
Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514
DOI 10.1186/s12859-017-1916-1

RESEARCH Open Access

Fast algorithms for computing
phylogenetic divergence time
Ralph W. Crosby1* and Tiffani L. Williams2

From 6th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)
Atlanta, GA, USA. 13-15 October 2016

Abstract

Background: The inference of species divergence time is a key step in most phylogenetic studies. Methods have
been available for the last ten years to perform the inference, but the performance of the methods does not yet scale
well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was
estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that
significantly improves the performance of the divergence time process.

Results: As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and
our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349
primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of
the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%.

Conclusion: Through the use of these new algorithms we open up the ability to perform divergence time inference
on large phylogenetic studies.

Keywords: Phylogenetics, MCMC, Divergence time

Background
Darwin envisioned the relationship between all the vari-
ous species as a great tree with living species as the leaves
and branches leading downward to extinct ancestors. A
recent estimate places the number of living species at 8.8
million ±1.3 million [1]. While projects such as the Open
Tree of Life (http://opentreeoflife.org) seek to develop an
all-encompassing tree, the vast majority of phylogenetic
analysis focus on a particular branch of the tree. In addi-
tion to knowing how species are related to each other (as
shown by the tree topology), we would also like to know
when these species diverged from their ancestors. Adding
dates to historical events allows us to temporally connect
events and thereby draw additional conclusions from the
data.

Consider the ground squirrels as represented by the
tribe Marmotini (Fig. 1). The divergence times computed

*Correspondence: crosbyrw@cofc.edu
1Department of Computer Science, College of Charleston, Charleston, SC, USA
Full list of author information is available at the end of the article

are shown in units of Millions of Years [2]. These times
closely approximate the most recent published divergence
time data for the family [3]. It is apparent that there was
a significant increase in the species of ground squirrels
during the late Miocene to early Pliocene eras. It is also
known that there was a large increase in savannas and
grasslands worldwide during the same period [4]. It is
therefore possible to hypothesize an expansion in habi-
tat fostering an expansion in ground dwelling mammals
like the Marmotini. The addition of divergence time data
allowed for exploration of correlations between these evo-
lutionary events. Dates allow evolutionary events to be
compared not only with other evolutionary events (like
the expansion of grasslands) but with geological and his-
torical events.

If divergence time provides helpful information, why
isn’t it always done as part of a phylogenetic analysis?
An informal survey of recent phylogenetic studies by the
authors showed that less than half of the studies that
included more than 100 taxa also included the determina-
tion of divergence time. Divergence time is the last step in

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1916-1&domain=pdf
http://opentreeoflife.org
mailto: crosbyrw@cofc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 2 of 81

Fig. 1 Divergence Time of the Ground Squirrels. The annotations on each branch refer to the length of the branch calibrated to millions of years. For
example, the node marked with a star shows that the prairie dogs diverged from the groundhog/golden squirrel linage 5.92 million years ago.
Geological era’s are shown to allow for correlation of species divergence to geological events

a long process; the time from the start of sample collection
to a published tree can easily be years.

But, divergence time inference itself can be a long pro-
cess. Modern methods for the computation of phyloge-
netic divergence time are based on the determination of
the Bayesian posterior probability. This probability is the
product of four components, the likelihood of the tree,
the Bayesian prior probability of the ancestral node ages,
the Bayesian prior of the rates of evolution along each
branch of the tree and the Bayesian prior probability of the
evolutionary model (and other “nusiance” parameters).
To compute the actual posterior probability this prod-
uct is normalized by the probability of the data. Iterative,
Markov chain Monte Carlo methods are used to deter-
mine the shape of the posterior distribution and eliminate
the need to compute the generally intractable probability
of the data.

For the well-regarded MCMCTree program [5], the time
complexity for the computation in a single MCMC step is
composed of the following components, repeated for each
of the n − 1 inner nodes:

• The traversal of the species tree building the age list:
O(n).

• A traversal of the species tree computing the density
of the calibration nodes: O(n).

• Sorting the age list: O(n log n).
• Traversing the sorted age list computing the density

of the non-calibration nodes: O(n).

giving an overall complexity of (n − 1)(n log n) or
O(n2 log n).

Our experimental analysis of the MCMCTree program
[5] has shown that on a primate dataset consisting of 349

taxa [6] over 91% of the total elapsed time is used in
the computation of the likelihood. Of the remaining 9%
time, approximately half is computation of the prior of
the node ages. More specifically, a two week run time to
compute the divergence time using MCMCTree’s approx-
imated likelihood algorithm would be required for the
primate data set. Estimates of the run time of MCMC-
Tree’s exact likelihood algorithm were on the order of over
two years of execution time for the primate data.

Our contributions
We introduce a new approach; AncestralAge, which sig-
nificantly reduces the time required to compute phyloge-
netic divergence time. Our contributions fall under the
following three categories.

• Subtree site compression algorithm.
The likelihood of a tree and it’s associated parameters
(e.g. ancestral node ages) refer to the probability that
a set of parameters were responsible for the set of
taxa observed today. The computation of this value is
typically the most expensive single component of
divergence time inference (or any phylogenetic
inference for that matter). There have been a number
of different approaches to reducing the cost of the
likelihood computation including algorithmic
improvements [7, 8], approximation methods [9], and
parallelization of the process [10–12], and [13]. These
approaches have been focused on the problem in the
context of phylogenetic inference wherein the
topology of the tree is being inferred along with the
branch (edge) lengths. In the context of divergence
time inference where the tree topology is fixed, there
has been far less research [14].

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 3 of 81

We have developed a new algorithm, subtree site
compression, for the computation of phylogenetic
likelihood that reduces the time required for an exact
likelihood computation by over 90%. This method is
similar to that of Kobert, et al. [15] but further
improves the performance through the use of a hash
table to maintain the lookup instead of the fixed table
with a fairly complex least-recently-used algorithm of
Kobert et al. The use of the hash table reduces the
time to both insert into the table and access the table
to O(1). Furthermore, we extensively analyze the run
time varying key parameters (e.g. number of sites).

• Prior of Ages algorithm.
The Bayesian prior on the ages of the nodes in the
tree ties the fossil calibrations into the statistical
model. There has been some discussion of the use of
other, non-Bayesian methods, for the computation of
divergence time [16] but incorporation of fossil data
into these models has not been successfully
accomplished. The use of a Bayesian prior for fossil
calibrations is a natural and easy way to incorporate
calibration information into the model. The fossils
are actually prior knowledge about the model.
We demonstrate a new algorithm for the
computation of the prior of node ages that reduces
what had been a time complexity of O(n2 lg n) to
best and worst case complexities of O(n) and O(n2)
respectively.

• Extensive experimentation using the AncestralAge
and MCMCTree approaches. In addition to
MCMCTree, Beast [17] is actively used for
computing divergence times. Beast performs both
phylogenetic inference and divergence time inference
as a single step. It is possible to specify a starting tree
for the MCMC process to Beast but the topology of
the tree is considered a model parameter and
potentially perturbed throughout the process.
Since MCMCTree is intended for divergence time
only, its statistical methods have been used as the
basis for the algorithms in AncestralAge. We
compare the subtree site compression and prior of

ages algorithm in AncestralAge with MCMCTree in
terms of accuracy of results and running time on a
variety of biological and synthetic datasets. While
MCMCTree computes exact and approximated
likelihood, AncestralAge computes the exact
likelihood. Our results show a reduction of 97% in
elapsed time on the aforementioned primate dataset
over the MCMCTree exact likelihood algorithm and
a 28% reduction in elapsed time compared to the
approximated likelihood algorithm in MCMCTree.
Thus, our experimental results show that our exact
likelihood computation is often much faster than
both MCMCTree’s exact and approximated
likelihood computations.

Our subtree site compression algorithm
Motivation
Most phylogenetic and divergence time programs sup-
port a simple compression technique wherein the sites
in the alignment are examined and duplicate sites are
compressed. Each site in the alignment has a counter
added to indicate the number of copies of the site
found. During the summation of the logs of the site
likelihoods, the log value is multiplied by the counter
to generate the equivalent of repeatedly computing the
same value for the multiple copies of the site. In Fig. 2,
sites 3 and 9, for example, have identical values for
every taxa and therefore the counter for that pattern is
set to 2.

This original site compression technique provides some
improvement in the overall performance. For example,
the 61,249 sites in the 79 genes included in the primates
dataset [6] compress to 32,789 unique sites (47% compres-
sion). The problem is that as the number of taxa in an
alignment increases, the probability of finding duplicate
sites naturally tends to decrease. For the primates dataset,
as expected, the highest compression ratios appeared in
the genes with the fewest taxa.

Our insight for the subtree site compression algo-
rithm was that if the topology of the tree is fixed,
as is the case in divergence time inference, a similar

Fig. 2 Full Site Compression. Sites (columns) 3 and 9 have identical values for all taxa and therefore are compressed into a single column with a
count of 2

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 4 of 81

approach could be taken to the compression of sub-
trees. Consider an alignment containing only a pair
of the taxa from a larger tree. If two different sites
in this two taxa alignment have identical values, they
will produce the same likelihood vectors and transi-
tion probability matrices (TPMs) since the edge lengths
will be the same. Therefore, there is no need to repeat
the computation for any subsequent site containing the
same pattern for those two taxa. This approach, sub-
tree site compression, can be applied to every subtree in
the gene.

As an example, consider two of the taxa from our
Marmots study, the Golden Squirrel and the Groundhog.
In Fig. 3, the two sequences for these species are shown
along with with the results of applying subtree site com-
pression. The 35 sites in the alignment compress to 12
unique combinations, a 66% reduction. Going up another
level in the tree, if the Prairie Dog is added to the align-
ment and subtree compression performed again, the 35
sites are reduced to 16 sites, a 54% reduction.

Using subtree site compression, the maximum number
of combinations appearing in the compressed set at any
inner node is min(5n, s), where n is the number of leaves
in the subtree and s is the length of the original alignment.
Obviously 5n quickly exceeds even large numbers of sites,
but every inner node whose children are both leaves will
have a maximum of (c + 1)2, where c is the number of
codes (e.g., c = 4 for DNA). One more than the number of
codes is used to allow for the “unknown” or missing data
code. In a balanced tree, n/2 of the n − 1 inner nodes will
satisfy this condition.

Algorithm description
The algorithm for subtree site compression adds two addi-
tional entities at each inner node in the tree; a hash table
and a site lookup table. The hash table is used to deter-
mine whether, as the subtree alignment is scanned, the
code combination has been seen before. The site lookup
table is used to index into the likelihood vectors and TPMs
for the descendants of the node.

At a given inner node in the tree, the sites corresponding
to an alignment of only those leaves that are descendants
of the node are considered one at a time. The concatena-
tion of the code values for the leaves at the site is used
as the key into the hash table. If the key already exists in
the hash table, no further processing is done. If the key
does not exist in the hash table, it is added and an entry is
appended to the site lookup table. This index of the new
entry in the site lookup table is set as the value pointed to
by the hash table entry.

The site lookup table entry contains two fields, one for
each of the descendants of the node. These fields pro-
vide the indices into the descendants likelihood vectors or
TPMs. To compute the likelihood for an alignment posi-
tion on an inner node, the site lookup table entries for the
position are used to get the index into the descendants
likelihood vector (if an inner node) or the descendants
TPM (if a leaf node). If the descendant is a leaf node, the
index points to the row in the descendants TPM corre-
sponding to the value of the site in the leaf. If the descen-
dant is an inner node, a key is constructed containing the
site values for only those leaves that are under the descen-
dant. This key is then used to access the descendant node’s

Fig. 3 Subtree Site Compression. At the lowest level, the sequence alignment for the Groundhog and the Golden Squirrel compresses to 12 sites. At
the next level, 35 sites compress to to 16 sites

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 5 of 81

hash table and retrieve the index value in the descendants
likelihood table.

At the root node there is one additional field in the
site lookup table, the repeat count as in the original site
compression algorithm.

Example
If we start at the Golden Squirrel and Groundhog in Fig. 4
their ancestor will have a hash table, site lookup table,
and likelihood vector. An alignment of five columns of the
sequences from each of the taxa is shown. Out of these five
sites, there are three unique combinations: AC, GG, and
CA; therefore the hash table will only contain those three
entries. The first row in the site lookup table will point to
the “A” row in the TPM for the Golden Squirrel and the
“C” row in the TPM for the Groundhog. Similarly the sec-
ond and third rows in the site lookup table will point to
the appropriate rows in the descendants TPMs.

For the next level up in the tree, the ancestor of three
species; the Golden Squirrel, the Groundhog and the
Prairie Dog is shown. In this case, the four entries in the
hash table correspond to the four unique values appearing
the alignment of the three species. The first site lookup
table row contains an index into the likelihood vector for
the Golden Squirrel and Groundhog’s descendant vector
corresponding to that portion of the key associated with
the Golden Squirrel and Groundhog (AC). The other half
of the first site lookup table row contains the index of the
“T” row in the Prairie Dog’s TPM.

Algorithm analysis
At any inner node in a tree, subtree site compression is
limited by two factors: the total length of the sequence
alignment and the number of leaves in the subtree. In the
worst case, the number of rows in the likelihood vector
at a subtree site compressed node will be the number of
codes plus one (to account for the “unknown” or “missing”
code value) taken to the power of the number of leaves.
For example, in the case of an inner node whose chil-
dren are both leaves using the four DNA codes, the most
number of rows that will exist in the likelihood vector is
(4+1)2 = 25. The maximum number of rows in any given
likelihood vector for a DNA coded alignment is therefore
the minimum of the sequence alignment length, s, and 5n

where n is the number of taxa in the subtree.
Given the exponential growth in the maximum num-

ber (5n) associated with the leaf count, the maximum will
quickly become limited by the sequence alignment length
with performance no worse than the existing site com-
pression method. But, in a balanced tree, n/2 out of the
n − 1 total inner nodes will have two children and in these
cases the leaf count exponent will, in all likelihood, be
significantly smaller than the sequence alignment length.
Using the DNA code set, even with three or four leaves
there is a good chance that the maximum for the expo-
nential of the number of leaves (5n) would be less than the
maximum for a typical sequence alignment.

At the other extreme, in a completely unbalanced,
“caterpillar”, tree, the sequence length would quickly

Groundhog: CGCAG
T C A G

T

C

A

G

-

Transition
Probability

Matrix

T C A G

T

C

A

G

-

Transition
Probability

Matrix

Prairie Dog : TCATC

T

C

A

G

-

Transition
Probability

Matrix

Site Lookup
Entries

0 0

1 1

0 2

2 0

Likelihood
Vectors

T C A
Row 3

Row 2

Row 1

Row 0

G

Likelihood
Vectors

T C A G
Row 2

Row 1

Row 0

Hash
Table
AC/T

GG/C

AC/A

CA/T

Site Lookup
Entries

T C A G

A/C

G/G

C/A

Hash
Table

2 1

3 3

1 2

Golden Squirrel: AGACG

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Fig. 4 Subtree Site Compression Algorithm. The structures supporting the likelihood calculation for a set of three species is shown. At the lower
level, the ancestor of the Golden Squirrel and the Groundhog has three unique site combinations shown as three entries in the hash, site lookup
and likelihood vectors. The ancestor of all three species has four unique combinations in it’s alignment. The entries in the site lookup table pointing
to the descendant of the Golden Squirrel and the Groundhog contain indicies into the likelihood vectors for the descendant

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 6 of 81

dominate the worst case and the impact of subtree site
compression would be limited to the lowest one (52), two
(53) or possibly three (54) nodes.

Our prior of ages algorithm
The Bayesian prior on the ages of the nodes in the tree ties
the fossil calibrations into the statistical model. The use of
a Bayesian prior for fossil calibrations is a natural way of
incorporating the calibration information in the model.

Statistical model
Our algorithm implements the statistical model of Yang
[18]. Following the usage in Eqs. 4 and 10 in Yang 2006
[18]), g(t) is the probability distribution function (pdf)
value for the age of a node under the birth-death-sampling
(BDS) model used and G(t) is the cumulative distribution
function (cdf) value for the age of a node under the BDS
model.

Equation (1) is a reformulation of Yang’s Eq. 11 for the
marginal density of the calibration nodes.

fBDS(tc|tR, n) = (n − 2)!
∏c

1 h(i)

C∏

1
G′(i) (1)

where

h(i) =
⎧
⎨

⎩

(Ri − 1)! i = 0
(Ri − Ri−1 − 1)! 0 < i < c
(n − 2 − Ri−1)! i = c

(2)

and

G′(i) =
⎧
⎨

⎩

G(ti)Ri−1 i = 0
(G(ti) − G(ti−1))

Ri−Ri−1−1 0 < i < c
(1 − G(ti−1))

n−2−Ri i = c
(3)

R defines a list containing the rankings of the ages of all
c calibration nodes among the n − 2 node ages.

By expanding and canceling terms, the conditional den-
sity of the non-calibration nodes given the calibration
nodes can then be calculated as follows.

f (tc̄|tc) =
s−2∏

i=1,i�∈c
g(ti)

∏c
i=0 h(i)

∏c
i=0 G′(i)

(4)

In practice, this is computed using the logs of the values.

ln f (tc̄|tc) =
s−2∑

i=1,i�∈c
ln g(ti) +

c∑

i=0
ln h(i) −

c∑

i=0
ln G′(i)

(5)

Algorithm description
In the MCMCTree implementation of the model, each
time a new age is proposed, a list of all node ages is gen-
erated and sorted. This list is then traversed and, for each

entry in the list, the appropriate values (g(t) or G(t)) are
computed depending on whether the node is a calibration
or a non-calibration node. This calculation occurs in it’s
entirety for each new age proposed.

The key to our new prior algorithm is a set of data struc-
tures that allow intermediate values to be retained across
computations. These structures are shown in Fig. 5a. Each
non-leaf node in the species tree will have an associated
prior node (PN). For the order statistics, it is necessary to
construct a list, sorted by age, of all nodes. In Fig. 6, we
demonstrate the process of traversing the tree, building a
list of pointers to the PNs, and then sorting this list to cre-
ate the Age Pointer Vector (APV). By maintaining this list
as a vector, it is possible to compute the rank value by sub-
tracting indices into the vector without the requirement
to traverse a list. The APV is created once during model
initialization.

A reference to the parameter containing the current age
of the node along with the index of the node in the APV
is held in each PN instance. A non-calibration subclass
extends this information with the addition of a pointer
to the function responsible for computing the g(t) value
along with the log of the current g(t) function value.

A pair of vectors is associated with the segments of
the birth-death-sampling PDF. Each segment will have an
entry in the conditional density vector (CDV) as well as an
entry in the conditional density function vector (CDFV).
Each CDV entry will contain the current values of the h(i)
and G′(i) functions (the second and third terms in Eq. (5))
associated with the segment. The CDV entry will also hold
pointers to the starting and ending prior node instances.
A CDFV entry is associated with but independent of a
CDV entry as it’s information is static throughout the exe-
cution of the model while the CDV entry contents are
volatile. The CDFV entry contains pointers to the func-
tions used to compute the h(i) and G′(i) values for the
segment. In reality, these functions are functional objects
(functors) that are initialized depending on the position of
the CDFV entry in the CDV list. For example, the first h(i)
CDFV entry will always compute it’s function value with
the knowledge that it’s the first segment. This is particu-
larly important for the first and last CDFV entries as their
computations differ from the computations for “middle”
nodes (see Eqs. (2) and (3)).

Computation of the prior is handled as transactions
against the data structures with the goal being minimiza-
tion of the computation required for any individual trans-
action. A new proposed age for a node in the species tree
triggers the transactions. Transactions are categorized
depending on whether the node with the age proposal
holds a fossil calibration.

1. A change in the date of a non-calibration node that
does not affect the ordering of the APV. In this case,

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 7 of 81

(a)

(b)
Fig. 5 Change in the Age and Position of a Calibration Node. In this example the age of the first calibration is changed such that the ordering of the
calibration PNs is changed. In this case all CDV entries that reference either of the calibration PNs require recomputation

none of the rankings of the calibration nodes change
and therefore there is no change to any of the values
in the CDV. The new value for the prior can be
computed as the old value updated with the change
in the g(t) value associated with the single
non-calibration node.

ln f (t) = ln f (t) + �lng(t) (6)

2. A change in the date of a non-calibration node that
changes the ordering of the APV. In this case, the

new node age is either younger or older than one or
more nodes in the APV. If the movement of the node
does not alter the ranking of the calibration nodes,
the order of the entries in the APV is changed. The
remainder of the transaction is handled the same as
for the previously discussed change. In other words,
the new node age did not change the position of any
calibration nodes in the APV.
If the new node age does cause a change in the
position of one or more calibration nodes, the

Sorted
Age Pointer

Vector

21.00

19.50

10.33

9.73

5.92

5.78

5.63

5.31

3.09

Traverse Species
Tree Creating

Unsorted Vector

Sort Vector
by Node Age

Age
Pointer
Vector

21.00

10.33

5.63

3.09

5.78

9.73

5.31

5.92

19.50

10.33

9.73

19.50

21.00

3.09
5.78

5.31

5.92

5.63

Fig. 6 Building the Age Pointer Vector. During a depth-first traversal of the species tree, the ages of the nodes are appended to the vector. Entries
associated with calibration nodes are marked as such and the vector is sorted by age

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 8 of 81

contents of both CDV entries that border on the
changed calibration node(s) need to be recomputed.

ln f (t) = ln f (t)+
� ln g(t)+
� ln h(i − 1) + � ln h(i)+
�G′(i − 1) + �G′(i) (7)

3. A change in the date of a calibration node that does
not change the ordering of the APV. The PDF value
for the new calibration date is computed whenever a
new date is proposed for a calibration node. In the
case where the ordering of the APV is not changed,
the new value for the calibration nodes G(t) function
is computed and the values for the G′(i) values for
the two CDV entries that refer to the calibration
node are recalculated. Note that the h(i) functions do
not require recalculation since the ranking of the
nodes has not changed.

ln f (t) = ln f (t)+
� ln f (tPN)+
�G′(i − 1) + �G′(i) (8)

The G′(i) value as shown in Eq. (3) is computed
using the difference between the CDF values for the
bordering CDV segments. This value is raised to the
power associated with the number of non-calibration
nodes associated with the segment. Since, in this
case, only one of the CDF values has changed, the
change in the log of the G′(i) can be computed as

�G′(i) = (ranki−1 − ranki)(ln G′
new(i)− ln G′

old(i))
(9)

requiring only one computation of the CDF.
4. A change in the date of a calibration node that

changes the ordering of the APV. As with any change
to a calibration node, the PDF value for the new date
is computed. A change to the position of a calibration
node in the APV will by definition change the ranking
for at least that node. This will require recalculation
of the two CDV nodes that border the node. In this
case the rankings of the nodes have changed and both
the h(i) and G′(i) values will need to be recomputed.

ln f (t) = ln f (t)+
� ln f (tPN)+
� ln h(i − 1) + � ln h(i)+
�G′(i − 1) + �G′(i) (10)

As shown in Fig. 5, if the change in the ordering of
the APV is such that the node moves past one or
more calibration nodes, the set of CDV entries
requiring recomputation will increase to encompass
any entries whose borders have changed.

Algorithm analysis
New values for the prior are only required when a new
node age is proposed and therefore only computed n −
2 times for each MCMC iteration. The computational
complexity per MCMC step is not excessive either at
O(n2 log n). The problem is that the constant multiplier
for the computation is large. A significant amount of
computation is required for each node in the tree.

For our algorithm, the complexity is related to the dis-
tance up or down the list a node moves as the result of
a new age proposal. Since the data structures are only
adjusted ad not created during each MCMC step, there is
no computational cost associated with the list generation
or sort during MCMC processing.

In the worst case, it is theoretically possible that an age
proposal could cause a calibration node to move from one
end of the APV to the other. If all inner nodes had cal-
ibrations associated with them, the result would be the
recalculation of n + 1 total CDV entries for a worst case
complexity of O(n) for one age parameter proposal and
O(n2) for an MCMC step.

In practice, this is extremely unlikely for two reasons.
First, the step size used for age proposals is small. If a
step size were used that caused nodes to move large dis-
tances within the APV, the MCMC process itself would
most likely be unstable and probably never reach sta-
tionarity. Second, the number of nodes with calibrations
tends to be a small percentage of the overall nodes (4%
in the case of the primates dataset) so that the length of
the CDV is small relative to the total number of inner
nodes (n − 1).

The best case complexity for a single age parameter
proposal is simply O(1) and for an MCMC step O(n). If
there is no movement in the APV, only a single calcula-
tion of g(t) or G(t) and 2 associated CDV entries would
be required for a single age parameter calculation.

In terms of space complexity there is some additional
memory required but no change in the actual complexity.
There is a prior node and an entry in the APV for each
inner node (including the root) in the species tree to give
a space complexity of O(n) for these structures. For the
CDV and CDFV, the number of entries is equal to one
more than the number of calibrations. Since the number
of calibration nodes cannot exceed the number of non-leaf
nodes c ≤ n, the worst space space complexity for these
structures will also be O(n) giving a total complexity of
O(n) for all the structures.

Methods
Biological datasets
Below are the four biological datasets studied in this paper.
The MCMCTree and AncestralAge parameters for total
steps, burn-in, and number of samples for each dataset are
shown in Table 1.

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 9 of 81

Table 1 MCMC Parameters for the experimental datasets. In this
table, the MCMC parameters for the four sample datasets are
shown

Monkeys Squirrels Influenza Primates

Total MCMC steps 42,000 110,000 110,000 110,000

Burnin MCMC steps 2,000 10,000 10,000 10,000

Samples taken 20,000 5,000 20,000 5,000

• Monkeys. Provided as an example in the PAML
distribution and was extensively analyzed by Yang,
et al. [18]. There are 7 taxa in the tree with 9993 DNA
sites in three genes.

• Squirrels. Consists of 69 taxa with 7248 total DNA
sites in 5 genes. Analyzed by the authors [2].

• Influenza. Provided as an example in the PAML
distribution and was also extensively analyzed by
Yang, et al. [19]. There are 289 viral taxa in the tree
with 1710 DNA sites in one gene.

• Primates. Consists of 349 taxa with 61,249 total DNA
site in 79 genes [6]. Estimates of the run time for
MCMCTree using its approximated likelihood
algorithm were in excess of 14 days. Estimates of the
run time for the exact likelihood algorithm were on
the order of over two years of execution time.
Comparisons of the inferred ages for this dataset
between AncestralAge and MCMCTree were not
performed since the approximated likelihood
algorithm of MCMCTree and the exact likelihood
algorithm of AncestralAge are not computing dates
in the same way—potentially leading to unfair
comparisons.

Synthetic datasets
To understand the scaling characteristics of AncestralAge,
datasets of synthetic trees with varying characteristics
were generated. Trees were generated with varying num-
ber of taxa (t ∈ {20..200}) and used as input to the
Seq-Gen program [20] to produce DNA sequences with
lengths varying from 10,000 to 100,000 sites across 10 to
100 genes. All sequences were generated using the HKY
[21] evolutionary model with a transition/transversion
ratio, κ , of 2 and gamma variation among sites using 4
discrete categories.

All datasets were processed by AncestralAge. The small
tree for each set was also processed using MCMCTree.
Attempts to process all the generated trees with MCMC-
Tree were unsuccessful due to excessive execution times.
For MCMCTree, experiments were run using the exact
likelihood model. The same evolutionary model (HKY)
parameters and rate model (independent) were used for
both programs. Each test was allowed to run for 100
MCMC steps. This value was chosen since, in the case of

the exact likelihood method of MCMCTree, the MCMC
step times were large and the goal of the experiments was
only to determine an average step time. We hypothesized
that 100 MCMC steps would be sufficient to overcome
the impact of any initialization and termination. In all
cases the CPU time required for initialization and ter-
mination outside of the MCMC process itself was less
than 1% of the total CPU. Performance information was
obtained through API calls to the Linux kernel as well as
the through the PAPI performance library [22].

Computational platform
All tests were run on the Texas A&M University Brazos
high performance cluster (http://brazos.tamu.edu). Each
node on the cluster consists of dual 2.5 GHz Intel quad
core processors and 32 GB of memory.

Reporting computational time
Values reported are the average times required for a single
MCMC step.

Results
In this section, we provide an analysis of the AncestralAge
from both the perspective of the dates inferred and the
performance of the algorithms.

Divergence time validation
Three biological datasets (Monkeys, Squirrels, and
Influenza) were used to validate the model. As explained
in the Experimental Methodology section, the primates
dataset was too large to be run by MCMCTree. The
datasets were run with AncestralAge and MCMCTree
using the same parameters (evolutionary model, multiple
sequence alignment, input tree, and prior hyperparam-
eters). MCMCTree supports an approximated and exact
likelihood whereas AncestralAge computes exact likeli-
hood. Thus, model validation is based on an exact likeli-
hood computation in order to compare the dates returned
by the two approaches.

For each branch b in the tree, let d1 and d2 represent the
date produced on that branch by MCMCTree and Ances-
tralAge, respectively. Differences in dates between the two
programs were normalized by the mean of the two dates
(d1 and d2) giving an indication of the relative difference,
d = 2(d1 − d2)/(d1 + d2). In all cases, the results from
AncestralAge were within ε = 0.005 (.995 < d < 1.005)
of the results returned by MCMCTree. Thus, the dates
returned by AncestralAge were within the 95% credibility
interval returned by MCMCTree.

Performance analysis
Table 2 presents the results of running AncestralAge and
MCMCTree on the validation and primates datasets. As
the size, in terms of taxa, genes and sequence length,

http: //brazos.tamu.edu

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 10 of 81

Table 2 Ancestral age performance on sample datasets. Performance using the exact and approximated likelihood algorithms in
MCMCTree is compared with AncestralAge using the three sample datasets as well as the Primates dataset. Times shown are the
average times for a single MCMC step

Monkeys Squirrels Influenza Primates

Total sequence length 9993 7248 1710 61249

Taxa 7 69 289 349

Genes 3 5 1 79

Statistical parameters 51 563 869 51,483

MCMCTree exact likelihood 0.00065sec/step 1.029sec/step 20.942sec/step 167.000sec/step

MCMCTree approximated likelihood 0.00007sec/step 0.012sec/step 0.140sec/step 6.266sec/step

AncestralAge 0.00230sec/step 0.070sec/step 0.545sec/step 4.473sec/step

increased it can be seen that the performance of Ances-
tralAge continued to improve relative to MCMCTree. For
the monkey dataset, MCMCTree outperformed Ances-
tralAge in both the approximated and exact likelihood
tests. But, in all the larger datasets, AncestralAge outper-
formed MCMCTree with exact likelihood. On the squir-
rel dataset, AncestralAge outperformed MCMCTree with
exact likelihood by a factor of 14.7. This increased to fac-
tors of 38.4 and 37.3 for the influenza and the primates
datasets respectively. For the model validation datasets,
MCMCTree with approximated likelihood outperformed
AncestralAge but the difference narrowed as the dataset
size increased, from a factor of 35.4 for the monkey
dataset to a factor of 3.8 for the influenza dataset. When
the problem size was increased to the 349 taxa and 79
genes of the primates dataset, AncestralAge outperformed
MCMCTree approximated likelihood by a factor of 1.4.

We hypothesize that for the monkeys dataset, the num-
ber of parameters was so small (12) that the time for
AncestralAge was dominated by task dispatching asso-
ciated with our multi-threaded implementation. For all
other experiments the subtree compressed likelihood pro-
vided a significant performance advantage over MCMC-
Tree with exact likelihood. We further hypothesize that as
the problem size (number of taxa in particular) increased,
the percentage of the run time associated with the likeli-
hood computation in both AncestralAge and MCMCTree
with approximated likelihood decreased. This allowed the
percentage of the run time associated with the prior of
ages to increase. Once the problem size became large
enough, the performance advantage of our prior of ages
algorithm allowed AncestralAge to outperform MCMC-
Tree with approximated likelihood.

To further understand the performance characteristics
of AncestralAge relative to MCMCTree a set of syn-
thetic data was generated. Of particular interest was
the determination of the point at which AncestralAge
performance would exceed the performance of MCM-
CTree with approximated likelihood. But, errors were

encountered in the generation of the gradient and Hessian
matrix required for the MCMCTree approximated likeli-
hood method so only results for MCMCTree with exact
likelihood are presented. Further research will be required
to understand why the synthetic datasets produced errors
in the generation of the gradient and Hessian matrix for
MCMCTree.

Varying numbers of genes
Trees with l ∈ {10, 20...100} genes were generated. Each
gene had independent data but a constant sequence length
of 2000 sites.

The results of the experiments are shown in Fig. 7. The
performance of AncestralAge increases in a nearly linear
fashion with the number of genes. Times for MCMCTree
with exact likelihood also increased in a linear fash-
ion with a much greater slope. The speedup for Ances-
tralAge over MCMCTree was fairly consistent with a
mean speedup of 9.0.

Varying sequence lengths
Trees with varying DNA sequence lengths, s ∈
{1000, 2000...10000}, sites per gene were generated. Each
tree was composed of 100 taxa and 10 genes.

The results of the experiments are shown in Fig. 8. It can
be seen that the performance of AncestralAge is scaling
with the overall sequence length. Times for MCMCTree
with exact likelihood also increased in a linear fashion
with a much greater slope. The speedup for AncestralAge
over MCMCTree was also fairly consistent with a mean
speedup of 8.5.

Varying numbers of taxa
Trees with varying numbers of taxa, n ∈ {20, 40...200},
were generated. Each tree composed of 10 genes of 200
sites each.

The results of the experiments are shown in Fig. 9. It can
be seen that the performance of AncestralAge is scaling in
a nearly linear fashion with the number of taxa. Times for

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 11 of 81

Fig. 7 CPU Times for Varying Numbers of Genes. The number of genes, l ∈ {10, 20...100}, was varied for a constant sequence length of 2000 sites per
gene. Each tree was run with both MCMCTree (exact likelihood algorithm) and AncestralAge. The number of taxa was held constant at 100. The
times displayed are the average for a single MCMC step

MCMCTree with exact likelihood appear to be increasing
at a better than linear rate. In fact the speedup for Ances-
tralAge over MCMCTree increased from a factor of 4.3 for
the 20 taxa experiment to a factor of 11.6 for the 200 taxa
experiment.

Impact on the primates dataset
Using the primates data, we will compare the perfor-
mance of the existing site compression algorithm from
MCMCTree with our subtree site compression algorithm.

There are a total 10,792 inner nodes in the 79 genes
with a total sequence length of 61,249 sites compressed to
32,789 unique sites. Factoring in the individual sequence
length for each gene, a total of 4,427,618 site likelihood
calculations will be performed to fully compute the likeli-
hood for the species tree. With an average of 32 floating
point operations (flops) per site likelihood calculation, a
total of 141,683,776 flops will be performed to compute
the likelihood for the tree.

Fig. 8 CPU Times for Varying DNA Sequence Lengths. The total num-
ber of sites across 10 genes was varied from 10000 to 100000 in
increments of 1000. Each tree was run with both MCMCTree (exact
likelihood algo- rithm) and AncestralAge. The number of taxa was
held constant at 100. The times displayed are the average for a single
MCMC step

Subtree site compression
The number of leaf edge calculations (n) will be roughly
equal to the number of inner node edge calculations,
n − 2, so the average flops to compute the likelihood at
a particular node and site will be considered the aver-
age of the leaf (4) and inner node (60) values; 32. Using
this value the calculation of likelihood across the entire
tree will require 141,683,776 flops. Running on a mod-
ern desktop machine (3.0 GHz Intel Core i7) this has been
experimentally shown to require, on average, 0.109 s.

For the subtree site algorithm, the 10,792 inner nodes
in the 79 genes compressed to a total of 438,138 positions
in the various likelihood vectors for this same number
of site likelihood computations. Using the same average
flops for a calculation the total flops to compute the tree
likelihoods is only 14,020,416. Experimentally, the time
required for this computation, using the same hardware
as before, is 0.011 s, a 90.1% reduction over the site
compression alone thereby experimentally validating the
calculations.

Fig. 9 Step CPU Times for Varying Numbers of Taxa. The number of
taxa n, was varied from 20 to 200 in increments of 20. Ten genes of
2000 sites each were generated for each taxa. Each tree was run with
both MCMCTree (exact likelihood algorithm) and AncestralAge. The
times displayed are the average for a single MCMC step

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 12 of 81

Prior of ages
Experimental analysis of 110,000 MCMC steps over the
primates dataset showed that in 73% of the new age pro-
posals no positional changes occurred in the Age Point
Vector (APV) and of the remaining 27% of the proposals
only 4 proposals (out of a total of 3,480,000 age proposals)
moved a node (calibration or non-calibration) more than
one slot in the APV. This shows that, in reality, the perfor-
mance of our new algorithm is much closer to O(n) than
O(n2), as would be expected on biological data.

Conclusions
Phylogenetic divergence time has proven to be a rich area
for computational research. When we started our work
with the MCMCTree program it became apparent that
this program had been developed as a test platform for
statistical theory relating to divergence time. The other
significant application, Beast, took a different approach to
the problem hypothesizing that combining phylogenetic
inference with divergence time inference would produce
a better model. In some small cases, this has been proven
[23] and [24], but this combination also limits the ability of
the biologist to independently estimate the phylogenetic
tree and the dates for the nodes of the tree.

We found that neither Beast or MCMCTree scaled to
the hundreds of trees and thousands of base pairs of DNA
that are being used in modern studies. In order to provide
a framework for further research into the process of phy-
logenetic divergence time, we developed the AncestralAge
framework. This framework has facilitated research into
new algorithms in a number of areas relating to divergence
time including likelihood computation and Bayesian prior
computation.

In order to improve the efficiency and performance of
the dating process we first focused on developing new
algorithms for dating individual trees. Our subtree site
compression algorithm for the computation of phyloge-
netic likelihood has demonstrated a 90.1% improvement
over existing methods. Our incremental prior of ages algo-
rithm has shown a better than 100x improvement over the
comparable computation in MCMCTree.

We believe our new algorithms will allow researchers
to perform divergence time inference on datasets of hun-
dreds to thousands taxa with millions of DNA sites.

Acknowledgments
The authors wish to thank Dr. Mark Springer and Dr. William Murphy for the
primates dataset that sparked our interest in divergence time inference.

Funding
The research was funded partially by NSF grant DEB-1208337 and partially by
the SMART Scholarship for Service program. Publication costs are funded by
institutional funds.

Availability of data and materials
The AncestralAge software is available at http://people.tamu.edu/~rcrosby/aa.
tar.gz.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 15, 2017: Selected articles from the 6th IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-18-supplement-15.

Authors’ contributions
RWC was responsible for the design and development of the algorithms
presented here. TLW provided guidance and experimental design. Both
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, College of Charleston, Charleston, SC,
USA. 2Department of Computer Science, Northeastern University, Charlotte,
NC, USA.

Published: 6 December 2017

References
1. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species

are there on earth and in the ocean? PLoS Biol. 2011;9(8):1001127.
doi:10.1371/journal.pbio.1001127.

2. Crosby RW. Phylogeny of the squirrels (rodentia, sciuridae). Technical
report: Texas A& M University; 2012. https://github.com/rwcrosby/aa.tar.
gz Accessed 9 Oct 2015.

3. Zelditch ML, Li J, Tran LA, Swiderski DL. Relationships of diversity,
disparity, and their evolutionary rates in squirrels (sciuridae). Evolution.
2015;69(5):1284–300.

4. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V,
Ehieringer JR. Global vegetation change through the miocene/pliocene
boundary. Nature. 1997;389(6647):153–8. cited By (since 1996)747.

5. Yang Z. Paml 4: phylogenetic analysis by maximum likelihood. Mol Biol
Evol. 2007;24(8):1586–1591.

6. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL,
Stadler T, Steiner C, Ryder OA, Janečka JE, et al. Macroevolutionary
dynamics and historical biogeography of primate diversification inferred
from a species supermatrix. PLoS ONE. 2012;7(11):49521.

7. Stamatakis AP, Ludwig T, Meier H, Wolf MJ. Accelerating parallel
maximum likelihood-based phylogenetic tree calculations using subtree
equality vectors. In: Supercomputing, ACM/IEEE 2002 Conference. New
York: IEEE Computer Society. 2002. p. 40–0. doi:10.1109/SC.2002.10016.

8. Felsenstein J. Evolutionary trees from dna sequences: a maximum
likelihood approach. J Mol Evol. 1981;17(6):368–76.

9. dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny
for bayesian estimation of divergence times. Mol Biol Evol. 2011;28(7):
2161–172.

10. Blagojevic F, Stamatakis A, Antonopoulos CD, Nikolopoulos DS.
Raxml-cell: Parallel phylogenetic tree inference on the cell broadband
engine. In: Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International. New York: IEEE Computer Society. 2007. p. 1–10.
doi:10.1109/IPDPS.2007.370267.

11. Izquierdo-Carrasco F, Smith S, Stamatakis A. Algorithms, data structures,
and numerics for likelihood-based phylogenetic inference of huge trees.
BMC Bioinformatics. 2011;12(1):470.

12. Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO,
Huelsenbeck JP, Ronquist F, Swofford DL, Cummings MP, Rambaut A,

http://people.tamu.edu/~rcrosby/aa.tar.gz
http://people.tamu.edu/~rcrosby/aa.tar.gz
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-15
http://dx.doi.org/10.1371/journal.pbio.1001127
https://github.com/rwcrosby/aa.tar.gz
https://github.com/rwcrosby/aa.tar.gz
http://dx.doi.org/10.1109/SC.2002.10016
http://dx.doi.org/10.1109/IPDPS.2007.370267

Crosby and Williams BMC Bioinformatics 2017, 18(Suppl 15):514 Page 13 of 81

Suchard MA. Beagle: an application programming interface and
high-performance computing library for statistical phylogenetics. Syst
Biol. 2012;61(1):170–3.

13. Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen LT, Minh
BQ, von Haeseler A, Stamatakis A. The phylogenetic likelihood library.
Syst Biol. 2014;64(2):356–62. doi:10.1093/sysbio/syu084. http://sysbio.
oxfordjournals.org/content/early/2014/10/30/sysbio.syu084.full.pdf+
html.

14. Darriba D, Aberer A, Flouri T, Heath TA, Izquierdo-Carrasco F, Stamatakis
A. Boosting the performance of bayesian divergence time estimation
with the phylogenetic likelihood library. In: Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International. New York: IEEE Computer Society. 2013. p. 539–48.
doi:10.1109/IPDPSW.2013.267.

15. Kobert K, Stamatakis A, Flouri T. Efficient detection of repeating sites to
accelerate phylogenetic likelihood calculations. bioRxiv. 2016.
doi:10.1101/035873. http://biorxiv.org/content/early/2016/03/16/035873.
full.pdf.

16. Dos Reis M, Yang Z. The unbearable uncertainty of bayesian divergence
time estimation. J Syst Evol. 2013;51(1):30–43.
doi:10.1111/j.1759-6831.2012.00236.x.

17. Drummond A, Rambaut A. Beast: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol. 2007;7(1):214.
doi:10.1186/1471-2148-7-214.

18. Yang Z, Rannala B. Bayesian estimation of species divergence times
under a molecular clock using multiple fossil calibrations with soft
bounds. Mol Biol Evol. 2006;23(1):212–26.

19. Stadler T, Yang Z. Dating phylogenies with sequentially sampled tips.
Syst Biol. 2013;62(5):674–88. doi:10.1093/sysbio/syt030.
http://sysbio.oxfordjournals.org/content/62/5/674.full.pdf+html.

20. Rambaut A, Grass NC. Seq-gen: an application for the monte carlo
simulation of dna sequence evolution along phylogenetic trees. Comput Appl
Biosci : CABIOS. 1997;13(3):235–8. doi: 10.1093/bioinformatics/13.3.235
http://bioinformatics.oxfordjournals.org/content/13/3/235.full.pdf+html.

21. Tamura K. Estimation of the number of nucleotide substitutions when
there are strong transition-transversion and g+c-content biases. Mol Biol
Evol. 1992;9(4):678–87. http://mbe.oxfordjournals.org/content/9/4/678.
full.pdf+html.

22. Dongarra J, London K, Moore S, Mucci P, Terpstra D. Using papi for
hardware performance monitoring on linux systems. In: Conference on
Linux Clusters: The HPC Revolution, Linux Clusters Institute.
Urbana-Champaign: Linux Clusters Institute. 2001.

23. Greenhill SJ, Drummond AJ, Gray RD. How accurate and robust are the
phylogenetic estimates of austronesian language relationships? PLoS
ONE. 2010;5(3):9573. doi:10.1371/journal.pone.0009573.

24. Gavryushkina A, Welch D, Stadler T, Drummond A. Bayesian inference of
sampled ancestor trees for epidemiology and fossil calibration. ArXiv
e-prints. 2014. 1406.4573.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1093/sysbio/syu084
http://sysbio.oxfordjournals.org/content/early/2014/10/30/sysbio.syu 084.full.pdf+html
http://sysbio.oxfordjournals.org/content/early/2014/10/30/sysbio.syu 084.full.pdf+html
http://sysbio.oxfordjournals.org/content/early/2014/10/30/sysbio.syu 084.full.pdf+html
http://dx.doi.org/10.1109/IPDPSW.2013.267
http://dx.doi.org/10.1101/035873
http://biorxiv.org/content/early/2016/03/16/035873.full.pdf
http://biorxiv.org/content/early/2016/03/16/035873.full.pdf
http://dx.doi.org/10.1111/j.1759-6831.2012.00236.x
http://dx.doi.org/10.1186/1471-2148-7-214
http://dx.doi.org/10.1093/sysbio/syt030
http://arxiv.org/abs/http://sysbio.oxfordjournals.org/content/62/5/674.full.pdf+html
http://dx.doi.org/10.1093/bioinformatics/13.3.235
http://bioinformatics.oxfordjournals.org/content/13/3/235.full.pdf+h tml
http://mbe.oxfordjournals.org/content/9/4/678.full.pdf+html
http://mbe.oxfordjournals.org/content/9/4/678.full.pdf+html
http://dx.doi.org/10.1371/journal.pone.0009573

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Our contributions

	Our subtree site compression algorithm
	Motivation
	Algorithm description
	Example
	Algorithm analysis

	Our prior of ages algorithm
	Statistical model
	Algorithm description
	Algorithm analysis

	Methods
	Biological datasets
	Synthetic datasets
	Computational platform
	Reporting computational time

	Results
	Divergence time validation
	Performance analysis
	Varying numbers of genes
	Varying sequence lengths
	Varying numbers of taxa

	Impact on the primates dataset
	Subtree site compression
	Prior of ages

	Conclusions
	Acknowledgments
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

