the V-component
variance (red curve) of HSV color space against the
C-component variance (blue curve) of the proposed C
color space (Fig. 4). The mean of C-component variance
(blue dashed line) is higher than the mean of V-
component variance (red dashed line), which implies that
C-component has more contrast information.

On image quality
Next, multiple images from different depths were used
to construct composite images. Ten images of the same

Fig. 6 Edge detection on multiple images from different depths. To show that the OEDoF composite image can enhance the performance of
image analysis, edge detection was performed using the ImageJ Find Edges command on all images shown in Fig. 5A. The corresponding
images with detected edges are shown in false green color. It is clear that the OEDoF composite image provides more edge information than
any individual image from different depth fields
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specimen taken at different depths and the composite
image generated by the OEDoF algorithm are shown in
Fig. 5. The composite image shows in-focus objects lo-
cated at different depth fields. To show that the OEDoF
composite image can enhance the performance of image
analysis, edge detection was performed on all images
shown in Fig. 5. Edge detection is an important process
for object identification, and the OEDoF composite
image provides more edge information than any indi-
vidual image from different depth fields (Fig. 6). The
composite image produced by OEDoF was compared
with that produced by the complex wavelet approach
[5]. The OEDoF image is comparable to the complex
wavelet composite image in terms of clarity due to the
focus enhancement of all foreground objects (Fig. 7A, B).
To demonstrate the small differences between the OEDoF
and complex wavelet composite images, the pixel inten-
sities of the complex wavelet image were subtracted
from the intensities of the corresponding pixels in the
OEDoF image to construct a diff (i, j) plot (Fig. 7C).
The different pixels (white spots) account for 5.4% of
the total pixels in the OEDoF composite image, which

are scattered sparsely around the background and fore-
ground areas.

On processing time
Forty specimens were randomly selected for assessing
image algorithm processing speeds. We expected the
OEDoF to perform markedly faster than the state-of-
the-art complex wavelet approach, since OEDoF pro-
cesses only object regions, which generally make up less
than half of the total image pixels. As expected, the aver-
age processing time for OEDoF was much shorter than
that of complex wavelet (OEDoF average = 0.47 seconds,
sd = 0.01; complex wavelet average = 1.98 seconds, sd =
0.03). Next, we tested how well the OEDoF algorithm
could perform using fewer depths of field to construct
composite images, since the time taken to capture im-
ages is important for applications such as medical diag-
nosis. Five specimens were randomly selected and a total
of 10 image stacks were used from each. OEDoF com-
posite images were constructed from 3, 4, 5, 6, 7, 8, 9,
and 10 depths of field in descending order along the z-
axis. To test how using fewer depths of field affects

Fig. 7 Comparison of the composite images generated by OEDoF and complex wavelet. a The composite image generated by OEDoF. b The
composite image generated by the complex wavelet approach. c The differences of the two composite images
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composite image quality, the acutance (Ac) or measure
of image clarity [14] of the composite images was com-
puted using Eq. 6.

Ac ¼ 1
mn

Xm
i¼0

Xn
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

I i; jð Þ þ G2
y i; jð Þ

q
ð6Þ

Where m and n are the image dimensions and i, j are
pixel positions in x and y directions. Gx and Gy are the
3 × 3 Sobel horizontal and vertical kernels, respectively.
As expected, Ac increases with the number of depth

fields that are used to construct composite images. The
optimal number of depth fields, i.e. the fewest needed to
make a composite image with maximum acutance ap-
pears to vary from specimen to specimen (Fig. 8). How-
ever, the loss of composite image quality using fewer
depths of field is not that great, and using as few as
three depth fields could be adequate for downstream
image processing and pattern recognition tasks.

Conclusions
The OEDoF algorithm can create composite images with
foreground objects in focus that are comparable in quality
to the state-of-the-art complex wavelet EDoF algorithm, but
with four-fold faster processing time. The greater computa-
tional efficiency of OEDoF is achieved by selectively pro-
cessing pixels from object regions only instead of the entire
image. Although some image quality is sacrificed for speed,
the composite images produced by OEDoF retain fore-
ground details sufficient for downstream biomedical image
processing, in applications such as counting infected cells,
differentiating malaria species, etc. Furthermore, the thresh-
old used to identify foreground objects will depend on the
contrast, which will vary depending upon the type of speci-
mens being examined. We identified a suitable threshold
for thick film specimens of malaria cases; however,
other biomedical specimens, e.g., histological specimens

may require a different threshold. The proposed tech-
nique should also work well with microscopic images
obtained from most stained biological specimens in which
backgrounds are brighter than object regions. The marked
improvement in image processing time is particularly
important for medical diagnosis where rapid turnaround is
required. For example, microscopy-based malaria diagnosis
requires at least 100 images per specimen [10]. The
four-fold reduction in time using OEDoF technique could
translate to improved diagnosis and treatment of diseases.
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