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Abstract

Background: Understanding protein structure and dynamics is essential for understanding their function. This is a
challenging task due to the high complexity of the conformational landscapes of proteins and their rugged energy
levels. In particular, it is important to detect highly populated regions which could correspond to intermediate
structures or local minima.

Results: We present a hierarchical clustering and algebraic topology based method that detects regions of interest in
protein conformational space. The method is based on several techniques. We use coarse grained protein
conformational search, efficient robust dimensionality reduction and topological analysis via persistent homology as
the main tools. We use two dimensionality reduction methods as well, robust Principal Component Analysis (PCA) and
Isomap, to generate a reduced representation of the data while preserving most of the variance in the data.

Conclusions: Our hierarchical clustering method was able to produce compact, well separated clusters for all the
tested examples.

Keywords: Algebraic topology, Protein conformational sampling, Clustering, Protein structure, Dimensionality
reduction

Background
Characterizing the conformational space of proteins is
crucial for understanding the way they perform their
function. Understanding the connection between protein
structure, dynamics and function can contribute substan-
tially to our understanding of cellular processes involving
proteins. The question of how the structure and dynam-
ics of proteins relate to their function has challenged
scientists for several decades but still remains open. Con-
formational exploration methods aim to characterize the
conformational space of proteins in order to find mini-
mum energy regions corresponding to highly populated
structures [1, 2]. These intermediate states are transient
and therefore hard to detect experimentally. However,
they may be crucial to understanding dynamic events such
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as folding, docking, binding and conformational change
processes. The potential energy landscape of a protein is
often rugged and has a large number of local minima [3].
This makes it difficult to navigate. The problem becomes
even more challenging due to the fact that a typical protein
can contain several hundreds of amino acids or several
thousands of atoms. Therefore, the search space made out
of all possible conformations that a protein can assume is
large and its enumeration is practically impossible. Exist-
ing physics-based computational methods that sample
the conformational space of proteins include Molecular
Dynamics (MD) [4], Monte Carlo (MC) [5] and their vari-
ants, as well as approximate methods based on geometric
sampling [2, 6–8], Elastic Network Modeling [9, 10], nor-
mal mode analysis [11, 12], morphing [13] and several
other methods.

Even after the conformational space is sampled, it
should be filtered and clustered to extract meaning-
ful information. Several clustering methods have been
designed for protein conformational space [6, 14, 15]. The
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majority of clustering methods for high-dimensional data
incorporates metric functions that evaluate the distance
between objects in the dataset, or a lower-dimensional
representation of these objects, often trying to detect
outliers [16].

Hierarchical clustering methods result in a multi-scale
view of the conformational space and enable us to view
the hierarchical relationship between the local minima
produced by the conformational search. In this work we
use both algebraic topology and dimensionality reduc-
tion methods to explore and characterize the conforma-
tional space of proteins. Algebraic topology has been used
in the past for clustering data [17] and exploring the
conformational space of small peptides, including find-
ing metastable states [15]. In previous work [18, 19] we
used persistent homology to explore the conformational
space of proteins and detect regions of interest that may
correspond to local minima, which are hard to detect
experimentally due to the relatively short time the protein
spends in them. We used only standard Principal Compo-
nent Analysis (PCA), whose linear nature may not capture
the complex, non-linear nature of the conformational
spaces. Standard PCA is also known to be highly sensi-
tive to outliers. Additionally, we selected the clustering
parameters based on empirical observation. In contrast,
in this paper we tested several dimensionality reduction
methods to see which ones yielded the best projection
for clustering. From all the methods we tested, sphPCA
and Isomap (both non-linear) gave us better results. Other
dimensionality reduction methods may also be suited for
clustering, and we plan to revisit this in future work. In
this paper we employ hierarchical clustering to detect
intermediate states in the conformational space. The main
contributions of this work are as follows:

1. Our parameter choice is automated and based on the
properties of the input data, reducing the
dependency on user-defined parameters.

2. The hierarchical clustering allows us to view the data
from multiple resolutions, detecting intermediate
states at a coarser or finer level, at our choice.

3. The clustering is done in the reduced space, thus
avoiding the high computational cost of clustering
high-dimensional data. Despite that, our clusters are
very well-defined even when measuring their
properties in the full structural space. (see
Tables 1 and 2.)

At first sight, our results seem to be limited by the num-
ber of data points or the choice of landmarks. However,
persistent Homology is robust enough so that the results
do not depend on these, as explained in [20, 21].

Finally, as we pointed out earlier, Isomap generally
performs better than PCA, at least on the examples

Table 1 Isomap cluster analysis for Calmodulin, AdK and GroEL.
The data is visualized in Fig. 3

Cluster No. Size RMSD (1CTR) RMSD (1CLL)

1 10 14.71 ± 0.2 1.95 ± 0.2

2 5 13.89 ± 0.1 2.69 ± 0.1

3 22 13.43 ± 0.5 3.82 ± 0.7

4 19 10.23 ± 1.0 6.88 ± 0.9

5 5 7.97 ± 0.3 8.43 ± 0.3

6 47 3.86 ± 1.9 11.99 ± 1.7

Cluster No. Size RMSD (1AKE) RMSD (4AKE)

1 15 6.49 ± 0.2 1.99 ± 0.2

2 19 6.04 ± 0.2 2.85 ± 0.3

3 6 4.96 ± 0.3 3.73 ± 0.1

4 8 4.65 ± 0.5 3.84 ± 0.2

5 10 3.56 ± 0.2 4.42 ± 0.2

6 33 2.91 ± 0.6 5.91 ± 0.6

Cluster No. Size RMSD (1SX4) RMSD (1SS8)

1 11 11.56 ± 0.2 2.50 ± 0.6

2 13 11.22 ± 0.2 3.95 ± 0.5

3 20 10.40 ± 0.5 5.25 ± 0.5

4 8 8.34 ± 0.5 6.58 ± 0.4

5 29 5.46 ± 1.2 8.85 ± 0.7

6 17 2.39 ± 0.9 11.35 ± 0.6

The RMSD is measured by the cluster geometric center with respect to each one of
the end points. The clusters numbers are sorted according to their RMSD (in Å ) with
respect to their original endpoints

Table 2 Spherical-PCA cluster analysis for Calmodulin, AdK and
GroEL

Cluster No. Size RMSD (1CLL) RMSD (1CTR)

1 14 14.63 ± 0.3 2.04 ± 0.4

2 8 13.28 ± 0.4 4.40 ± 0.4

3 6 11.89 ± 0.5 5.60 ± 0.3

4 13 9.55 ± 1.0 7.45 ± 0.6

5 41 2.73 ± 1.4 12.96 ± 1.2

Cluster No. Size RMSD (1AKE) RMSD (4AKE)

1 26 6.28 ± 0.3 2.41 ± 0.5

2 47 2.56 ± 1.4 5.55 ± 1.2

3 5 2.36 ± 0.2 6.00 ± 0.1

Cluster No. Size RMSD (1SX4) RMSD (1SS8)

1 25 11.42 ± 0.3 3.17 ± 0.8

2 14 10.20 ± 0.4 5.31 ± 0.5

3 39 3.74 ± 1.4 10.24 ± 1.2

The RMSD is measured similar to Table 1



Haspel et al. BMC Bioinformatics 2017, 18(Suppl 15):502 Page 33 of 81

presented. One reason is because, a priori, the topology
of the original space will be different to that of the PCA-
reduced space, since this is given by projection, and in
general projections will distort the topology. In contrast,
Isomap gives an embedding, which preserves topological
features on the components on which the embedding is
defined.

Methods
Conformational search
Table 3 shows the proteins used in this work. Each con-
formational pathway was modeled using a Monte-Carlo
(MC) based search described below. Due to the size of the
proteins, a fully atomic representation of the structure is
computationally costly. Therefore, the proteins were rep-
resented using their C-α atoms, and their potential energy
was estimated using a C-α based energy function [22]. The
search was run for a maximum of 60,000 iterations. This
number was determined experimentally. At every itera-
tion a parent protein conformation is chosen from the
conformation pool, then a rotatable bond between two
C-α atoms is selected with a probability linearly pro-
portional to the difference between this angle and its
counterpart in the goal conformation, which serves as a
bias of the search. Similar angles between start and goal
conformation are skipped. The selected angle was rotated
by a random value between -5 and 5 degrees. The new
conformation is considered further only if its energy is
below a threshold. The RMSD of the new conformation
with respect to the goal, RMSDnew, is calculated and com-
pared to that of parent conformation, RMSDparent. The
new conformation is accepted and added to the conforma-
tion pool according to the Metropolis criterion, if either of
the following occurs:

1. |RMSDnew| < |RMSDparent|
2. ln r < −|RMSDnew|−|RMSDparent|

a|RMSDnew| ,

for a scaling factor a, and r the probability of the
new conformation. The final result is a pathway lead-
ing from the start conformation to the goal con-
formation. We generated 9543 sampling data points

Table 3 Proteins used in this study. The PDB ids of two known
structures of each protein are listed

Protein Calmodulin I AdK GroEL

No. Amino acids 144 214 524

Structure 1 1CLL 1AKE 1SS8

Structure 2 1CTR 4AKE 1SX4

RMSD 14.84 7.13 12.21

No. Clusters (Isomap) 6 6 6

No. Clusters (PCA) 5 3 3

for Calmodulin (1CLL→1CTR), 7519 data points for
AdK (1AKE→4AKE) and 11,038 data points for GroEL
(1SS8→1SX4).

Data representation and PCA methods
The data was represented using several dimensionality
reduction methods, which we now describe for
completeness.

Robust PCA methods: Standard PCA methods are sen-
sitive to the presence of outliers in the data set. Attempts
to overcome this sensitivity are robust generalizations of
these linear PCA methods, specifically implemented to
either remove outliers or diminish the errors produced
by outliers. A non-linear robust dimensionality reduction
method is spherical PCA (sphPCA), where the data is
scaled so that each data vector is unitary and then one
applies standard PCA to the new rescaled data to obtain
the principal directions. This method reduces the influ-
ence of outliers as explained in [23]. In this paper we
use sphPCA, which we found was the most efficient for
hierarchical clustering.

Isomap: Isomap is a non-linear dimensionality reduction
method that uses multi-dimensional scaling (MDS) [24].
The Isomap algorithm estimates the distances of neigh-
bors using geodesics via a weighted graph, constructed
using a K-nearest neighbor search to connect the data
points, thus preserving linearity only in the small neigh-
borhood of each point (tangent space). In this work we
used the minimal K to generate one connected compo-
nent. Then, a standard algorithm to obtain the shortest
path (geodesic) between two vertices in the graph is per-
formed. Finally, this matrix is subject to MDS, extracting
reaction coordinates which determine the embedding.

Conformation space homology, algorithms and generators
Quantitative analysis of the conformational space can be
done using Algebraic Topology methods. This enables us
to study the global properties of conformational spaces
as well as to detect rigid local properties, as is the num-
ber of local minima in a protein conformational space,
by using a natural stratification of the space by energy
level. This is, for a given energy e, we consider the sub-
sets of conformations X≤e with energy bounded by e, then
X≤e1 ⊂ X≤e2 , for e1 ≤ e2. The topology of such subsets
will change as the parameter e increases and thus, local
minima can be detected. In general, even when the space
is given in closed form (by equations), its topology is dif-
ficult to determine. In our approach, the spaces are sets
of data points generated by the sampling algorithm and
thus we have computational restrictions as well. However,
we will see that the lower dimensional homology can be
determined experimentally.
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Let us describe the topological tools used in our pre-
vious work [18]. Suppose X is the (continuous) set of
low-energy conformations of a protein, projected to some
lower-dimensional metric space. We equip X with the nat-
ural topology it inherits from the ambient space. We let
Hk(X) denote the simplicial homology (with coefficients
in a fixed field [25]). We will denote by bk the k-th Betti
number of X, i.e. the dimension of Hk(X) as a vector
space. The 0-th Betti number counts the number of con-
nected components or pieces of the space, since any two
points are homologous if and only if they are a boundary
of a 1-chain. In this paper X will be in general approxi-
mated by a discrete set of sample points Z ⊂ X, which is
obtained from the conformational search algorithm. We
extract information of X from Z, using Persistent Homol-
ogy [26] to estimate the topology of X through algorithms
applied to the approximation Z. Persistent homology has
been successful in detecting topological features of data
sets, see for instance [27]. Computational algorithms to
obtain persistent homology are described in [20]. In this
paper we not only estimate the Betti numbers of X, we are
interested in finding geometric generators for the homol-
ogy from the original set. The tools used in the paper are
well-suited for data sets. Given a real number r > 0, we
let C∗(Z, r) be the simplicial complex whose set of vertices
is the set Z itself. We declare the k-simplexes as the sets
{x0, . . . , xk} ⊂ Z if the distance d(xi, xj) ≤ r for all i �= j.
The boundary is composed by the maps forgetting one of
the vertices. The value of r that we should use to detect the
actual topological information of the space Z is initially
unknown. The parameter r defines a stream of complexes:
for each r1 < r2 we have C∗(Z, r1) ↪→ C∗(Z, r2), and thus
we get natural maps Hk(C∗(Z, r1)) → Hk(C∗(Z, r2)) for
all k. This yields a sequence of vector spaces Hk(C∗(Z, r)),
and their dimensions bk(r) yield bar codes associated to
Z, one for each k, which encode the evolution of gen-
erators of each cohomology (and thus bk) as r increases
(See Fig. 1). These barcodes are formally a set of
intervals of the real line, bounded below. A long line
in the k-th barcode means that there is a k-cycle

that persists as r increases, and thus it detects an
actual generator of the homology of the original space
X. All small bars are not persistent and are consid-
ered noise. We will assume that r will eventually be
large enough, say rmax, so that Z is covered by balls
of radius rmax, and thus the complex collapses. We
are interested in tracing back the generator for each
long bar.

Lazy witness streams and landmarks
The actual algorithm for computing the bar-codes is a
modification of the description above, using landmark
points and lazy witness streams. [21]. We specify a set Z0
of landmarks in Z. Z0 is selected according to a sequential
mini-max scheme. The first landmark is picked randomly
in Z. Inductively, if Z0(i − 1) is the set of the first i − 1
landmarks, then we let the i-th landmark point to be
the point of Z which maximizes the Euclidean distance
d(z, Z0(i−1)) between the point z and the set Z0(i−1). This
scheme provides better coverage of the point cloud than
a random selection of the landmark points [28]. Given
z ∈ Z, we consider the set of all distances {d(z, y), y ∈
Z0} from z to y ∈ Z0, and we order them. We denote
by dk(z) the k-th term, that is the distance from z to
its (k + 1)-closest landmark point. The witness stream
complex Wk(Z, Z0, t) has vertices (k = 0) Z0 and for
k > 0, a k-simplex {z0, . . . , zk} is in Wk(Z, Z0, t) if all of
its faces (subsets of cardinality k) are in Wk−1(Z, Z0, t)
and if there is a witness z ∈ Z (which could be in Z0)
for which max{d(y, zi), i = 0, . . . , k} ≤ t + dk(z). This
clearly defines a stream depending on t, since for t1 < t2,
W∗(Z, Z0, t1) → W∗(Z, Z0, t2) is an inclusion. Computa-
tionally, a witness stream is still quite expensive and thus
other modifications are used to estimate Betti numbers.
For an integer parameter ν ≥ 0, the lazy witness complex
LW ν∗ (Z, Z0, t) is the stream defined as follows. For z ∈ Z,
let d(z) denote the distance from z to the ν-closest point in
Z0, just as we did before. Now, define LW ν

0 (Z, Z0, t) as the
set Z0. An edge {z0, z1} is in LW ν

1 (Z, Z0, t) only if there is a
witness y ∈ Z such that max{d(y, z0), d(y, z1)} ≤ t + d(y).

Fig. 1 An example of a barcode diagram. The point where three clusters merge into two, and two merge into one are marked by vertical bars
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The k > 1 simplex {z0, . . . , zk} is in LW ν
k (Z, Z0, t) if all of

its edges are. The lazy witness complex LW ν∗ (Z, Z0, t) is
a flag complex, that is, it is entirely determined by its 1-
dimensional skeleton (graph). Note that this modification
does not affect the estimation of connected components,
but it does depend on ν. We use either ν = 0, 1, how-
ever to detect an actual generator of of 0-th homology
(long bar) we use ν = 0. Once a long bar is identified,
we find all of the points corresponding to the compo-
nent using a union-find algorithm, compatible with the
Javaplex internal data structures. We then evaluate the
cluster that corresponds to these points.

Hierarchical clustering
To elucidate the topology of the conformational space and
to detect intermediate structures we estimated the loca-
tion of highly populated clusters based on the intervals
obtained by the barcodes. The input is the lower-
dimensional of the coordinates of a conformational trajec-
tory. We first set out to determine the appropriate number
of landmarks for every sample. The choice of landmarks is
important to provide sufficient coverage of the conforma-
tional space on one hand, and to avoid over-fitting on the
other hand. For each sample we ran Javaplex successively
with 10, 20, 30, etc. landmarks, and measured the variation
in R, the maximum distance of a point from a landmark.
We stop when the difference in R between two consec-
utive runs is less than 5%. This means that adding more
landmarks does not affect the coverage significantly. To
account for the randomness in the selection of landmarks,
we averaged the resulting number of landmarks over 5
runs and used the average + 2 standard deviations. For all
the examples in this paper approximately 100 landmarks
proved sufficient. Some of these landmarks were outliers
and were removed during the clustering. Note that for the
method used in this paper, we always use the same set of
landmarks in all the JavaPlex runs of the same data set, for
consistency.

We then determined the number of clusters systemati-
cally by running Javaplex, using the number of landmarks
as determined above. The “natural” number of clusters
is hard to determine in the general case, but the follow-
ing heuristic turned out to work well. We successively ran
javaplex on the set of coordinates and set the radius r to
generate i bars in each run, where i = {1, 2, . . . 20}. The
number of clusters was increased by 1 whenever the dif-
ference between two consecutive bars in the barcode plot
was more than 0.1 in the barcode plot when b0 is cal-
culated. We used the same set of landmarks at each run
to make sure the topology of the conformational space
and the computational setup is the same each time. To
determine the hierarchy between the clusters we checked
which cluster split by testing which two sets of landmarks
constituting two clusters in the (i + 1)st run were a proper

subset of a cluster in the ith run. This hierarchy between
clusters can be displayed using a dendrogram which traces
back the relationship between clusters generated by con-
secutive runs. The clusters are then traced back to the
original conformations from the full coordinate space.

Results and discussion
For each selected protein, the C-α based representation of
the start and target points are used to obtain the confor-
mations pathways that link the two end points by using
the MC-based method described in the “Methods” section
above. The number of amino acids of each protein is
144 for Calmodulin, 214 for AdK and 524 for GroEL
(See Table 3). The dimensionality of the conformational
space, representing each conformation by a 3 × N vec-
tor with the x, y, z coordinates of each C-α, is therefore
432 for Calmodulin, 642 for AdK and 1572 for GroEL.
However, the “true” underlying dimensionality for pro-
tein structures is much smaller than the number of atomic
coordinates requires to represent their structures, due
to mutual constraints and interactions between different
parts of the proteins. One can see this by computing the
variance of the data in the reduced representation. When
running sphPCA on the conformational spaces of all the
proteins, the first three dimensions account for 90% or
more of the variance in the data. For Isomap, three dimen-
sions explain > 99% of the variance in the data. The
first three coordinates are therefore used in all cases for
comparison purposes.

Cluster analysis
The cluster numbers below are assigned in increasing
order of RMSD with respect to one of the endpoints.
Table 3 shows the number of clusters detected for each
test case. Below, we detail the results for each one of the
tested systems.

Calmodulin: The Isomap embedding produced six clus-
ters based on the selected landmarks. One hundred eight
landmarks were retained, and the rest discarded as out-
liers. Table 1 shows each cluster’s RMSD with respect to
each of the two endpoints, 1CLL and 1CTR. As seen, the
clusters span the conformational space between the two
end points and the clusters are compact (with small stan-
dard deviation of RMSD around the geometric average).
The clusters are numbered from 1 to 6 in reverse order
of their RMSD with respect to 1CLL (see Table 1). Even
though the clusters were numbered according to their
RMSD from 1CLL, they are also sorted perfectly with
respect to their RMSD from 1CTR. This shows that the
clusters span the conformational space between the two
endpoints. The distribution of the RMSDs of the cluster
centers is not completely uniform, which is probably due
to the sampling method which biases the search towards
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the goal structure. Obtaining more uniform sampling is
the subject of current work. Figure 2a-f shows the six
cluster representative structures, sorted by their RMSD
from 1CLL.

Figure 3a illustrates the hierarchy of the clusters for
both Isomap and Spherical PCA. Note that the height of
the bars is arbitrary (the hierarchy is not, of course). For
example – clusters 2 and 3 split from each other at the
lowest level, and so are clusters 5 and 6. However, clus-
ters 2 and 3 are much more similar to one another than
clusters 5 and 6, as can be seen both visually in Fig. 2
and from their RMSD to the two end points in Table 1.
The average RMSD of the entire set of landmarks is 9.75Å
from 1CLL and 6.15Å from 1CTR. As seen in Table 3, the
RMSD of the two endpoints is 14.84Å. Figure 4a shows the
Isomap projected landmarks where each resulting cluster
is depicted in a different color

The sphPCA analysis resulted in five clusters. The hier-
archical relationship and RMSD analysis can be shown in
Fig. 3a and on Table 2. As before, the cluster numbers were
assigned with respect to the RMSD from 1CLL. The PCA
clusters are generally less compact and cover less of the
conformational space than in the Isomap case. It can be
seen especially when examining Table 2. The distribution
of the clusters is less uniform in the case of PCA, missing
parts of the conformational space.

Adenylate Kinase (AdK): Six clusters were detected for
AdK, using Isomap. Ninety-one landmarks were retained.
The hierarchical relationship and the RMSD analysis of
the clusters are shown in Table 1 and Fig. 3b. The clus-
ter numbering was assigned according to the RMSD from
1AKE. Figure 2g-l shows the six cluster representative
structures, sorted by their RMSD from 1AKE. Figures 4c
shows the Isomap projected landmarks where each cluster
is depicted in a different color. As before Table 1 show that
the clusters span the entire conformational space even
when the RMSD is measured with respect to the other

endpoint, 4AKE. The spherical PCA analysis resulted in
three clusters. The hierarchical relationship and RMSD
analysis can be shown in Fig. 3b and on Table 2. As before,
the cluster numbers were assigned with respect to the
RMSD from 1AKE. As is the case with Calmodulin, The
PCA clusters are generally less compact and cover less of
the conformational space than in the Isomap case. Only
three clusters were detected this time. For AdK there are
known intermediate structures, and further validation is
shown below.

GroEL: The Isomap analysis for GroEL produced six
clusters containing 98 of the landmarks. The hierarchi-
cal relationship and the RMSD analysis of the clusters
are shown in Fig. 3c as well as in Table 1. The cluster
numbering was assigned according to the RMSD with
respect to 1SX4 in descending order. As before, It can be
seen in Table 1, that the clusters span the entire confor-
mational space even with respect to the other endpoint,
1SS8. Figure 2m-r shows the six cluster representative
structures, sorted by their RMSD from 1SX4. Figure 4e
shows the Isomap-projected landmarks where each clus-
ter is depicted in a different color. The generated clusters
are less compact than the clusters generated above for
Calmodulin and AdK. However, this can be expected since
GroEL is a big protein and its conformational transition
seems to be more complex than the other two examples.

Validation against known intermediates
Experimental validation is often difficult to obtain due
to lack of experimental knowledge about intermediate
structures. However, AdK has several known mutants
and intermediate structures [29]. We focused on the fol-
lowing known intermediates: chains A, B, and C of the
hetero-trimer Adenylate Kinase from Aquifex Aeolicus
(PDB code 2RH5), which are conformational change inter-
mediates of the ligand free AdK [30], 1E4Y, which is an

Fig. 2 Representatives of the six cluster centers generated by Isomap for the first case of (a-f) Calmodulin (1CLL→1CTR). The centers are sorted
according to their RMSD from 1CTR. (g-l) AdK. The clusters are sorted according to their RMSD from 1AKE. (m-r) GroEL. The clusters are sorted
according to their RMSD from 1SX4
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Fig. 3 The hierarchical clustering structure for (a) Calmodulin
(1CLL→1CTR) (b) AdK (1AKE→4AKE) (c) GroEL (1SS8→1SX4). The
plot shows the Isomap generated hierarchy (left) and the Spherical
PCA hierarchy (right). The clusters are numbered by their RMSD from
the end point

AdK mutant having 99% sequence identity with 4AKE and
1AKE and is a closed form of AdK binding with AP5A,
a form of AdK from Bos Taurus (PDB code 1AK2), and
a mutant ligated with an ATP analog (PDB code 1DVR).
These intermediates have been used successfully to vali-
date conformational pathways for AdK [2, 8, 14, 31]. For
each path, we recorded the closest conformation to any
of our intermediates. The results are shown in Table 4.
For each intermediate, the table shows the average RMSD
from the closest cluster. Our results for Isomap are in
good agreement with previous work [29], as well as our
earlier studies [14, 32], which predicted 2RH5A-C to be
close to the open conformation and 1E4Y to be closest
to the closed conformation. Other structures are closer
to intermediate conformations. Both Isomap and Spher-
ical PCA were able to find intermediate structures close
to 5 intermediates (within about 3Å or less). However,
since Spherical PCA only produced three clusters, it is
hard to tell whether the cluster centers span much of the
conformational space.

Comparison to K-means clustering
In order to validate our clustering algorithm, we compared
our results to others generated by the K-Means algorithm

Fig. 4 The projection of the clusters for (a-b) Calmodulin (1CLL→1CTR) (c-d) AdK (1AKE→4AKE) (e-f) GroEL (1SS8→1SX4) The left plot shows the
hierarchical clustering and the right plot shows the clusters generated by k-means. In each case the Isomap projection along the first three reaction
coordinates is used. Every cluster is depicted in a different color
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Table 4 Comparison of clusters of AdK to known intermediates

PDB Isomap closest clust. (RMSD) PCA closest clust. (RMSD)

1E4Y Clust 1 (1.7Å) Clust 1 (2.1Å)

1AK2 Clust 2 (3.5Å) Clust 1 (4.1Å)

1DVR Clust 2 (2.6Å) Clust 1 (2.8Å)

2RH5A Clust 6 (2.2Å) Clust 3 (2.5Å)

2RH5B Clust 6 (2.3Å) Clust 3 (2.4Å)

2RH5C Clust 6 (3.0Å) Clust 3 (3.1Å)

For every known intermediate, the RMSD to the closest cluster is shown. The cluster
numbers are as in Fig. 2

[33]. K-means is a standard and well-known clustering
method, and it is simple to implement. We used the Mat-
lab K-means implementation. For the sake of comparison
with our method, we generated six clusters for each one
of the Isomap embeddings, which is the same number of
clusters produced for each of our examples. As expected,
K-means tends to produce roughly equidistant, similar
sized clusters, so the results tend to be different than
our connected components, which may vary significantly
in size and distribution around the center. The K-means
clustering of the Isomap data for CaM, AdK and GroEL is
shown in Fig. 4b, d, f, respectively. The hierarchical clus-
tering for the Isomap data for CaM, AdK and GroEL is
shown in Fig. 4a, c, e, respectively. We placed the two clus-
tering methods next to one another for visual comparison.
It is difficult to estimate which structures represent “true”
intermediates, especially due to the scarcity of experi-
mental information and the coarse-grained nature of this
search. However, the main advantage of our method is
that unlike K-means we can easily detect outliers and we
can more easily determine the number of clusters. Addi-
tionally, the similar sizes and symmetric cluster shapes
produced by K-means may produce a bias against the
topology and shape of the conformational space.

Conclusions
Many proteins undergo large-scale conformational
changes as part of their function. Characterizing the con-
formational space of proteins is crucial for understanding
their function and dynamics. Finding intermediate con-
formations which may correspond to local minima is
important but highly challenging due to these confor-
mations being transient and the lack of experimental
data about intermediate states. We present a persistent
homology and dimensionality reduction based hierarchi-
cal method to detect clusters of intermediate structures
in the conformational spaces of proteins undergoing
large-scale changes. The method is able to produce com-
pact clusters that span the conformational spaces of the
sampled proteins, and the hierarchical clustering allows
us to obtain a multi-scale view. We use a projection to a

low-dimensional subspace that preserved the variance in
the data. This projection is the input to the persistent-
homology based hierarchical clustering, from which
intermediate structures are extracted. We tested two
non-linear dimensionality reduction methods – Isomap
and sphPCA. We find that in general Isomap provides
more compact and robust clusters. Future work includes
energetic filtering that will allow us to detect high-energy
barriers and low-energy folding pathways and domain
motions. We also plan to obtain a comprehensive char-
acterization the conformational landscapes of smaller
peptides using trajectories produced by all-atom MD
simulations.
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