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Abstract

Background: Alignment-free sequence comparison approaches have been garnering increasing interest in various
data- and compute-intensive applications such as phylogenetic inference for large-scale sequences. While k-mer
based methods are predominantly used in real applications, the average common substring (ACS) approach is
emerging as one of the prominent alignment-free approaches. This ACS approach has been further generalized by
some recent work, either greedily or exactly, by allowing a bounded number of mismatches in the common substrings.

Results: We present ALFRED-G, a greedy alignment-free distance estimator for phylogenetic tree reconstruction
based on the concept of the generalized ACS approach. In this algorithm, we have investigated a new heuristic to
efficiently compute the lengths of common strings with mismatches allowed, and have further applied this heuristic
to phylogeny reconstruction. Performance evaluation using real sequence datasets shows that our heuristic is able to
reconstruct comparable, or even more accurate, phylogenetic tree topologies than the kmacs heuristic algorithm at

highly competitive speed.

Conclusions: ALFRED-G is an alignment-free heuristic for evolutionary distance estimation between two biological
sequences. This algorithm is implemented in C++ and has been incorporated into our open-source ALFRED software

package (http://alurulab.cc.gatech.edu/phylo).
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Background

Accurate estimation of the evolutionary distance between
two sequences is fundamental and critical to phyloge-
netic analysis aiming to reconstruct the correct evolution-
ary history and estimate the time of divergence between
species. One popular approach to evolutionary distance
estimation relies on sequence alignment. Typically, the
pipeline for alignment-based phylogenetic inference gen-
erally works by three steps. Firstly, we perform all-to-all
pairwise sequence alignment to gain a pairwise distance
matrix for the input sequences. The evolutionary distance
between two sequences in the matrix is typically inferred
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from an optimal alignment, e.g. equal to one minus per-
cent identity in the optimal alignment. Secondly, we con-
struct a guide tree from the pairwise distance matrix and
then conduct progressive alignment of multiple sequences
following the order determined by the guide tree. Finally,
we infer a phylogenetic tree from the resulting multiple
alignments using a tree inference program which can be
distance-, parsimony-, bayesian, or likelihood-based. Nev-
ertheless, it needs to be stressed that we could also choose
to construct a phylogenetic tree directly from the pair-
wise distance matrix computed in the first step, using
some distance-based tree construction algorithm such
as unweighted pair group method with arithmetic mean
(UPGMA) [1] or neighbor-joining (NJ) [2].

Although they may have high accuracy, alignment-
based approaches involve high computational cost,
thus resulting in slow speed. This is because pairwise
alignment using dynamic programming has a quadratic
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complexity with respect to sequence length. This is even
more challenging when constructing the phylogenetic tree
for a large number of sequences, especially long sequences
(e.g. eukaryotic genomes). In this case, some research
efforts have been devoted to accelerating the tree con-
struction using high performance computing architec-
tures [3—6]. In addition to acceleration, as an alternative to
alignment-based approaches, alignment-free approaches
emerge and become popular, mainly owing to their speed
superiority. For instance, given a collection of d sequences
of average length #, the time complexity for pairwise dis-
tance matrix computation can be as high as O(d?#?) when
using pairwise alignment. In contrast, by using alignment-
free exact k-mer (a k-mer is a string of k characters)
counting, the whole computation can be done in O(d?n)
time, significantly reducing the run-time by a factor of
n. Moreover, alignment-free approaches are capable of
overcoming some difficulties, which challenge alignment-
based approaches, such as genetic recombination and
shuffling during the evolution process.

A variety of alignment-free approaches have been pro-
posed, most of which are based on the concept of
sequence seeding that extracts fixed- or variable- length
substrings from a given sequence. Based on fixed-length
seeding, there are two kinds of alignment-free approaches:
exact k-mer counting [7] and spaced k-mer counting [8].
For the exact k-mer counting approach, it builds a k-mer
frequency (or occurrence) vector for each sequence and
computes the pairwise distance using some distance mea-
sure based on the frequency vectors. Example distance
measures include Euclidean distance [9], Kullback-Lebler
divergence [10] and the one proposed by Edgar [11]. The
Edgar’s distance measure models the similarity between
two sequences as the fraction of exact k-mers shared
by them, and then computes the pairwise distance by
subtracting the similarity value from one. This distance
measure has been shown to be highly related to genetic
distance and has been used in other applications like
metagenomic sequence classification [12]. For the spaced
k-mer counting approach, it allows character mismatches
between k-mers at some predefined positions and usually
employs multiple pattern templates in order to improve
accuracy.

Based on variable-length seeding, there are three
kinds of approaches: the average common substring
(ACS) method [13], the k-mismatch ACS (k-ACS) method
[14, 15] and the mutation distances (K,) [16]. The distance
based on these methods can be computed using suffix
trees/arrays. Given two sequences, the ACS method first
calculates the length of the longest substring that starts at
each position i in one sequence and matches some sub-
string of the other sequence. Subsequently, it averages
and normalizes all of the lengths computed to represent
the similarity of the two sequences. Finally, the resulting
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similarity value is used to compute the pairwise distance.
The time complexity of the ACS method is directly pro-
portional to the sum of lengths of the two sequences.

In contrast, the k-ACS method computes the pairwise
distance by finding substring pairs with upto k mis-
matches, given two sequences. Specifically, instead of
determining the longest common substrings, the k-ACS
method aims to find the longest substring starting at each
position in one sequence and matching some substring in
the other sequence with upto k mismatches. The mutation
distances is closely related to ACS, where the difference
is only in the conversion from the similarity value to a
pairwise distance.

Unlike the ACS method, the solutions to the k-ACS
method involves high computational cost. For example,
an algorithm given by Leimeister and Morgenstern [14]
takes O(kn?) time in the worst case, which is certainty
not a suitable replacement of alignment based meth-
ods. However, they proposed a faster algorithm, namely
kmacs, that computes an approximation to k-ACS based
distance. Another algorithm by Apostolico et al. runs
in O(n?/logn) time [17]. This raises an open question,
whether the exact k-ACS based distance can be com-
puted in strictly sub-quadratic time. Initial attempts were
focused on the special case of k = 1 [18, 19]. Later, Aluru
et al. [15, 20] positively answered this question by present-
ing an algorithm with a worst case run time of O(1log" n)
for any constant k. The algorithm is much more compli-
cated than the original ACS method and even the k-ACS
approximation by [14]. Moreover the practical variant of
this algorithm can get quite slow for even moderately large
values of k due to its exponential dependency on k [21].
However, this algorithm has its merit as the first sub-
quadratic time algorithm for exact k-ACS computation for
any positive integer k. A recently proposed algorithm by
Pizzi is based on filtering approaches [22]. In summary,
on one hand, we have a fast approximation algorithm [14]
and on the other hand, we have an exact (theoretical) algo-
rithm [15], that might work well for small values of k in
practice. Inspired by both algorithms, we introduce a new
greedy heuristic for alignment-free distance estimation,
named ALFRED-G. The heuristic is implemented in C++
and has been incorporated into our open-source ALFRED
software package (http://alurulab.cc.gatech.edu/phylo).

We use X and Y to denote the two sequences to be com-
pared. The length of sequence X is denoted by |X|, its ith
character by X[ i], and the substring that starts at position
i and ends at position j by X[i.../]. For brevity, we use X;
to denote the suffix of X starting at i. The total length of
X and Y is denoted by n. A key data structure in our algo-
rithm is the generalized suffix tree (GST). The GST of X and
Y is a compact trie of all suffixes of X and Y. It consists of
n leaves and at most # — 1 internal nodes. Corresponding
to each leaf, there is a unique suffix of X or Y. The edges


http://alurulab.cc.gatech.edu/phylo

The Author(s) BMC Bioinformatics 2017, 18(Suppl 8):238

are labeled with a sequence of characters. The string-depth
of a node u is the length of the string obtained by con-
catenating the edge labels on the path from the root of
GST to u. The space and the construction time of GST are
O(n) [23]. For any (i, /) pair, |LCP(X;, Y;)|, the length of the
longest common prefix of X; and Y; is same as the string-
depth of the lowest common ancestor node of the leaves
corresponding to X; and Y;. Using GST, we can compute
it in constant time. Also, we can compute [LCP(X;, Y))l,
the length of the longest common prefix of X; and Y; with
first kK mismatches ignored, in O(k) time as follows. Let
z = |[LCP(X;, Y))|, then for any k > 1,

ILCPx (X5, Y))| = 2+ 1+ |LCPr_1 (Xiz1, Yjzr1)| (1)

Problem definition

The k-mismatch average common substring of X w.r.t. Y,
denoted by ACSi(X,Y) is defined as the average of the
length of the prefix of a suffix of X, that appears as a sub-
string of Y within hamming distance k. Specifically, let
A (i) = max; [LCPr(X;, Y;)[, then

X
1
ACSKXY) = 50 D M ()
i=1

The distance Disti(X,Y), based on ACS; is given below
(13, 14].

; _ 1 (_loglY] log |X] log|X] | loglY|
Diste(X,Y) = 3 (ACSk(X,Y) + ACSk(Y,X)> - ( Xt )

3)

Methods

Approximating ACSk (-, -)

It is observed that ACS(:,-) can be easily computed
in O(n%k) time via |X| x |Y| number of |LCPi(:,-)|
queries, which is clearly not affordable. The first attempt
to circumvent this issue was made by Leimeister and
Morgenstern [14], who presented a heuristic method,
named kmacs, that quickly computes an approximation
to ACSk(X,Y). The key idea is to replace A (i) with )L;( (i) in
the equation for ACS;, where a; = arg max; |LCP(X;, Y))|
and A}((i) = |LCP«(X;, Yy,;)|. Using GST, we can compute
«; for all values of i in O(n) time. Therefore, A;{(i) for all
values of i and the corresponding distance can be eas-
ily obtained in O(nk) time. Note that the ratio of A (i)
to )\;((i) can be as high as ©(n). Nonetheless, it has been
shown that for most practical cases, the average of the lat-
ter can serve as a good approximation to the average of the
former.

Our approach
The idea is to follow a simple adaptation of Aluru
et al.’s exact algorithm [15] for 1-mismatch case and then
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use the heuristic approach by Leimeister and Morgen-
stern [14] to extend the result to k-mismatch. Specifi-
cally, our approximation to ACSy is obtained by replacing
Ak(i) in the equation for ACS; by Aj(i), where g; =
arg max; [LCP1(X;, Y))| and A[(i)) = |LCPx(X;Yg)|. To
compute B; for i = 1,2,...,|X|, we first construct GST
and an array A[ 1, |X|]. Then for each internal node u in
GST, process the set S(u) of suffixes corresponding to the
leaves in the subtree of u. Let & be the string-depth of u.
Then (4 + 1) is the first position, in which the prefixes of
two suffixes in S(#) can differ. We sort all suffixes in S(u)
by treating the (%2 + 1)th character all suffixes to be identi-
cal, or equivalently first (7 4 1) characters to be the same.
To do so, we follow the steps below:

e Map each X; € S(u) to a pair (X;, key), where key is
the lexicographic rank of the suffix X; ;1 among all
suffixes of X and Y. In other words, key is the
lexicographic rank of the suffix obtained by deleting
the first (1 + 1) characters of X;. Using GST, we can
compute key in constant time.

e Likewise, map each Y; € S(u) to a pair (Y}, key),
where key is the lexicographic rank of Y; ;1 among
all suffixes of X and Y.

e Sort all pairs in the ascending order of key.

e For each pair (X;, -), find the closest pairs, say (Y, )
and (Yp, -), towards the left and right side (if they
exist) that are created from a suffix of Y, and update
Ali] < arg maXjeq,p,ap) [LCP1(X;, Y))|.

After processing all internal nodes as described above,
compute the following and report it as our approximation
to ACS;(X,Y)

X X
1 X X

(e 1
X DM = 0 D LR (X6 Y )|

i=1 i=1

It can be easily verified that A[i] will be correctly
updated to B; while processing the lowest common ances-
tor node of the leaves corresponding to X; and Yg;. The
overall run time is nk + Y, |S(u)|log|S(u)| = O(nk +
nH logn), where H is the height of GST and its expected
value is O(log n) [24].

Implementation

ALFRED-G is implemented in C++ and is incorporated
in our open-source ALFRED software package (http://
alurulab.cc.gatech.edu/phylo). This algorithm takes a col-
lection of sequences as input and computes an approx-
imation to ACS.(:,-) for all pairs of sequences. For this,
we have used the open-source 1ibdivsufsort library
[25] to construct the suffix array (SA) and have used the
implementations in the SDSL library [26] to build the
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corresponding LCP table (using the Kasai algorithm [27])
and the range minimum query (RMQ) table (using the
Bender-Farach’s algorithm [28]). (Note that the operations
on a suffix tree can be simulated using the correspond-
ing SA, inverse SA, LCP array and RMQ table). The SDSL
library has support for using bit compression techniques
to reduce the size of the tables and arrays in exchange for
slower query time. However, we don’t compress these data
structures, and instead we have used 32-bit integers for
indices as well as prefix lengths.

Results and discussion

Benchmark datasets

We have assessed the performance of ALFRED-G for
the reconstruction of phylogenetic trees by using three
sequence datasets, which contain prokaryotic DNA
sequences, eukaryotic DNA sequences, and protein
sequences, respectively. The prokaryotic sequence dataset
consists of 27 Primate mitochondrial genomes, which was
previously studied by [16] in order to assess the perfor-
mance of alignment-free approaches for phylogenetic tree
reconstruction. In the study, a reference tree was con-
structed based on a multiple alignment of the sequences.

The eukaryotic sequence dataset is constructed by
Newton et al. [29] from 32 Roseobacter genomes, by
extracting 70 universal single-copy genes for the 32
genomes with each gene being completely sequenced in
all genomes and having no ambiguous start/stop sites. The
70 genes for each genome are, subsequently, concatenated
and aligned with ClustalW in Geneious 4.0 (available from
http://www.geneious.com) using Escherichia coli K12 sub-
strain MG1655 as the outgroup. The multiple sequence
alignment file is available at http://alurulab.cc.gatech.edu/
phylo, from which the raw sequences corresponding to the
32 Roseobacter genomes are extracted and then used in
our study. In our study, we have used the phylogenetic tree
presented in Newton et al. [29] as the reference tree.

The protein sequence dataset is taken from BAIiBASE
(v3.0) [30], which is popular benchmark dataset for multi-
ple sequence alignment. We have used 218 sets of protein
sequences in BAIIBASE, and constructed the reference
trees from the corresponding reference alignments using
the proml program available in PHYLIP [31], which imple-
ments the Maxmimum Likelihood method. For each of
the parameter selected for our experiments, we report
the average RF-distance of the 218 trees constructed from
this set.

Phylogenetic tree construction and comparison

Given a set of d sequences, we first compute the dis-
tance between any sequence pair and then construct a
pairwise distance matrix of size d x d. Subsequently,
the neighbor-joining (NJ) algorithm [2] is applied on the
pairwise distance matrix to reconstruct the phylogenetic
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tree, where the neighbor program in PHYLIP is used.
Finally, the topology of the tree is compared with the
reference tree using the Robinson-Foulds (RF) distance
metric, where the treedist program in PHYLIP is
used to compute the RF distance between two trees.
Note that the lower the RF distance is, the better the
tree topology matches. In particular, if the RF distance
equals zero, it means exact topology match between the
two trees.

All experiments are preformed in an Apple Macbook
Pro (Mid-2012 model) running Mac OS 10.10.4 (OS X
Yosemite). The machine features a 2.9 GHz dual-core Intel
Core i7-3667U processor with 4MB L3 cache and 8GB
RAM.

Performance comparison

As our method is closely related to kmacs, we compared
the performance of ALFRED-G with kmacs in terms of
speed and accuracy (based on RF-distance) for different
values of k, ranging from 0 to 9. Note that for k = 0, both
kmacs and ALFRED-G are the same as the ACS method.

Figure 1 shows the results for the prokaryotic dataset. It
can be observed that for all values of k, ALFRED-G pro-
vides either the same or better accuracy (in terms of RF
distance). Interestingly, for k = 4 and 5, the phylogenetic
tree created based on ALFRED-G coincides exactly with
the reference tree (see Fig. 2). We notice that the only
other alignment-free method, that was able to recreate
this exact reference tree is the recently proposed spaced-
seed method [8] (but needs careful parameter turning).

Figure 3 shows the results for the eukaryotic dataset.
Likewise, our RF distance is never worse than that
obtained by kmacs. In particular, when setting k = 6,7
and 8, our RF distance is lower, indicating better per-
formance. Figure 4 shows the topological comparison
between the tree generated by our approach and the ref-
erence tree, which is generated by the Dendroscope
software [32].

Figure 5 shows the results for the protein dataset. Here
both ALFRED-G and kmacs gave almost the same RF
score for each value of k. As expected, ALFRED-G is
slower than kmacs (by a factor of 2 to 4), however the
difference in run-time is independent of k.

In the earlier work by Leimeister and Morgenstern [14],
it has been show that kmacs and spaced-seed [8] are supe-
rior to other alignment-free methods, when applied to
the aforementioned three datasets. Our experiments show
that ALFRED-G is comparable and often more accurate
than kmacs, albeit involving higher computational cost. It
needs to be mentioned that the comparison with spaced-
seed is not as straightforward as with kmacs, because
spaced-seed has different input parameters and requires
tedious pattern templates tuning. Nevertheless, we have
carefully evaluated spaced-seed based on the suggestions
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from [8]. Our evaluation shows that spaced-seed is able
to recover the entire reference tree (i.e. RF distance = 0)
for the prokaryotic dataset, in just 4 seconds. However,
for the rest, the performance of spaced-seed is roughly
comparable to both ours and kmacs.

Conclusions

In this paper, we have introduced a greedy alignment-free
approach to estimating the evolutionary distance between
two sequences. The core of the heuristic is to identify a 1-
mismatch longest substring in sequence Y that appears as
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Fig. 2 Tree generated by ALFRED-G for the prokaryotic dataset with k = 4
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a prefix of any given suffix in sequence X, and vice versa.
This heuristic has been further applied to reconstruct the
phylogenetic tree, given a collection of sequences that
are believed to be close enough and have some evolu-
tionary relationship between them. The performance of
our heuristic has been evaluated using three real datasets:
one prokaryotic dataset, one eukaryotic dataset and one
protein dataset, in terms of tree-topology RF score and
speed. Our experimental results show that our heuristic
can exactly reconstruct the same phylogenetic tree topol-
ogy with the reference tree for the prokaryotic dataset,
whereas kmacs cannot. On the remaining two datasets,
our heuristic also demonstrates comparable or even bet-
ter performance than kmacs. As for speed, our heuristic is
slightly slower than kmacs.

Although our heuristic has been shown effective
for phylogenetic inference, there are still some limi-
tations that could be improved in the future. Firstly,
our heuristic assumes an evolution model having only
mismatches, not involving insertions or deletions, for
simplicity. This model may not exactly fit the real evo-
lutionary process given a collection of sequences. Nev-
ertheless, our performance evaluation has shown that
even though there are some insertions or deletions
between sequences (observed from multiple sequence
alignment), their evolutionary distances can still be
estimated with reasonable accuracy using our heuris-
tic. However, it should be noted that the existence of
insertions or deletions may cause our heuristic to under-
estimate the similarity values, i.e. ACS(:,-), between
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Fig. 4 Reference tree and the tree generated by ALFRED-G for the eukaryotic dataset with k = 7 (RF distance = 8)

[2]Tree generated using ALFRED-G with k=7.
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sequences, thus overestimating their distances, i.e.
Dist (X, Y).

Secondly, our heuristic assumes that the homologous
regions between two sequences are on the same strand.
Actually, this is not always the case. Given a homologous
region, the substring in sequence X may have an opposite
strand to the corresponding homology in sequence Y. In
this case, directly applying our heuristic to such sequences
may overestimate the distance, since these homologies
with opposite strands are not counted in the computa-
tion of similarity values. In some sense, we would expect
that the estimation accuracy of alignment-free approaches
could be further improved by incorporating support for
strand differences in homologies.

Thirdly, our heuristic has only used Eq. (3) to esti-
mate the distance from the similarity values computed
from Eq. (2). Actually, we usually need to tune distance
equations for different similarity computation approaches
and even for similarity values in different ranges. For
example, Edgar [11] used percent identity D (0 < D <
1) between two sequences as a similarity measure, but
proposed to use two different distance computations
depending on the value of D. In this case, Edgar com-
puted the distance as —In(1 — D — D?/5) if D > 0.25,
and retrieved the distance value from a pre-computed
lookup table, otherwise. Hence, it may be beneficial to
design some new distance computation equations that
better match our approach. Finally, considering the gen-
erality and fast speed of our heuristic, we would expect
that related research in bioinformatics and computational
biology could benefit from our algorithm.
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