
The Author(s) BMC Bioinformatics 2017, 18(Suppl 6):235
DOI 10.1186/s12859-017-1635-7

RESEARCH Open Access

An extensive assessment of network
alignment algorithms for comparison of brain
connectomes
Marianna Milano1†, Pietro Hiram Guzzi1*†, Olga Tymofieva2, Duan Xu2, Christofer Hess2, Pierangelo Veltri1

and Mario Cannataro1

Abstract

Background: Recently the study of the complex system of connections in neural systems, i.e. the connectome, has
gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here
we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain
connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and
brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions
that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations
present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has
been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network
space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels.
Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of
graphs. The latter step may be modeled as a network alignment (NA) problem.

Results: In this work, we first define the problem formally, then we test six existing state of the art of network aligners
on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological
measures. We also evaluated the robustness of algorithms to alterations of the dataset.

Conclusion: The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully
network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm.
The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation
brain connectomes. The methodology has been experimented on several brain datasets.

Keywords: Human connectome, Graph theory, Alignment network algorithms

Background
The brain is a complex organ of vertebrates and it is
composed of single specialized cells called neurons. Neu-
rons are connected among them by synapses forming
a complex network of connections. Connections among
neurons carry signal pulses that carry information [1].
The activity of the brain is mostly due to this set of
connections.
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Recent studies have demonstrated in an independent
way a strict relation among the set of connections, the
functions of the brains and the relations among the
insurgence of neurological diseases and the variations
of mechanims of connections with respect to healthy
people [2]. For example, in the Alzheimer Disease a
decreased connectivity, and hippocampus changes are
detected [3], the Parkinson disease is associated to altered
connectivity [3], or in anxiety disorder an increased con-
nectivity and amygdala changes is found [4].

Consequently, the interest for the modeling and the
analysis of the whole system of the brain elements and
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their relations has lead to the introduction of the so-
called connectomics, i.e the study of connectome referred
to as the set of elements and interactions [5]. Connec-
tomics is based on modern technologies of investigation
of the brain that are able to take a sort of picture of
the brain connections of patients [6]. Connectome may
be analyzed using different zoom, e.g. by focusing on sin-
gle components, i.e. neurons and axons, or grouping them
into regions. Usually the analysis of single components is
defined to as anatomic connectivity, while the analysis of
regions is called functional connectivity because regions
are in general perfoming different functions.

Among the others, one of the main sources for deriving
information about connectomes is Magnetic Resonance
Imaging (MRI) [7]. A typical MRI experiment produces
a set of images providing both anatomical and func-
tional information. The first one is constituted by axonal
fibers between cortical regions, the second one provides
information about the functional connectivity, i.e. the

activation of region of interest (ROI). Such analysis is often
conducted by using diffusion tensor imaging (DTI) that
is a specialised version of Diffusion-weighted magnetic
resonance imaging (DWI or DW-MRI), and a DTI has
been used extensively to map white matter tractography
in the brain through the analysis of patterns of diffu-
sion of molecules through bundles of neural axons. The
anatomical connectivity structures are primarily derived
through applying tractography algorithms to DTI data.
Functional connectivity data are derived from functional
magnetic resonance imaging (fMRI). The fMRI images
show active regions of the brain at a given instance, based
on the blood oxygen consumption level. The obtained net-
works are called functional networks. The combined use
of these two techniques is used to determine the structure
of human brain connectome as depicted in Fig. 1.

Once obtained, connectome data needs to be integrated
into a suitable model. One of the most used representation
of such data is given by the graph theory, whose models

Fig. 1 Building a representative network from experimental data: example of a workflow. Diffusion or functional MRI images are acquired for a
subject according to the study to be conducted. The MRIs are used to perform whole-brain parcellation by selecting a suitable method. Starting
from the parcelled whole brain the computation of connections is performed and a weighted adjacency matrix is constructed. Then, the weights of
adjacency matrix are binarized. Finally, the resulting brain network is obtained
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have been used by different approaches to extract clini-
cally relevant information [8, 9]. Graph theory ensures the
possibility of modeling such data into a single network
model and then the possibility to summarize all the char-
acteristics into few measures, giving the understanding of
the organization of the entire network as well as individual
network elements [10].

Differently to other kind of networks, the modeling
of connectomes using graphs is a open research area
since there are many possibility for defining the nodes,
the edges, that corresponds to different scale of views.
For instance, nodes may represent neurons and edges
their axons [11]. Here we focus on the representation
of region of interest (ROI) as nodes, and the represen-
tation of functional or anatomical connections as edges.
There exist three main categories of research applied on
such networks: (i) the improvement of the reconstruc-
tion of graphs starting from MRI images, (ii) the iden-
tification of the structure of networks (i.e. which is the
theoretical model underlying the brain network organiza-
tion), (iii) the identification of relevant modules that may
be used to understand brain functions and their mod-
ifications in case of disease (e.g. for early detection of
diseases). The first and the third problem strictly rely
on the definition of a framework for the comparison of
graphs.

Considering, for instance, the first problem it should
be noted that each MRI experiment produces a series of
images (either from intra-subject or inter-subject) that
need to be aligned into a spatial domain. When using both
functional and structural images, coregistration is the pro-
cess of the alignment of functional and structural images
to map functional information into anatomical space. In
such a way each region will correspond to a node of a
network using an atlas to define anatomically meaningful
regions [12].

Nevertheless, such an approach may lead to substan-
tial inaccuracies in cases of abnormal anatomy (e.g. in
presence of diseases ) and early brain development (e.g.
in brain of child). To address this problem, it has been
recently proposed to use atlas-free parcellation and to
construct and compare individual connectomes only in
the network space [13]. In [13] the authors perform the
atlas-free parcellation as the finest parcellation that still
interconnects the whole brain, leaving no nodes isolated.
Then, they group subjects into homogeneous groups and
the NA is performed within each group. The sum network
is obtained and mapped to the anatomy of a “reference
brain.”

Such work, demonstrates the possibility to use NA
into the atlas-free parcellation workflow and it poses to
the research community the challenge to systematically
explore the performance of different NA algorithms since
different NA approaches are widely applied in molecular

biology analysis, but they have not been explored yet in
relation to MRI connectomics.

The techniques for the alignment of biological networks
fall into two categories: (i) the local network alignment
searches relatively small similar subnetworks that are
likely to represent conserved functional structures, (ii)
the global network alignment looks for the best super-
imposition of the whole input networks. However, these
approaches can not be easily applied in the connectome
alignment problem. The reason is related to the strat-
egy underlying methodology of alignment. For example,
the local network aligners, widely used to build the align-
ment of protein interaction networks (PINs) [14], take as
input two networks and a list of seed nodes used to build
the initial alignment graph (see [15] for complete details
about the construction of the alignment graph). These ini-
tial nodes are selected based on biological consideration,
such as homology relationships between nodes of PINs.
Since the nodes of the brain networks represent ROIs,
the homology information cannot be obtained in the case
of connectome networks and then, the local alignment
cannot be applied.

In this paper we selected six existing state of the art
global alignment algorithms and we tested these aligners
on diffusion MRI-derived brain networks. The algorithms
tested here are MAGNA++ [16], NETAL [17], GHOST
[18], GEDEVO [19], WAVE [20], Natalie2.0 [21]. The algo-
rithms are applied to build the alignments among the
diffusion MRI-derived brain networks. After the align-
ments were built, we compared the performance of these
algorithms and evaluated this robustness.

Brain parcellation
An essential step in the analysis and macroscopic map-
ping of brain network is the subdivision of the brain into
large-scale regions, also known as “parcellation process”.
The brain parcellation consists of dividing the brain into
a set of macroscopic, homogeneous and non-overlapping
regions with respect to information provided, gener-
ally, by techniques based on magnetic resonance imaging
(MRI) [22]. Especially, MRI has allowed to obtain infor-
mation about anatomical connectivity, functional con-
nectivity, or task-related activation. Different pieces of
evidence demonstrate that parcellation of the brain into
the homogeneous region is far from being defined, as
well as the edges definition and their placement. In the
graph representation of a parcellation-based connectome,
the nodes of the graph correspond to a brain region and
the edges correspond to structural or functional connec-
tions between these regions. Despite its relative simplicity,
the application of graph theory to the study of connec-
tomes presents some particular challenges related to the
meaningful definition of nodes and edges. An ideal model
should represent the true subsystems (as nodes) and the
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true relations (as edges). However, as deeply investigated
in [23], there is no clear evidence for the optimal defini-
tion of both nodes and edges. For example, an ideal node
definition should group a set of neurons to maximize the
functional homogeneity within and to maximize the func-
tional heterogeneity among different nodes. Moreover, it
should take into account the spatial (and hopefully tempo-
ral) relationship among nodes. Besides the definition, the
edges representation is also currently an open challenge
and this task is related to the type of measured connec-
tivity, and the method used to quantify it. As mentioned
above, brain connectivity can refer to different aspects of
brain organization including (i) anatomical connectivity
consisting of axonal fibers connecting cortical and sub-
cortical regions inferred from diffusion imaging (see
Fig. 2 (1)), and (ii) functional connectivity defined as the
observed statistical correlations of the Blood oxygenation
level dependent (BOLD) signal between brain regions.

That is, the choice of parcellation scheme has a signif-
icant impact on the subsequent analysis. There currently
exist three parcellation-based connectome approaches:

1. Parcellation of the brain by using predefined
anatomical templates. This approach consists of
the registration of the structural images from MRI to
anatomical atlas based on the Brodmann areas [24].
In this way, the whole brain is subdivided into labeled
regions according to the different labels regions of
the templates;

2. Parcellation of the brain by using randomly
generated templates [25]. For the random
parcellation different algorithms are applied to

produce parcels of roughly equal size. Thus, the
generated templates are characterized by
approximately uniformly sized brain regions to avoid
anatomical biases;

3. Connectivity-based parcellations that aim to
delineate brain regions by analyzing the similarities in
structural or functional connectivity patterns. Based
on the notion that regions with a similar connectivity
profile are involved in the same analogous functional
roles, the connectivity-based parcellation partitions
small seed regions into a largest collection of
functionally homogeneous brain regions by
clustering seeds with similar connectivity profiles.

However, each method presents some pitfalls. For
example, the registration of brain of the studied subject
to a generic brain with defined Brodmann areas raises the
question of the accuracy of mapping. In fact, in the most
of the cases, the borders of the Brodmann areas, origi-
nally defined using cytoarchitectural differences between
brain regions, do not match with the cortical surface
analyzed.

This approach is limited by inter-subject variability and
can be especially problematic in the context of brain matu-
ration. Furthermore, it has been demonstrated that parcel-
lation of brain with predefined anatomical templates may
impact negatively all the subsequent analysis by introduc-
ing evident biases [13]. In this paper we focus on the ran-
dom, atlas-free definition of nodes in individual subjects
(see Fig. 2 (2)), which can allow for a fully network-driven
study of the brain and for comparing brains of different
subjects and, potentially, species [13].

Fig. 2 Definition of (1) edges and (2) nodes using an atlas-free random parcellation and using diffusion MRI and tractography. In the first box the
edges reconstruction is reported, whereas in the second box the two kind of whole brain parcellations in newborns, 6 month-old subjects and adults
are shown. The first cortical parcellation is performed by setting the number of equal-area nodes equal to 95. The second cortical parcellation is
performed by setting the number of equal-area nodes equal to 1000. In this last one it is possible to note disconnected regions highlighted in green
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Global network alignment algorithms
The identification of an accurate node mapping between
atlas-free networks may offer significant details on the
comparison of brains or structure of groups of subjects,
such as healthy versus diseased subjects. Many differ-
ent network alignment methods have been proposed in
biological fields [26].

Formally, a graph G is defined as G = {V , E}, where V
is a finite set of nodes and E is a finite set of edges. Let
G1 = {V1, E1} and G2 = {V2, E2} be two graphs, where
V1,2 are sets of nodes and E1,2 are sets of edges, a graph
alignment is the mapping between the nodes of the input
networks that maximizes the similarity between mapped
entities. From a theoretical point of view, the graph align-
ment problem consists of finding an alignment function
(or a mapping) f : V1 → V2 that maximizes a cost func-
tion Q. The similarity between the graphs is defined by a
cost function, Q(G1, G2, f ), also known as the quality of
the alignment.

Let f be an alignment between two graphs G1 and G2,
given a node u from G1, f (u) is the set of nodes from G2
that are aligned under f to u. Q expresses the similarity
among two input graphs with respect to a specific align-
ment f and the formulation of Q strongly influences the
mapping strategy.

There exist different formulations of Q that fall into
following the classes:

Topological Similarity: Graphs are aligned by consid-
ering only edge topology, so that the perfect alignment is
reached when input graphs are isomorphic.

Usually, the cost function is defined as the number of
edges conserved by f with respect to the total number of
edges in the source network (G1), also referred to as edge
correctness (EC) [27]. Therefore, the EC does not take into
account the target network (G2).

EC = (v1, v2) ∈ E1|f (v1, v2)| ∈ E2
|E1| (1)

Another typical measure is the Induced Conserved
Structure, ICS [27]. Let D be the number of edges in a sub-
network of G2 induced on the nodes in G2 aligned to the
nodes in G1, ICS of f is the ratio of the number of edges
conserved by f to D.

ICS = |f (E1)|
|E(G2[ f (V1)] )| (2)

where D is |E(G2[ f (V1)] )|.
However, ICS fails in the penalization of misaligning

edges in the smaller network because it takes into account
the target network.

Finally, the Symmetric Substructure Score, S3[27], takes
into account the unique edges in the composite graph
created by the overlap of two networks.

S3 = |f (E1)|
|E1| + |E(G2[ f (V1)] )| − |f (E1)| (3)

S3 has been shown to be superior to existing mea-
sures since it penalizes both alignments from sparse graph
regions to dense graph regions and alignments from dense
graph regions to sparse graph regions.

Node Similarity: Such function considers the similarity
among mapped nodes. Nodes of the aligned graphs can
be more or less similar to each other. Thus the alignment
should align each node of one graph to the most similar
node of the other one given a node similarity functions,
s(v1, v2) → R, v1 ∈ V1, v2 ∈ V2. The overall objective is to
maximize the sum of scores considering aligned nodes.

NC = maxsumv1,v2 = f (v1)s(v1, v2) (4)

Hybrid approaches: Some recent formulations of Q
take into account of both of the approaches by linear
combination.

The network alignment problem can be formulated in
various ways. In general, the network alignment can be
classified as local alignment or global alignment.

The local alignment aims to find multiple and unre-
lated regions of isomorphism, i.e. same graph structure,
between the input networks, where each region implies
a mapping independently of other regions. The strategy
consists of the mapping or set of mappings between sub-
sets of nodes such that their similarity is maximal over
all possible subsets. These subnetworks correspond to
conserved patterns of interaction that can represent a con-
served motif or pattern of activities (a synopsis is available
in [15]). The global alignment aims to find a mapping that
should cover all of the nodes of the input networks, asso-
ciating each node of a network with one node of the other
networks or marking the node as a gap when no possi-
ble match exists. This strategy does not consider small
regions of similarity, i.e. conserved motifs, but tries to find
a consistent mapping between the whole set of nodes of
the networks.

In this work, six global alignment algorithms were cho-
sen to built the global alignment of brain networks. We
give hereafter a short conceptual description.

A popular existing method of global alignment is
MAGNA [16]. MAGNA is a global network aligner that
simulates a population of alignments that evolves over
time by applying a genetic algorithm and a function for
the crossover of two alignments into a superior alignment.
Since the genetic algorithm simulates the evolutionary
process guided by the survival of the fittest principle, only
alignments, i.e. those that conserve the most edges, sur-
vive. Thus, MAGNA proceeds to the next generation,
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until the alignment accuracy cannot be optimized fur-
ther. Recently, an extension of MAGNA algorithm called
MAGNA++ was developed.

The second aligner is NETAL [17], an algorithm for
the global alignment widely used to protein-protein inter-
action networks. NETAL builds the best global network
alignment by applying a greedy method, based on the
alignment scoring matrix, which is derived from both
biological and topological information of input networks.

The third algorithm, GHOST [18], is a global pairwise
network aligner that uses a novel spectral signature based
on the local neighborhood’s topology to measure topo-
logical similarity between subnetworks. The idea behind
GHOST consists of the combination of the novel novel
spectral signature with seed-and-extend procedure to
build the alignment.

The fourth global aligner is GEDEVO [19], a novel tool
for efficient graph alignment.

Underlying the GEDEVO method is the Graph Edit Dis-
tance model (GED), where a graph is transferred into
another one with a minimal number of edge insertions
and deletions. Thus, GEDEVO uses the GED as optimiza-
tion model for finding the best alignments.

The fifth algorithm is WAVE [20] a general and novel
alignment strategy which aim is to optimize both node
and edge conservation while constructing an alignment.
WAVE is used on top of an established node cost func-
tion and it leads to a new superior method for global
network alignment, by favoring conserved edges among
nodes with node cost function similar over those with
node cost function dissimilar.

The last algorithm is Natalie2.0 [21], a network align-
ment method, which looks at the network alignment
problem as a generalization of the quadratic assignment
problem and solves it using techniques from integer linear
programming.

Results and discussion
Dataset
The dataset consisted of 24 diffusion MRI-derived struc-
tural networks of human brain: 12 networks with a
number of nodes equal to 95 and the 12 networks with
a number of nodes equal to 1000. The brain networks
are related to three different stages of development by
including newborns (NE), six-month-old infants (6M),
and adults (AD). See Methods Section for a complete
description.

Building of brain network alignment
We built the alignment of all networks with 95 and 1000
nodes (for convenience we call the two dataset networks95
and networks1000 ) related to same growth stages (NE,
6M, AD) by applying MAGNA++, NETAL, GHOST,
GEDEVO, WAVE and Natalie2.0 algorithms. Initially, we

aligned each network with itself. We executed this stage in
order to test if the algorithm is able to build the alignment
(see [28] for more details). Then, we aligned the brain
network related to the same growth stage, NE, 6M, AD.
We run all NA methods on the same Linux machine with
Intel Core i5 and 4GB of RAM. We also generated the
same alignments using the six NA algorithm selected. We
selected the following MAGNA++ parameters: S3 as mea-
sure of Edge Conservation, the α parameter equal to 0,
in order to consider only topology, whereas the popula-
tion size, number of generation, fraction of elite members
were set to default values. We tested different parame-
ters and obtained best results with the default parameters
for NETAL, GHOST, GEDEVO, Natalie2.0. WAVE did not
require to set specific parameters. The NETAL param-
eters were: a that controls the weight of similarity and
interaction scores, b that controls the weight of biological
and topological similarities, c that controls the contribu-
tion of neighbors of two nodes in calculating the similarity
between them, i that defines the number of iterations
for computing similarities. In GEDEVO, pop parameter
that controls the number of new individuals per itera-
tion set equal to 1000 and maxsame that controls the
stop after N iterations without any score improvement
were equal to 300. In Natalie2.0, beta set equal to 1, in
order to consider only topology, whereas, maxJsonNodes
that controls maximum number of nodes to be generated
and verbosity that specifies the verbosity level parameters
were set to default values. To build the alignment using
GHOST, nneighbors was set to all, serchiter that controls
the number of local search iterations that should be per-
formed after the initial global alignment is complete, set
equal to 10, beta that controls the edges alignment in the
initial seed-and-extend phase of the algorithm, set equal
to 1, ratio that controls ratio of bad-moves allowed dur-
ing the local-search phase of the alignment algorithm, set
equal to 8.0.

The global alignments were built among the networks95
and then among the networks1000.

At the end of this alignment step, we built 48 global
alignments for each selected aligner by using the dataset
networks95. Table 1 presents all the obtained alignments.

About the networks1000, we built 48 alignments with
NETAL, GHOST, GEDEVO, WAVE according to Table 1.
Since MAGNA++ requires that network 1 has fewer
nodes than network 2 to build the global alignment, we
aligned each smaller network, in term number of nodes, to
larger networks. Finally we obtained 30 alignments built
with MAGNA++. We do not have alignments by using
Natalie2.0 because the algorithm was not able to build the
alignment among networks with high nodes number.

Table 2 reports the execution time to build the align-
ment on the networks with 95 nodes and on the networks
with 1000 nodes for all global alignment algorithms.
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Table 1 List of the alignments built among the networks with 95
nodes

Network Pairwise alignments

NE01 NE01 vs NE01; NE01 vs NE02; NE01 vs NE03; NE01 vs NE04

NE02 NE02 vs NE01; NE02 vs NE02; NE02 vs NE03; NE02 vs NE04

NE03 NE03 vs NE01; NE03 vs NE02; NE03 vs NE03; NE03 vs NE04

NE04 NE04 vs NE01; NE04 vs NE02; NE04 vs NE03; NE04 vs NE04

6M01 6M01 vs 6M01; 6M01 vs 6M02; 6M01 vs 6M03; 6M01 vs 6M04

6M02 6M02 vs 6M01; 6M02 vs 6M02; 6M02 vs 6M03; 6M02 vs 6M04

6M03 6M03 vs 6M01; 6M03 vs 6M02; 6M03 vs 6M03; 6M03 vs 6M04

6M04 6M04 vs 6M01; 6M04 vs 6M02; 6M04 vs 6M03; 6M04 vs 6M04

AD1 AD1 vs AD1; AD1 vs AD2; AD1 vs AD3; AD1 vs AD4

AD2 AD2 vs AD1; AD2 vs AD2; AD2 vs AD3; AD2 vs AD4

AD3 AD3 vs AD1; AD3 vs AD2; AD3 vs AD3; AD3 vs AD4

AD4 AD4vs AD1; AD4 vs AD2; AD4 vs AD3; AD4 vs AD4

Topological evaluation
Here, we aim to evaluate the quality of the alignments
built with MAGNA++, NETAL, GHOST, GEDEVO,
WAVE, Natalie2.0 NA algorithms. The topological qual-
ity is related to two alignment algorithm capability as the
reconstruction of the true node mapping and the conser-
vation of as much as possible edges. Typically, the Node
Correctness (NC) is the measure widely used to evalu-
ate how an alignment reconstructs the true node mapping
correctly. Instead, different measures are used to evalu-
ate how well the edges are conserved on an alignment,
such as EC, ICS or S3 (see the previous Section). How-
ever, among the selected algorithm, MAGNA++ is the
unique tool that enables to compute all quality measures,
NC, EC, ICS and S3. For this reason, we computed the
quality of built alignments by using the software for NA
evaluation proposed in [26]. The software ensures the
computation of six topological measures: Precision Node
Correctness (P-NC), Recall Node Correctness (R-NC), F-
score of Node Correctness (F-NC), High Node coverage
(NCV), Generalized S3 (GS3), and NCV combined with
GS3 (NCV-GS3). P-NC evaluates the the precision of the

Table 2 Execution Time to build the global alignment with
MAGNA++, NETAL, GHOST, GEDEVO, WAVE, Natalie2.0 for the
networks with 95 nodes and the networks with 1000 nodes

Execution time for network Execution time for network
with 95 nodes with 95 nodes

MAGNA++ 1200 seconds 1800 seconds

NETAL 2 seconds 4 seconds

GHOST 2 seconds 10 seconds

GEDEVO 120 seconds 0.2 seconds

WAVE 5 seconds 5 seconds

Natalie2.0 60 seconds -

alignment i.e. the percentage of the aligned node pairs
that are also present in the true node mapping. P-NC is
defined as:

P − NC = (M ∩ N)

(M)
(5)

were M is the set of node pairs that are mapped under the
true node mapping and N be the set of node pairs that are
aligned under f.

R-NC evaluates the percentage of all node pairs from
the true node mapping that are aligned under f and it is
defined as:

R − NC = (M ∩ N)

(N)
(6)

GS3 is the percentage of conserved edges Nc out of the
total of both conserved and non-conserved edges Nn:

GS3 = Nc
Nc + Nn

(7)

NCV is the percentage of nodes from G1 and G2 that
are also in G’1 and G’2 subgraphs:

NCV = V ′
1 + V ′

2
V1 + V2

(8)

Finally, NCV-GS3 is the geometric mean of the NCV
and GS3 measures. These six measures evaluate alignment
quality from different aspects and they can be divided
in two groups, the first one composed by P-NC, R-NC
and F-N measures that estimate how well the alignment
captures the true node mapping, and the second one
formed by NCV, GS3 and NCV-GS3 measures that cap-
ture the size of the alignment. We computed P-NC, R-NC,
F-NC, NCV, GS3 and NCV-GS3 for each alignment built
with MAGNA++, NETAL, GHOST, GEDEVO, WAVE,
Natalie2.0. Then, we compared these measures in order to
analyze which algorithm ensures a higher alignment qual-
ity. However, we focus on F-NC and NCV-GS3 as the most
representative non-redundant measures because these are
both a combination of two individual measures.

Figures 3 and 4 show an overview of topological mea-
sures comparison on networks95 whereas Figs. 5 and 6
show an overview of topological measures comparison on
networks1000 .

We note that the best results in terms of edge conserva-
tion were obtained when applying MAGNA++ as global
aligner both on networks95 and networks1000. We also note
that values of NCV-GS3 for networks95 are higher than
NCV-GS3 for networks1000.

Regarding the reconstruction of the true node mapping
we note that the quality of alignment is homogeneous
among networks95, with exception of the quality of 12
alignments built with MAGNA++ that was better than
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Fig. 3 The topological evaluation of alignments built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple
marker), WAVE (light blue marker), Natalie2.0 (black marker). The Figure shows the F-NC scores of each alignment built among the networks with 95
nodes by applying the selected six aligners

other algorithms. For the networks1000, the F-NC val-
ues are higher for the alignment built with WAVE with
exception of the alignments built with NETAL.

Robustness analysis
We analyzed the robustness of the different algorithms
to various levels of graph alteration (edge removal). We
generated a series of altered networks derived from the
high-confidence brain network. We built the synthetic
counterparts with 5, 10, 15, 20 and 25% of added noise.
We obtained 60 synthetic networks with 95 nodes and
60 synthetic networks with 1000 nodes. To measure the
performance of MAGNA++, NETAL, GHOST, GEDEVO,
WAVE, Natalie2.0, we aligned the high-confidence brain
network with its noisy counterparts obtained by random

removal of edges from the network. Since all networks
contain the same nodes, we know the true node mapping.
The high-confidence network is an exact subgraph of each
noisy network. Exploiting randomness, we ran each exper-
iment 30 times and averaged results over the 30 runs [26].
The aim of the test was to demonstrate that the align-
ment algorithms are capable of producing high-quality
alignments with edge conservation of about 90%. This
evaluation test has been widely adopted in different NA
studies (see [18, 29]). We performed this test on the brain
networks built with each selected global aligner and with
NETAL. The results show that, given the high topological
similarity of the aligned network with its noisy counter-
part, MAGNA++, NETAL, GHOST, GEDEVO, WAVE,
Natalie2.0 are capable of discovering alignments with high

Fig. 4 The topological evaluation of alignments built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple
marker), WAVE (light blue marker), Natalie2.0 (black marker). The Figure shows the NCV-GS3 scores of each alignment built among the networks with
95 nodes by applying the selected six aligners
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Fig. 5 The topological evaluation of alignments built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple
marker), WAVE (light blue marker), Natalie2.0 (black marker). The Figure shows the F-NC scores of each alignment built among the networks with
1000 nodes by applying the selected six aligners

edge conservation. The better performance was achieved
with MAGNA++. Figures 7 and 8 show the validation
of the edge conservation when introducing increasing
noise level from 5 to 25% into the high-confidence brain
networks.

Conclusion
Understanding brain connectivity can shed light on the
brain cognitive functioning that occurs via the connec-
tions and interaction between neurons. The term brain
connectivity refers to different aspects of brain orga-
nization including anatomical connectivity consisting of
axonal fibers across cortical regions and functional con-
nectivity defined as the observed statistical correlations of
the BOLD signal between regions of interest. A powerful

formalism to represent the brain connectivity derives
from graph theory. The graph theoretical modeling of
the human connectome has already enabled important
discoveries and will most likely continue to do this in
the future. In this study we proposed to apply classical
global alignment algorithms such as MAGNA++, NETAL,
GHOST, GEDEVO, WAVE, Natalie2.0, to align atlas-free
human brain networks at three developmental stages. We
analyzed the alignment results in term of topological qual-
ity measures and performance. According to these anal-
yses, MAGNA++ resulted the best alignment algorithm.
Our ongoing study is focused on the implementation of an
ad hoc algorithm for connectome alignment. Since there
are many conditions in which the classical parcellation
is not useful, we retain that this seminal work may open

Fig. 6 The topological evaluation of alignments built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple
marker), WAVE (light blue marker), Natalie2.0 (black marker). The Figure shows the NCV-GS3 scores of each alignment built among the networks with
1000 nodes by applying the selected six aligners
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Fig. 7 The robustness evaluation of alignments to various alteration levels of networks with 95 nodes. The figure shows the trend of the edge
conservation related to alignment of the high-confidence brain network with the synthetic counterparts at 5, 10, 15, 20 and 25% of added noise.
The alignments are built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple marker), WAVE (light blue marker),
Natalie2.0 (black marker)

the way for the use of network alignment in atlas-free
parcellation.

Methods
Data set
The dataset consisted of diffusion MRI-derived structural
networks of human brain at different stages of develop-
ment, starting with newborns [13]. Acquisition of the MRI
data was compliant with the Health Insurance Portabil-
ity and Accountability Act (HIPAA) and the study was
approved by the Committee on Human Research (CHR)
of the University of California, San Francisco. Three age
groups were included: 4 newborns imaged in the first 4-
5 days of life (NE), 4 six-month-old infants (6M), and 4
adults (age 24-31 years) (AD). The two pediatric groups

had transient encephalopathy at birth, but none of the
patients had clinical or imaging evidence of brain injury.
The subjects were scanned on a 3T GE MR scanner using
a spin echo (SE) echo planar imaging (EPI) diffusion ten-
sor imaging DTI sequence with parameter described in
[13]. Tensor calculation, tractography, cortical parcella-
tion into 95 equal-area nodes and then in 1000 equal-
area nodes (Fig. 2), and construction of the connectivity
matrices was performed as described previously [13]. All
networks were binarized with a threshold of 1 stream-
line. Starting form the images we obtained two different
datasets. The first dataset consist of 12 networks with
number of nodes equal to 95 depending on parcellation
step. For convenience we call this dataset networks95.
Table 3 shows the networks parameters. About the second

Fig. 8 The robustness evaluation of alignments to various alteration levels of networks with 1000 nodes. The figure shows the trend of the edge
conservation related to alignment of the high-confidence brain network with the synthetic counterparts at 5, 10, 15, 20 and 25% of added noise.
The alignments are built with MAGNA++ (blue marker), NETAL (red marker), GHOST (green marker), GEDEVO (purple marker), WAVE (light blue marker),
Natalie2.0 (black marker)
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Table 3 Details of brain networks with 95 nodes used for experiments

Network Nodes Edge Clustering coefficient Connected components Characteristic path length Density

NE01 95 341 0,394 1 2952 0,079

NE02 95 341 0,376 1 3092 0,075

NE03 95 334 0,364 1 3172 0,072

NE04 95 320 0,394 1 2968 0,076

6M01 95 353 0,42 1 3129 0,076

6M02 95 333 0,429 1 3,027 0,08

6M03 95 333 0,383 1 3,16 0,075

6M04 95 338 0,406 1 3,289 0,072

AD1 95 449 0,445 1 2,723 0,101

AD2 95 406 0,423 1 2,774 0,091

AD3 95 438 0,423 1 2,741 0,098

AD4 95 416 0,42 1 2,742 0,093

dataset, the 12 networks were constructed by setting the
number of equal-area nodes for the cortical parcellation
equal to 1000. Since all cortical areas of the brain are
connected, a fine parcellation should ensure the intercon-
nectedness of the whole brain, leaving no nodes isolated.
In [13] the authors demonstrated that the highest num-
ber of nodes at which this condition is fulfilled in equal
to 95. For this reason, the networks of the second dataset
showed the isolated nodes that were not computed in
the construction of the connectivity matrices. For conve-
nience we call this dataset networks1000 even though the
nodes number is different from 1000. Table 4 shows the
network parameters.

Alignment algorithms
In this section we describe in detail the global alignment
algorithm selected to align the diffusion brain networks.

MAGNA [27] is a global network aligner that uses a
genetic algorithm to build an improved alignment starting
from existing ones (generated randomly or by using other
aligners). While the alignment is constructed, MAGNA
optimizes the edge conservation, without decreasing the
quality of node mapping. MAGNA is the first algorithm
that uses genetic algorithms to build global alignment. In
specific, MAGNA simulates a population of alignments
that evolves over time by applying the genetic algorithm
and a function for crossover of two alignments into a
superior alignment. The genetic algorithm simulates the
evolutionary process, guided by the survival of the fittest
principle. The genetic algorithm input consist of a initial
population of a given number of members. In MAGNA,
the members of a population are alignments. Members
of a population crossover with each other to produce
new members. Only the fittest members are more likely

Table 4 Details of brain networks with 1000 nodes used for experiments

Network Nodes Edge Clustering coefficient Connected components Characteristic path length Density

NE01 889 2555 0 53 11531 0,002

NE02 904 2618 0 71 12255 0,002

NE03 900 2585 0 115 13970 0,002

NE04 899 2298 0 72 11134 0,002

6M01 902 2458 0 47 11446 0,002

6M02 849 2182 0 63 10839 0,002

6M03 805 1928 0 65 13515 0,002

6M04 851 2087 0 63 11444 0,002

AD1 902 3146 0 38 8529 0,002

AD2 869 2691 0 52 8719 0,002

AD3 878 3262 0 58 7918 0,002

AD4 853 2907 0 48 8334 0,002
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to crossover. Thus, the child resulting from a crossover
function reflects each parent. To avoid the size of the pop-
ulation to grow without bound, the size is kept constant
across all generations, with only the fittest members sur-
viving from one generation to the next. Thus, as the algo-
rithm progresses, only fittest alignments, i.e. those that
conserve the most edges, survive and MAGNA proceeds
to the next generation, until the alignment accuracy can-
not be optimized further. The fittest alignment from the
last generation is reported as the final alignment. Practi-
cally, MAGNA takes as input two networks with different
nodes number (|V1| < |V 2|) and builds the final global
alignment. Moreover, to build the alignment MAGNA
requires several parameters such as the type of initial pop-
ulation, population size, maximum number of generations
(i.e. iterations of the genetic algorithm), and optimization
function (i.e., alignment quality measure). Furthermore,
MAGNA introduces new and superior alignment quality
measure that takes the best from each existing measure,
The Symmetric Substructure Score (S3) [27]. that takes
into account the unique edges in the composite graph
created by the overlap of two networks:

S3 = |f (E1)|
|E(G2[ f (V1) − |f (E1)|| (9)

S3 has been shown to be superior to existing measure,
see [27] for more details.

There exists a MAGNA extension, named MAGNA++
[30], that introduces important improvements.

While MAGNA maximizes edge conservation during
the alignment, MAGNA++ enables both the maximiza-
tion of any different measures of edge conservation (EC,
ICS, S3) and any desired node conservation measure. Let
us define SN and SE , as node and edge conservation mea-
sures, then MAGNA++ maximizes the following measure:

αSE + (1 − α)SN (10)
where α controls the contribution of each node and edge
conservation measures and takes the values between 0 and
1. In this way the alignment quality results are improved
when MAGNA++ is compared with only node conser-
vation or only edge conservation. Moreover, MAGNA++
provides a graphical user interface for easy use and offers
source code for easy extensibility.

NETAL [17] is a global aligner tool that applies a
greedy method, based on the alignment scoring matrix
derived from biological and topological information of
input networks to find the best global network align-
ment. The alignment building consists of two phases.
In the first phase, the Alignment Score Matrix is con-
structed, exploiting two matrices called Similarity Score
Matrix and Interaction Score Matrix. The Similarity Score
Matrix is generated from the weighted sum of topologi-
cal and biological similarities between every two nodes of

input networks. The topological and biological similari-
ties are respectively based on the structure of the networks
and biological properties (for example in proteins net-
works). During the building of the alignment the score of
the matrix remain always fixed. The Interaction score is
based on the estimate of expected value of the number
of conserved interactions that involve the node of net-
work 1 aligned with the node of network 2. Since the
expected value of the number of conserved interactions
changes after the alignment, the interaction scores should
be updated iteratively, just as the alignment score matrix
should change. In the second phase, a greedy search is
used to find the global alignment based on the values
of the alignment score matrix. At first, the node pairs
with maximum alignment score are chosen and aligned
to each other. Then interaction score matrix is updated,
and the alignment score matrix is changed based on the
new values. The greedy search proceeds until all the nodes
of the first network are aligned with the nodes of the
second network. Practically, given two networks, NETAL
finds an injective mapping so each node in the smaller
network is mapped to one node in the larger network.
The output consists of final global alignment. Moreover,
to build the alignment NETAL requires several parame-
ters such as a value that controls the weight of similarity
and interaction scores, b that controls the weight of bio-
logical and topological similarities, c that controls the
contribution of neighbors of two nodes in calculating the
similarity between them, i value that defines the number
of iterations for computing similarities.

GHOST is global pairwise network aligner widely used
in PINs analysis. GHOST introduces a novel spectral sig-
nature based on the application of spectral graph theory
to build a topological similarity measure. Initially, a set of
different spectra and signatures are extracted by consid-
ering the induced subgraphs for a range of different radii
centered about each node of the network. Then, the struc-
tural distance, defined on the spectral densities of two
graphs, is computed between the signatures of two nodes
of different networks for a sequence of radii. This signa-
ture is used to compute the similarity of nodes between
different networks and to guide the building of the final
global alignment. The alignment is built in two phases. In
the fist phase, GHOST applies a seed-and-extend strategy
to detect seed regions of an alignment. The seed regions
consist of the pairs of nodes from the different networks
which the structural distance is minimal. Then, GHOST
expands the alignment around the neighborhoods of these
pairs of nodes until all nodes of the smaller network are
aligned with the nodes of the larger network. In the second
phase, GHOST applies a local search strategy to improve
the alignment. GHOST explores the pair of nodes aligned
and realigns the nodes to obtain an alignment similar to
the initial one but with superior topological quality.
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GEDEVO is a global network aligner based on an evo-
lutionary algorithm that uses the Graph Edit Distance
(GED) as optimization model for finding the best align-
ments. The GED is a general model for the Graph Match-
ing problem and it is defined as the minimal modifications
required to transfer a graph into another graph. So, lets
one-to-one mapping f among two networks, the GED
model counts the inserted or deleted edges induced by the
mapping f. According to this, the best alignment shows
the lowest graph editing cost. The GEDEVO builds the
alignment by generating an initial mapping f with ran-
dom permutations and then each pair of nodes is evalu-
ated by using the pairScore. The pairScore reflects how
well two nodes correspond in a given mapping f. The
pairScore depend on: the GED that computes the num-
ber of deleted and inserted edges induced by mapping of
two nodes given the mapping f, and the graphlet signature
distance (GSD) that computes the difference in neigh-
boring topologies of two nodes within a distance equal
to 4. Afterward, the mapping f is partitioned into two
sets of pairs with low and hight scores. The high scoring
pairs are swapped randomly, whereas a number of ran-
domly chosen bad pairs in the mapping are swap with
directed mutations. After each swap, the scores among the
new pairs are recomputed. This operation enables to keep
good pairs and to swap a bad pair more often with another
bad pair. At the end, the one swap that induces the best
score is kept. In this way, the final score of the mapping
results improved.

Weighted Alignment VotEr (WAVE) is a novel algo-
rithm which builds an alignment by maximizing both
node and edge conservation. When WAVE is used on
top of well-established node cost functions, the align-
ment results improved with respect to different methods
that optimize only node or edge conservation or treat
each conserved edge the same. The reason consists of the
capability of WAVE to favor conserved edges with simi-
lar NCF end nodes over those with dissimilar NCF end
nodes. Furthermore, WAVE introduces a novel measure of
edge conservation denoted as weighted edge conservation
(WEC). WEC measure counts the number of conserved
edges and weights each conserved edge by the node cost
function based similarity of its end nodes. Thus, the edges
with highly similar end nodes are preferred to be aligned
over the edges with dissimilar end nodes. Starting from
an empty alignment, WAVE calculates the marginal gain
of adding an available node pair to the alignment. The
marginal gain depends on the Alignment Quality that is
based on a combination of weighted edge conservation
and weighted node conservation measures. Thus, the pair
with the highest marginal gain is aligned. Furthermore,
when a pair of nodes is aligned, this node pair has a chance
to give a weighted vote to their neighbors, where weighted
vote for the initial vote of each node pair derives from a

node conservation measures. At each step WAVE aligns
each node pair with the highest vote and votes for all
the pairs of neighbors. Finally, the vote that a node pair
gets from its aligned neighbors is the marginal gain to the
objective function of aligning them.

Natalie 2.0 is an open source software for global net-
work alignment which supports different scoring schemes
taking into account both node-to-node correspondences
and network topologies. By formulating the global net-
work alignment as a mathematical program, this can be
considered as a special case of the well-studied quadratic
assignment problem. Natalie 2.0 focuses on sparse net-
work alignment, where each node can be mapped only to a
typically small subset of nodes in the other network. This
corresponds to a quadratic assignment problem instance
with a symmetric and sparse weight matrix. Thus, Natalie
2.0 obtains strong upper and lower bounds for the prob-
lem by improving a Lagrangian relaxation approach.

Assessment of alignment algorithms
To compute the quality of built alignments we used the
software for fairly evaluating a NA method proposed by
[26]. The software provides a GUI and python source code
for any platform. The software aims to analyze an align-
ment allowing both topological and biological evaluation.
In this work we focused only on a topological evaluation.
The software requires an input alignment built with any
NA method. This input alignment must be provided in
the form of aligned node pairs. Once the alignment is
supplied, six topological measures, Precision NC (P-NC),
Recall NC (R-NC), F-score (F-NC), High Node cover-
age (NCV), Generalized S3 (GS3), and NCV combined
with GS3 (NCV-GS3) can be selected. To compute topo-
logical evaluation with P-NC, R-NC, and F-NC, the true
node mapping between the aligned networks as additional
input must be provided. For the topological measures
NCV, GS3 and NCV-GS3, the two aligned networks are
required as additional input. The biological evaluation is
allowed by selecting four measures, GO correctness (GC),
Precision of known protein function prediction (P-PF),
Recall of known protein function prediction (R-PF) and
F-score of known protein function prediction (F-PF). For
the calculation of these biological measures, GO data of
both aligned networks are required as input. The run time
to compute the evaluation measures is few seconds.

Abbreviations
AD: Adults; BOLD: Blood oxygenation level dependent; CHR: Committee on
human research; DTI: Diffusion tensor imaging; DWI: Diffusion weighted
imaging; DW-MRI: Diffusion weighted magnetic resonance imaging; EC: Edge
correctness; F-NC: F-score; F-PF: F-score of known protein function prediction;
fMRI: Functional magnetic resonance imaging; GC: GO correctness; GED:
Graph edit distance; GSD: Graphlet signature distance; GS3: Generalized S3;
HIPAA: Health insurance portability and accountability act; ICS: Induced
conserved structure; MRI: Magnetic resonance imaging; NA: Network
alignment; NE: Newborns; NCV: High node coverage; NCV-GS3: NCV combined
with GS3; PINs: Protein interaction networks; P-NC: Precision NC; P-PF: Precision



The Author(s) BMC Bioinformatics 2017, 18(Suppl 6):235 Page 44 of 45

of known protein function prediction; ROIs: Region of interest; R-NC: Recall NC;
R-PF: Recall of known protein function prediction; S3: Symmetric substructure
score; 6M: Six-month-old; WEC: Weighted edge conservation; WAVE: Weighted
alignment voter

Acknowledgements
PHG, MM, PV and MC have been partially supported by the following research
project funded by the Italian Ministry of Education and Research (MIUR):
BA2Know-Business Analytics to Know (PON03PE_00001_1).

Funding
The cost of this research and publication were founded by the Italian Ministry
of Education and Research (MIUR), project BA2Know-Business Analytics to
Know (PON03PE_00001_1).

Availability of data and materials
Softwares used in this article are available on their own websites.

Authors’ contributions
PHG and MM conceived the main idea of the algorithm and designed the
tests. MC and PV supervised the design of the algorithm. PHG and MM
designed the functional requirements of the software tool. OT performed
medical experiments and participated in the design of the algorithm. CH and
DX supervisioned medical experiments and performed data interpretation. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 6, 2017: Proceedings of the 3rd International Workshop on Data
Mining and Visualization for Brain Science in conjunction with 7th ACM
Conference on Bioinformatics, Computational Biology, and Health Informatics
(ACM BCB’16). The full contents of the supplement are available online at
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-
18-supplement-6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Surgical and Medical Sciences, University of Catanzaro,
Catanzaro, Italy. 2Department of Radiology University of California, San
Francisco, USA.

Published: 6 June 2017

References
1. Kiani R, Cueva CJ, Reppas JB, Peixoto D, Ryu SI, Newsome WT. Natural

grouping of neural responses reveals spatially segregated clusters in
prearcuate cortex. Neuron. 2015;85(6):1359–73.

2. Bargmann CI, Marder E. From the connectome to brain function. Nat
Methods. 2013;10(6):483–90.

3. Lenka A, Naduthota RM, Jha M, Panda R, Prajapati A, Jhunjhunwala K,
Saini
J, Yadav R, Bharath RD, Pal PK. Freezing of gait in parkinson’s disease is
associated with altered functional brain connectivity. Parkinsonism Relat
Disord. 2016;24:100–6.

4. Stein MB, Simmons AN, Feinstein JS, Paulus MP. Increased amygdala
and insula activation during emotion processing in anxiety-prone
subjects. Am J Psychiatr. 2007;164(2):318–27.

5. Sporns O, Tononi G, Kötter R. The human connectome: a structural
description of the human brain. PLoS Comput Biol. 2005;1(4):42.

6. Xia M, He Y. Magnetic resonance imaging and graph theoretical analysis
of complex brain networks in neuropsychiatric disorders. Brain
Connectivity. 2011;1(5):349–65.

7. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD. Mapping
the human connectome. Neurosurgery. 2012;71(1):1.

8. Cannataro M, Guzzi PH, Veltri P. Protein-to-protein interactions:
Technologies, databases, and algorithms. ACM Comput Surv (CSUR).
2010;43(1):1.

9. Lesne A. Complex networks: from graph theory to biology. Lett Math
Phys. 2006;78(3):235–62.

10. Bullmore E, Sporns O. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):
186–98.

11. Dance A. Neuroscience: Connectomes make the map. Nature.
2015;526(7571):147–9.

12. Yap PT, Wu G, Shen D. Human brain connectomics: networks, techniques,
and applications [life sciences]. IEEE Signal Process Mag. 2010;27(4):131–4.

13. Tymofiyeva O, Ziv E, Barkovich AJ, Hess CP, Xu D. Brain without
anatomy: construction and comparison of fully network-driven structural
mri connectomes. PloS ONE. 2014;9(5):96196.

14. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke
M, Zenkner M, Schoenherr A, Koeppen S, et al. A human protein-protein
interaction network: a resource for annotating the proteome. Cell.
2005;122(6):957–68.

15. Ciriello G, Mina M, Guzzi PH, Cannataro M, Guerra C. AlignNemo: A Local
Network Alignment Method to Integrate Homology and Topology. PloS
ONE. 2012;7(6):38107. doi:10.1371/journal.pone.0038107.
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