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Abstract

Background: The study of virus integrations in human genome is important since virus integrations were shown to
be associated with diseases. In the literature, few methods have been proposed that predict virus integrations using
next generation sequencing datasets. Although they work, they are slow and are not very sensitive.

Results and discussion: This paper introduces a new method BatVI to predict viral integrations. Our method uses a
fast screening method to filter out chimeric reads containing possible viral integrations. Next, sensitive alignments of
these candidate chimeric reads are called by BLAST. Chimeric reads that are co-localized in the human genome are
clustered. Finally, by assembling the chimeric reads in each cluster, high confident virus integration sites are extracted.

Conclusion: We compared the performance of BatVI with existing methods VirusFinder and VirusSeq using both
simulated and real-life datasets of liver cancer patients. BatVI ran an order of magnitude faster and was able to predict
almost twice the number of true positives compared to other methods while maintaining a false positive rate less
than 1%. For the liver cancer datasets, BatVI uncovered novel integrations to two important genes TERT and MLL4,
which were missed by previous studies. Through gene expression data, we verified the correctness of these additional
integrations.
BatVI can be downloaded from http://biogpu.ddns.comp.nus.edu.sg/~ksung/batvi/index.html.
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Background
The discovery that Rous sarcoma virus can induce can-
cer in chicken [1] had revolutionized cancer research.
Although this discovery was met with initial skepticism,
the association between cancers and viral infections has
been firmly established today. One of the striking facts is
that some viruses causing cancers are highly prevalent. For
example, the Epstein-Barr virus infects about 90% of the
human population by adolescence and it causes several
forms of cancer [2]. Another example is Hepatocellular
carcinoma (HCC). Its leading cause is Hepatitis B virus
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(HBV) infection. At least one third of the world popu-
lation has been infected by HBV at some point in their
lives [3]. Therefore, the study of the relationship between
virus integrations and diseases is very important.
The revolution of next generation sequencing (NGS)

enables us to probe the interactions of viral and human
DNAs at a molecular level. Apart from detecting the pres-
ence of viruses, NGS enables the detection of the virus
integrations and determination of the actual integration
breakpoints at base-pair resolution. However, this analy-
sis is not straightforward. One reason is that the majority
of the NGS reads are originated from the host (human)
instead of the virus. Another reason is that the integra-
tions might happen in repeat regions, and may produce
ambiguous alignments. Therefore, it is important to find
a method that can effectively use a small number of reads
to predict the presence of viral integrations.
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Several methods were proposed to study the presence
of viruses and their integrations. SRSA [4] and Path-
Seq [5] are some early programs that were designed
to determine the types of viruses and pathogens in
NGS samples. Recently, VirusSeq [6], ViralFusionSeq [7]
and VirusFinder [8, 9] were proposed to identify virus
integration sites. VirusSeq first aligns reads to a ref-
erence genome; then, the unaligned reads are mapped
to a virus database to identify the target viral genome.
This viral genome is added as a dummy chromosome
and all unmapped paired-end reads are realigned to
this modified genome. By identifying discordant align-
ments between human and the viral genome, integra-
tion sites are identified. In ViralFusionSeq, the reads
are aligned to viral and human genomes using BWA-
SW [10]. Reads having soft clips in the viral mappings,
and reads having one end aligned to human genome while
the other end aligned to virus genome are extracted.
These reads are clustered and assembled (if possible)
to find integrations. VirusFinder aligns reads to both
human and viral genomes. Then, virus integrations are
found by the structural variation callers SVdetect [11] and
CREST [12].
We identify several drawbacks with existing approaches.

First, existing methods use general NGS read aligners
to identify reads near the virus integration sites. Gen-
eral NGS real aligners assume each read contains some
long seed with low number of mismatches. However, such
assumption may not be valid on the virus genome (which
have high mutation rate) or near to the virus integration
sites. Together with the fact that the number of reads cov-
ering virus integrations are usually lower, existing meth-
ods has difficulty to align reads around virus integration
sites, which reduce the sensitivity of existing methods to
predict virus integrations. The second problem is the use
of soft-clipped reads by ViralFusionSeq and VirusFinder.
The soft-clip positions predicted by the aligners may not
be accurate. Finally, VirusSeq andVirusFinder assume that
exactly one virus strain is involved in the integrations.
(Note that VirusFinder 2 provides an option to choose the
virus reference). However, there are cases where a single
individual is infected by multiple different strains of the
same virus [13]. Therefore, these methods may fail to call
some integration sites.
In this paper, we propose a method BatVI to over-

come these problems. BatVI identifies a set of probable
chimeric reads using the sensitive BLAST aligner [14].
BLAST is able to detect chimeric reads with short viral
segments (as small as 18 bp) accurately. Therefore, BatVI
can detect viral integrations having very low coverage. For
detecting viral integrations, BatVI uses fast clustering and
multiple sequence assemblymethods. Furthermore, BatVI
does not make any assumption about the strains of the
integrated virus.

We compare BatVI with VirusFinder 2 and VirusSeq.
(We did not include ViralFusionSeq as it did not finish in
the allocated time). Using simulated data, we show that
BatVI recovers more viral integrations. Furthermore, we
note that existing methods may predict many false inte-
grations that occur in repeat regions. On the other hand,
BatVI can either identify the correct integration or report
the fact that the integration is unreliable. We also test
the performance of BatVI using real datasets. Using a
list of viral integrations generated by high coverage target
sequencing [15] as a benchmark, we compare BatVI with
other methods.We show that BatVI can predict more cor-
rect HBV integrations and produce less false positives in
the shortest amount of time. In summary, BatVI is fast,
sensitive and accurate.

Methods
The input of BatVI consists of a database of viruses, a
human reference genome and the raw NGS reads (or
the SAM/BAM alignments of these read to the human
genome). BatVI has three stages. First, it identifies a set
of chimeric read pairs that map both to human and virus
genomes. Next, the chimeric reads that co-localize in the
human genome are clustered. Finally, integration sites are
extracted from these clusters. These stages are described
in detail below.

Identifying Chimeric Reads
BatVI can start with either the raw reads or a SAM/BAM
file containing the read alignments. If the SAM/BAM file
is given, we extract read pairs with soft-clips and those
with at least one read unmapped. Otherwise, the whole
set of raw reads is taken as the input. These reads are
checked for the presence of a virus. This is done by check-
ing if some k-mer from the reads can be mapped to the
virus database with at most r mismatches. To be sensi-
tive, we set k = 18 and r = 1 by default. Once we check
one k-mer in the read, we shift by s positions (s = 5,
by default) and check another k-mer on the read. The
alignment of k-mers is done using BatMis [16] algorithm,
which is a BWT-based algorithm that can report all hits.
We retain read pairs with at least one k-mer aligned on
the virus database. Such a set of read pairs is denoted as
the set X1. After this initial screening, the second step
performs a more thorough examination for a viral seg-
ment in the reads in X1 by aligning them to the virus
database using BLAST. All the read pairs that do not
have a mapping by BLAST are discarded and the remain-
ing read pairs are stored in the set X2. X2 is a set of
read pairs that possibly originated from the virus. Finally
we check if the read pairs in X2 can be mapped to the
human genome by BLAST. If a read or its mate has a
hit in human genome by BLAST, it is stored in the set
Xchimera.
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Although BLAST is accurate, it is several times slower
compared to NGS aligners. Hence, this pipeline is care-
fully adjusted to minimize the usage of BLAST. We use
it sparingly by first removing a set of reads unlikely to
be chimeras, and then using BLAST with a small virus
database, and finally with the reference genome. Figure 1
shows the complete pipeline.

Clustering reads
Let d and σ be the mean and standard deviations of the
insert size of the read pairs. For each read Ri ∈ Xchimera
that is mapped to human, BLAST will report a set of loca-
tions Li1, L

i
2, . . . , L

i
j with expect values ei1, e

i
2, . . . , e

i
j . The

hit Lil is called a rank-N hit if there are N hits whose
expect values are smaller than or equal to eil. (The rank
will be used in Section “Identify integration breakpoints”).
If there are multiple hits with the smallest expect value,
we retain all hits with the smallest expected value. If there
is exactly one hit with the smallest expect value, we also
retain hits with the second smallest expect value. (We
retain the second best hits since the unique best hit may be
noise. Keeping the second best hits increases our chance
of finding the correct hit. This trick is also used in [17]).
Among all retained hits (Ri, Lil), we put the hits into the

same cluster if they are near each other. Precisely, we sort
the hits for each chromosome in the ascending order of
their location. Then we traverse this sorted list chromo-
some by chromosome, from top to bottom. Clusters are
formed during this traversal by adding two consecutive
hits (Ri, Lip) and (Rj, L

j
q) to the same cluster if |Lip − Ljq| <

d + 2σ .
The next step is to partition the aligned reads in every

read cluster Ci into two sub-clusters C+
i and C−

i such
that C+

i contains all reads that align on human-virus inte-
grations where human is on the 5’ side of the virus. The
classification can be done based on the alignment orien-
tations of the reads on the human genome as illustrated
in Fig. 2. Precisely, for every (Ra, Laj ) ∈ Ci, if the prefix of
Ra aligns on the +ve strand or the suffix of Ra aligns on
the -ve strand of human genome, we add (Ra, Laj ) to the
sub-cluster C+

i ; otherwise, it is added to C−
i .

Extract integration sites
After clustering the reads, we follow three steps to iden-
tify the possible integrations (see Fig. 3). First, we refine
the clusters to remove noisy and duplicate reads. Sec-
ond, we identify a possible breakpoint from the clusters.
Finally, if split reads are present, we use them to refine the
breakpoints. These steps are detailed below.

Refining the Clusters
The clusters are refined by 1) removing noisy and com-
plex reads, 2) filtering duplicate reads and 3) rescuing
split-reads. We describe the details of the three steps
below.
(1) BatVI assumes that each single ended read is com-

posed of at most one segment from human and at most
one segment from virus. If there are other complex cases,
BatVI will discard these reads. (For example, if there are
reads with human segment between two viral segments
in one read, we discard such read pairs.) If both ends of
a read pair are mapped to the human genome, we check
to see if they are correctly oriented and whether they map
within the same chromosome. If they are not, the reads
are discarded.
(2) Due to the low number of viral integrations in a cell

population, it is highly unlikely that the datasets contain
identically mapped read pairs unless the sequencing was
targeted. Therefore, whenever there are identical hits (in
terms of alignment), we provide the option to retain only
one copy and remove the other reads from the cluster.
(3) Some reads align partially to the human genome or

to the virus. BLAST fails to align the remaining portion of
such reads due to several reasons. The first reason is the
limits of sensitivity of BLAST, where sequences of length
25 bp is required for an alignment. The second reason
is due to a short random sequence inserted within the
viral-human integration site. The third reason is that the
alignment may be incorrect. (See Fig. 4.) We try to rescue
the alignment of the split reads for the first two cases.
If one side of a read aligns to the virus by BLAST,

and there is at least 10 contiguous bases unaligned, we
attempt to rescue this read as a split-read. The mate of
such a read must be aligned to human. If the mate is not a

Fig. 1 A pipeline to identify potential chimeric reads
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Fig. 2 This figure illustrates the orientation of the chimera reads when they map on the human genome. For all examples, we orient the human-virus
integration fragments such that the human reference is in +ve strain. a–c illustrate cases where human is on the 5’ side of virus. In such cases, for
each read Ri aligned on the human genome, we have either the whole read Ri or its prefix aligns on the +ve strand of the human genome or only
the prefix of Ri aligns on the -ve strand of the human genome. d–f illustrate cases where human is on the 3’ side of virus. In such cases, for every
read Ri aligned on the human, we have either Ri or its suffix aligns on the -ve strain of the human genome or only the suffix of Ri aligns on the +ve
strain of the human genome

split-read, we may be able to rescue the split-read as fol-
lows. We extract the sequence flanking the mate. The size
of the flanking region is set as d + 2 ∗ σ . If the split
read is real, the unaligned portion of the read should align
within this extracted flanking region. We use a fast SIMD-
based implementation of the Smith-Waterman algorithm
to check if this is the case. If no such pattern is found, we
discard the read. Otherwise, the read is updated as a true
split read.

Identify integration breakpoints
For each cluster C+

i (or C−
i ), we estimate the integra-

tion breakpoints on both human and virus as follows. To
estimate the human integration breakpoint for a cluster
C+
i , we report max

{
len(Ra) + Laj |(Ra, Laj ) ∈ C+

i

}
. Simi-

larly, the human integration breakpoint for a cluster C−
i

is estimated as min
{
Laj | (Ra, Laj ) ∈ C−

i

}
(see Fig. 5a). In

the case of the clusters containing a split read with a map-
ping for the human segment, we can estimate the exact
breakpoint (see Fig. 5b).
To estimate the virus integration breakpoint, the reads

in C+
i (or C−

i ) and their mates having a viral mapping
are considered. Similar to the detection of the human
integration, these reads are clustered into two groups:

Those mapping to the positive strand of the viral genome
(V+

i ), and those mapping to the reverse strand of the
viral genome (V−

i ). If the alignments are accurate, one of
these clusters should be empty. However, noisy mappings
might make both clusters non-empty. When one clus-
ter contains at least ε reads more than the other cluster
(ε = 2 by default), we assume that cluster to be the cor-
rect one. Otherwise, the viral breakpoint is not reported.
The orientation of the viral segment can be determined
based on the strand of the reads in the viral cluster and
the orientation of the human breakpoint. For example, if
the human breakpoint is deduced from a cluster C+

i and
the viral segment contains reverse strand reads, the 5’
most position of the viral segment is closest to the break-
point (see Fig. 5d). If the viral reads are from the +ve
strand, the 3’ most position of the viral cluster is the
closest to the breakpoint (see the procedure Virus_BP
in Fig. 6). If there are reads spanning across a break-
point as shown in Fig. 5c, the exact breakpoint can be
found.
The clusters generated in the clustering step contain

numerous random clusters. We need to filter them out.
For each cluster C+

i , its median rank is defined as the
median of the ranks of Laj for all (Ra, Laj ) ∈ C+

i . (Note: the
rank of Laj is defined in Section “Clustering reads”). The

Fig. 3 The work flow showing how clusters are refined and breakpoints are predicted
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Fig. 4 The figure shows how the human segment of a read may be
unaligned by BLAST. The black and gray lines indicate the human and
viral reference genomes, respectively. The red segments are
sequences originating from viral genome and the blue segments
originate from the human genome. The green segment indicates a
random sequence and the blue vertical lines indicate places where
reference and the human segment match. In (1), although the human
segment matches the reference, it is too short to be detected by
BLAST. In (2), a random sequence is present in the integration and the
human segment present is too short to be detected by BLAST. In (3),
their is no human segment at all. This may be due to an insertion or
due to a misalignment of the sequence. We will attempt to rescue
reads in cases (1) and (2) through local alignment

median rank for C−
i is similarly defined. We only retain

clusters with a median rank of 1.

Refining the Breakpoints
The predicted breakpoint of each cluster might not be
accurate due to a noisy mapping affecting the calculation
of the end points of V+

i clusters and V−
i clusters. It is pos-

sible that virus integrations in different cells are different,
but are close to each other. If the final clusters contain split
reads, we can use them to refine the predicted breakpoints
under such circumstances.
The split reads can predict the integration sites to a high

degree of accuracy. However, BLASTmay align split reads
to the virus and human genome off by several bases. From
all the split reads, we find the human and viral alignments
and take their median value M to be the exact break-
point. We report this median as the actual break point
if one of the read clusters contain at least ε split reads
more than the other (see the procedure Process_Clusters

Fig. 5 The figure shows how the breakpoints are estimated from a cluster of reads. The red segments of a read aligns to human genome (shown as
a black line), and the blue segments belong to the viral genome (shown as a gray line). The solid arrows show properly aligned reads and dashed
arrows indicate reads that are aligned incorrectly. For a read cluster C+

i ( or C−
i ) we take the 3’-most(5’-most) aligned position of the read cluster as

the estimated human breakpoint. In (a), there is no read passing through the actual breakpoint so the estimation can be off to the 3’ side (or 5’ side).
This can be as much as the maximum insert size span of the library. However, if there is a split read Rd (b), the exact human breakpoint can be
recovered. To find the viral co-ordinate of the integration following procedure can be used. If a split read is available close to the estimated human
breakpoint, the exact viral breakpoint can be found out c. Otherwise, the viral mappings of the cluster C+

i (or C−
i ) will be further sub-divided into

two clusters based on the strand of the mapping. The cluster containing the largest number of reads will be considered as correct. Then, the viral
breakpoints can be estimated using similar method as that for the human breakpoints d
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Fig. 6 Algorithm showing how the breakpoints are found for C+
i clusters

in Fig. 6). Note that in some cases read clusters may not
have a median rank 1 when there are many reads mapping
to different locations with the same expect values. In such
cases or when split reads are not present, breakpoints can
be estimated by local assembly. First, we identify aligned
reads (Ra, Laj ) and (Rb, Lbj′) in a cluster such that Ra and
Rb overlap by at least 30 bp with similarity > 75%. Next,
we pile-up all these read pairs to generate their consen-
sus sequence. These consensus sequences are mapped to
the reference genome with BLAST. If there exists an align-
ment with a unique smallest expect value, the unaligned
portion of this consensus sequence is mapped to the virus
database using BLAST. If there is a hit, the integration is
reported. If there are multiple hits to the human genome
with the same expect value, multiple breakpoints are pre-
dicted and these breakpoints are marked as ambiguous
breakpoints.

Results
This section studies the performance of BatVI, Virus-
Finder [8, 9] and VirusSeq [6]. ViralFusionSeq [7] is not
included in the comparison since it cannot finish run-
ning within two weeks in our experiments. The details
of the simulation and real-data experiments are given
below.

Generation of simulated data
Using the simulator program in VirusFusionSeq [7],
an infected genome is simulated where chromosomes
1–4 are infected by four different HBV strains. Then,
all integrated viral regions, along with their two 500
bp flanking human regions were extracted. Next, using
the default parameters of the Mason simulator [18], a
20X coverage dataset of these extracted regions were
generated. Altogether, 1762 integration sites were gener-
ated in this simulation.
From the simulated dataset, we downsampled it and cre-

ated two additional simulated datasets that contain 50%
and 25% of the original reads.

Integration detection in simulated data
This section compares the performance of BatVI, Virus-
Finder 2 [9] and VirusSeq [6] on the simulated datasets
generated in the previous section. In this comparison, a
prediction was considered to be correct if it was within
300 bases from the simulated breakpoints of some sim-
ulated viral integration and with the correct orientation.
VirusFinder 2 reports two types of integrations desig-
nated as high-confident and low-confident. To increase
its sensitivity, we pool these two types of integrations
together.



The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):71 Page 107 of 175

Figure 7 shows the ROC of BatVI (i.e. the number of
correct predictions versus the number of incorrect predic-
tions thresholded by the minimum number of supporting
reads), along with the predictions of VirusFinder 2 [9] and
VirusSeq [6] under different sequencing depths.
Without downsampling, VirusFinder 2 and VirusSeq

identify 32% and 35% of the true integrations with about
1% and 0.1% false positives respectively. For BatVI, if we
take the viral integrations supported by at least one read,
BatVI identifies 85% of the true positives, with 28% false
positives. However, if we select a more stringent cutoff
for BatVI by increasing the number of reads support-
ing the predictions, the false positive rate rapidly goes
down (see Fig. 7). BatVI can predict more than twice
true positives compared to other programs under 1% false
positive rate.
In addition, as the sequencing depth is reduced, the

number of predictions by the other programs decrease
very rapidly. For VirusFinder 2, 42% and 84% of predic-
tions are lost at 50% and 25% sampling rates respectively.
For VirusSeq, 60% and 95% of the predictions are lost at
50% and 25% sampling rates respectively. However, BatVI
is more robust. If we take the number of predictions
with read count cutoff chosen so that the false positive
rate is kept at less than 1%, BatVI loses only 7% and
38% of the integrations at 50% and 25% sampling rates
respectively.
Next, we study the distance between the actual break-

points and the predicted breakpoints. Figure 8 shows the
result. The predictions by BatVI and VirusFinder 2 are
very close to the actual breakpoint most of the time.

However, more than half of the breakpoints reported by
VirusSeq can be as far as 100 bp away from the actual
breakpoints.

Performance on real data
This section compares the performance of BatVI, Virus-
Finder and VirusSeq using real datasets. We ran the tests
in the high-performance cluster at Genome Institute of
Singapore, allocating 32GB of memory and ten threads
with a time limit set at 14 days.
In [8], VirusFinder 1[8] and VirusSeq [6] were compared

using two WGS libraries 198T and 268T from [19]. In
the first experiment, we run BatVI on these two datasets.
BatVI finished the virus integration calling in several
hours. VirusFinder took one week to process the library
268T and it crashed on the library 198T. VirusSeq did
not finish even after two weeks. In fact, [8] also failed to
process 198T and 268T using VirusSeq within the allowed
time.
Table 1 lists all HBV integrations reported by the origi-

nal paper [19] and predicted by BatVI and VirusFinder 1.
(Since we fail to run VirusFinder 1, the integration list of
VirusFinder 1 is extracted from the original paper [8]).
VirusFinder 1 reported 2 and 3 integrations for libraries
198T and 268T respectively. BatVI reported the superset
of HBV integrations reported by VirusFinder 1. If we con-
sider the integrations supported by at least three reads,
BatVI reported 6 integrations for each library. The extra
integrations reported by BatVI were also reported in the
original study within a deviation of 30 bp. (Three integra-
tions reported in the library 268T appear within 300 bp to

Fig. 7 The change of false positives and true positives with the number of reads used to predict an integration with BatVI. The x-axis is log-scaled.
The plots for the comparisons except BatVI are shown as straight lines for clarity, but they are in fact points with x values not exceeding 0
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Fig. 8 The graph shows the distribution of the distance between the exact breakpoint and the predicted breakpoint for different programs

an integration reported in the original study andmay refer
to the same breakpoint).
The second experiment studies the performance of

VirusFinder 2 [9], VirusSeq [6] and BatVI on 7 sam-
ples in [19] that have viral integrations reported by
HIVID [15]. (HIVID is based on capture sequencing.
It has high sequencing depth. Here, we treat it as a
golden benchmark dataset). Since VirusFinder 2 and
VirusSeq were slow to run, we downsampled the selected
libraries and tested the performance of different methods
on them.

Table 1 Comparison of integrations reported by BatVI,
VirusFinder 1 and the original paper for the libraries 268T and
198T

BatVI Original VirusFinder 1 Library

chr10 125472276 125472277 - 198T

chr10 131711533 131711538 - 198T

chr10 131726472 131726472 - 198T

chr19 30297359 30297360 - 268T

chr19 30298788 30298788 30298787 268T

chr5 1269391 1269361 1269387 198T

chr5 1269406 1269406 1269405 198T

chr5 1292392 1292393 1292391 268T

chr5 1292073 - - 268T

chr5 1292329 - - 268T

chr5 1292404 1292404 1292403 268T

chr8 82390663 82390663 - 198T

chr3 - 191648206 - 198T

Each selected sample has two libraries: The first library
contained reads having an insert size of 170 bp while the
other library contained reads having an insert size of 800
bp.We downsampled them as follows. First, we align these
reads on the human genome using BWA [20]. Paired-end
reads having soft-clips or with at least one side unmapped
were extracted. These paired-end read are more likely to
be originated from viruses or their integrations in the
human genome. In addition to these paired-end reads,
one million random paired-end reads were extracted from
each library. In total, 14 datasets are obtained (see Table 2
for the number of paired-end reads selected in these
datasets). Then each dataset was processed using BatVI,
VirusFinder 2 and VirusSeq. For BatVI, we report integra-
tions supported by at least four paired-end reads. For the
170 bp and 800 bp datasets, two integrations were consid-
ered to be the same if they are within 200 bp and 800 bp
away from each other respectively.
Figure 9 shows the intersection of these results. BatVI

result is almost a superset of other programs. VirusFinder
2 and VirusSeq are the second best in terms of the num-
ber of predictions on 170 bp and 800 bp read classes
respectively. If we take HIVID results as the correct pre-
dictions, for the 170 bp reads, 93% of BatVI predictions
are validated and it reports nearly twice more validated
predictions compared to VirusFinder 2. For the 800 bp
dataset, 88% of BatVI predictions are validated, while
it again reports nearly twice more validated predictions
compared to VirusSeq. Also, all the validated hits of the
other programs were reported by BatVI. Another obser-
vation is that VirusSeq reports just a single integration
in the 170 bp dataset while VirusFinder 2 reports only
2 integrations in the 800 bp dataset (See Table 3). This
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Table 2 Table showing the user time in seconds taken for each
program to process a set of libraries

Library VirusSeq Virusfinder 2 BatVI

145T.170 139063.09 10681.89 1068.59

145T.800 142839.84 9708.24 1818.19

174T.170 138189.30 8404.97 347.36

174T.800 174110.80 11255.71 895.41

182T.170 138965.89 10423.38 397.17

182T.800 143127.62 12803.67 321.79

186T.170 119893.79 10519.19 221.69

186T.800 121806.51 11444.95 220.89

23T.170 118660.10 10662.88 457.60

23T.800 116794.80 11226.10 517.36

266T.170 118169.59 10419.90 344.68

266T.800 96608.79 9852.84 240.10

32T.170 178890.78 9734.77 271.37

32T.800 139353.66 8969.77 231.51

32T.800 139353.66 8969.77 231.51

The libraries are sub-samplings of real life data. The libraries with suffix 170 have an
average insert size of 170 bp while those with the suffix 800 have an average insert
size of 800 bp

indicates that VirusSeq cannot work for paired-end reads
with small insert size while VirusFinder 2 cannot work for
paired-end reads with large insert size. (Note: It is
expected that VirusFinder 2 cannot work for large insert
size since it is based on CREST and CREST cannot work
well for large insert size).

Reanalysis of data from Sung et. al.
We ran BatVI on all 87 samples of liver cancer data from
[19]. The original analysis reported 399 integration sites
and our new analysis revealed 812 integrations supported
by more than one read. BatVI detects 341 of the original
breakpoints (integrations are considered to be the same if
they occured within 800 bp away from each other). To get
a better idea about the predictions, we compared the pre-
dictions for HIVID, BatVI and the original analysis in the
samples where HIVID validation is available. Out of the
246 HIVID predictions, original analysis found 115 (47%)
HIVID validated integrations while BatVI found 133 (54%)
HIVID validated integrations. This shows that BatVI is
more sensitive in detecting these confident integrations.
The original analysis [19] identified 31 out of 87 samples

containing recurrent HBV integrations with TERT, MLL4
and CCNE1 oncogenes. BatVI was able to identify recur-
rent HBV integrations in all these samples. Furthermore,
it identified 7 more samples with HBV-TERT integration
and an extra sample with the HBV-MLL4 integration. We
know that HBV integration will up-regulate the expres-
sion of TERT and MLL4. When we analyze the gene
expression data for these 8 extra samples, we see that
TERT andMLL4 expressions are higher in tumor samples
compared to the normal samples, relative to the samples
where no such integration were found (see Fig. 10). This
shows that the additional HBV integrations predicted by
BatVI are likely to be real. Our analysis indicates that
the original study gave 8 false negatives (i.e the original
analysis was able to find HBV integrations to this listed
oncogenes in 39% of the samples while BatVI can detect

Fig. 9 The venn diagrams for the HBV integrations reported by BatVI, VirusFinder 2, VirusSeq and HIVID. a is the Venn diagram for 7 samples with
insert size 170 bp. b is the Venn diagram for the same 7 samples with insert size 800 bp
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Table 3 Comparison of viral integrations reported by VirusFinder
2, VirusSeq and BatVI on 14 downsampled libraries. The library
suffixes indicate the expected insert size

VirusSeq Vfinder BatVI

145T.170 0 3 11

145T.800 6 0 15

174T.170 0 0 1

174T.800 1 1 6

182T.170 0 1 3

182T.800 3 0 3

186T.170 0 0 2

186T.800 3 0 2

23T.170 0 6 15

23T.800 8 1 15

266T.170 0 2 10

266T.800 0 0 8

32T.170 1 0 4

32T.800 2 0 5

them in 49% of the samples). Note that this difference may
have clinically significant consequences since the false
negatives may lead to incorrect treatment for the patients.

Speed comparison
This section performs the efficiency comparison of Virus-
Finder 2, VirusSeq and BatVI. For the speed comparison,

we used the 14 downsampled datasets as stated in Table 2.
Table 2 reports the real times taken by each program in
seconds.
The table shows that the speeds of the programs dif-

fer by at least an order of magnitude in general. VirusSeq
is very slow compared to the other programs. It will be
challenging to perform viral integration studied on large
datasets using VirusSeq. VirusFinder 2 is more efficient
but it is clearly much slower than BatVI. In practice, we
observe that finding viral integrations with BatVI can be
more efficient than aligning the reads to a human genome
using BWA [20].

Discussion
BatVI uses two criteria for judging the quality of a viral
integration: the rank and the number of reads in a clus-
ter. Rank 1 clusters of BatVI are the unambiguous viral
integrations. Currently, BatVI only reports rank 1 clus-
ters. For the remaining clusters, they might fall on repeat
regions and we currently store them separately. Users can
inspect these remaining clusters if they want.
For read count, a cluster with a higher read count has

higher confident. However, we do not impose a cutoff
on reporting integrations based on the read count. The
reason is that the read count depends on the depth of
sequencing and the frequency of cells with integrations.
Therefore, the correct cutoff for the read count depends
on the experimental setting. The user can adjust the cutoff
based on their knowledge on the datasets.

Fig. 10 The violin plots on the left and on the right show the tumor/normal expression ratios of TERT and MLL4, respectively. For each plot, the 87
samples are partitioned into three violin plots. The second violin plot (NG) corresponds to the original samples where the HBV integrations were
detected. The first violin plot (BatVI) corresponds to the extra samples where the HBV integrations were detected. The third violin plot (nil)
corresponds to the samples with no HBV integration detected
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Conclusion
Discovering viral integrations using NGS data has become
important especially for disease samples that have strong
association with viral infections. However our experi-
ments show that existing methods are slow and are not
sensitive enough. We developed an algorithm BatVI, and
show that it is much faster than existing programs while
being more sensitive. Also, it does not show any bias
towards the insert size of the libraries in contrast to the
other methods compared. We believe that BatVI will be a
useful tool for studying viral integrations in future.
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