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Abstract

Background: Two important challenges in the analysis of molecular biology information are data (multi-omic
information) integration and the detection of patterns across large scale molecular networks and sequences. They are
are actually coupled beause the integration of omic information may provide better means to detect multi-omic
patterns that could reveal multi-scale or emerging properties at the phenotype levels.

Results: Here we address the problem of integrating various types of molecular information (a large collection of
gene expression and sequence data, codon usage and protein abundances) to analyse the E.colimetabolic response
to treatments at the whole network level. Our algorithm, MORA (Multi-omic relations adjacency) is able to detect
patterns which may represent metabolic network motifs at pathway and supra pathway levels which could hint at
some functional role. We provide a description and insights on the algorithm by testing it on a large database of
responses to antibiotics. Along with the algorithm MORA, a novel model for the analysis of oscillating multi-omics has
been proposed. Interestingly, the resulting analysis suggests that some motifs reveal recurring oscillating or position
variation patterns on multi-omics metabolic networks. Our framework, implemented in R, provides effective and
friendly means to design intervention scenarios on real data. By analysing how multi-omics data build up multi-scale
phenotypes, the software allows to compare and test metabolic models, design new pathways or redesign existing
metabolic pathways and validate in silico metabolic models using nearby species.

Conclusions: The integration of multi-omic data reveals that E.colimulti-omic metabolic networks contain position
dependent and recurring patterns which could provide clues of long range correlations in the bacterial genome.

Keywords: Multi-omics, omic regularities, Antibiotic response, Multi-omic metabolic networks, Multi-omic motifs, E.
coli

Background
In the last decades, the study of E.coli treatment tolerance
metabolic response through multi-omics is emerging as
an essential part of several approaches to molecular biol-
ogy, metabolic engineering and medicine [1]. Nowadays
promising models on multi-omics are based on statistical
methodologies [2] and, recently, on multiplex approaches
[3, 4]. High-throughput omics technologies [5] enrich
complex relational data structures (i.e., XML documents
[6], complex networks or maps of multi-view omics [7])
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and provide increasing elements for the multi-omic inte-
gration at different layers of quantitative and relational
information.
In several works, the bacterial metabolic response

upon perturbations is modelled through the multi-omics
dynamic changes on metabolic, signalling and regulatory
networks [8]. Then, the multi-omic analysis leads to sev-
eral engineering and optimizations approaches [9, 10] that
reveal hidden biological motifs and pattern regularities
[11, 12].
The integration of single omics, even if not biologically

comparable (e.g. codon usage and protein abundance),
can increase the total information about the system [13].
Ishii and Tomita [14] describe in depth the concept of
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multi-omic spaces as a powerful data-driven approach
to understanding biological processes and systems. The
information elicited from specific multi-omic spaces is
multi-layered and phenotypic responsive [15].
In conclusion, identifiable multi-omic motifs could

reveal the dynamical behavior of the total cellular system
in standard conditions and after perturbations. Multi-
omic metabolic network motifs are short recurring pat-
terns that are presumed to have a biological function.
Often they indicate sequence-specific parts of pathways
with associated oscillating multi-omics. In this work,
multi-omic metabolic network motifs [16] are identified
and their recurring oscillating multi-omic patterns are
analysed. Oscillations are defined in a binary or, at least,
discrete space of features. We represented the oscillating
multi-omics in two different ways: (i) as linked nodes with
opposite characteristics on networks (refer to blue-red
nodes of Fig. 1b (1)), (ii) as a sequence of high-low adjacent

values (refer to blue-red cylinders of Fig. 1b (3)). Then,
the oscillating multi-omic features on sequences and net-
works are linked into a multi-layer relational structure
(MLS) strengthening the relations between the sequence
patterns and the network motifs.
Multi-omic data integration is well documented in

several works [17, 18]. In our paper we adopt noise
robust techniques on up-to-date data (Additional file 1:
Section S5). We will show that oscillating multi-omics
are found on E.coli metabolic networks as motifs and on
sequences as patterns.
For this reason, we introduce the MLS on which an ad

hoc algorithm (MORA - multi-omic relational adjacency)
finds the reciprocal influences of the neighbouring multi-
omics on sequences and projected on networks. Oscil-
lating multi-omics and their variations are helpful in the
analysis of the impact of new drugs and in applications of
metabolic engineering.Moreover, this work contributes to

Fig. 1 The E.colimulti-omic space is represented in Figure a: different layers represent different omics. Genomic layer (blue rectangles) presents
binary discretized omic values, the same for the other layers. Multi-omics in steady state conditions could be perturbed by induced treatmens thus
increasing the number of layers for each multi-omic space. Then, the number of perturbed layers depends on the number of experiment
considered. Recurring multi-omic patterns motifs related with pathways are represented with multi-omic layers structure (MLS), as shown in Figure
b. Figure b part (1) represents the j-th pathway in relation with its associated set of genes (Figure b part (2)); the resultant multi-omic pattern is
shown in Figure b part (3). The recurring multi-omic pattern is an array of pathway gene products multi-omic values arranged by the gene order.
Multi-omics on the patterns are oscillating, in other words, low values follow high values and vice-versa. This feature is deeply related to the gene
positions as shown in Figure c part (1) and (2). Oscillating multi-omics are present in succession along the pattern as shown in a1 and a2 of Figure
d part (1). The patterns lose their oscillating features if two adjacent multi-omic values are not oscillating in an half (a1 of Figure d part (2)) or
completely (a1 and a2 of Figure d part (3))
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the study and to the creation of new interesting metabolic
circuits based on multi-omic structural relations. Further-
more, the MORA reciprocal influences could seen as an
index of the topological interplay between the gene order
(considered in our sequences) and the pathways. Gene
order along sequences and pathway structures are evolu-
tionary conserved, then this index could be useful in evo-
lutionary organism comparisons. Oscillating multi-omic
motifs and patterns coupled with the MORA reciprocal
influences describe in a new fashion system homeosta-
sis processes and their regulatory functions unveiling the
extent of multi-scale oscillating multi-omics and their
network plasticity [19].

Methods
The subject organism of this study is the E.coli K-12
MG1655 [20].
In “Definition of MLSs” section MLSs are described in

detail. The global impact of antibiotics on the whole net-
work and the local impact on pathways have been taken
into account on these structures. Therefore, the multi-
omic feature scaling and normalization are applied twice

(please refer to “Binary discretization of multi-omics tak-
ing into account the global and the local effect” section
for more detail). Multi-omics are discretized into a binary
field in order to be analysed. Through the MLS it is
possible to outline the relations (or reciprocal influ-
ences) of oscillating multi-omics across sequences and
small networks (pathways). For this latter purpose, in
“An algorithm to discover multi-omics relational adja-
cency (MORA)” section, the algorithm MORA is intro-
duced. Reciprocal influences are not enough informative
for understanding if the oscillating multi-omics are actual
motifs of the bacterial system. Then, two models to rep-
resent the extent of oscillating multi-omic motifs/patterns
as sequences (paragraph Oscillating multi-omics on pat-
terns) and on pathways (“Oscillating multi-omics on net-
works” section) are introduced. A detailed description of
data-sources, procedures andmethods of data-integration
is provided in “Data sources and multi-omics data inte-
gration” section and in the Additional file 1: Section S5.
To facilitate the reader a block diagram of the overall
procedure is shown in Fig. 2. We have concentrated our
attention on E.coli organism but it is possible to extend

Fig. 2 In this Figure, the whole procedure block diagram is described. Gray blocks represent the extraction of multi-omic values and structures.
Then, the global and the local effects (blue blocks) are computed. The local effect depends on the type of Multi-layered structure (network +
sequence) (violet block). Once the multi-omic effects are computed and normalized, then these values are discretised in 0/1. After that, the
oscillation measures are computed in the respective structures (networks and sequences). The generated multi-omic patterns (from sequences) and
motifs (from networks) are given in input to the algorithm MORA for the computation of their reciprocal influences. This procedure is computed in
standard conditions and after perturbations obtaining combined and competing patterns/motifs
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the methodologies to other bacterial organisms. One of
the most important preconditions is the availability of
data: (i) the whole genome, (ii) the protein abundance,
(iii) operon and protein complex information and (iv) the
whole metabolic network. The most relevant bottlenecks
in the preliminary data integration processes come from
the availability of the protein abundance and operon infor-
mation. In the PaxDB (protein abundance database) [21]
the data coverage for (i) E.coli is of 98%, (ii) H.pylori is of
98%, (iii) B. henselae if of 85% and (iv) S.enterica is of 59%.
Other proteobacteria have a data coverage lower than the
47%. Moreover, the operon information (DOOR DB [22])
is conspicuous only on E.coli (152,785 entries), instead, in
the other PaxDB listed organisms is less than half or com-
pletely not numerically relevant. Nevertheless, the main
lack of information, except for E.coli, comes from the
reconstruction of the whole metabolic network. In par-
ticular, this information is important in two steps of the
procedure that we will present: (1) in searching a param-
eter (the average path length) of the algorithm MORA,
(2) in the computation of the pathways with extensions
and/or operon compressions.
The most of the times incomplete metabolic networks

(i.e. obtained merging only the KEGG pathways) do
not present the properties of complex networks, such
as the power-law degree distribution, the small world,
the average path length, etc. Moreover, the power-law
degree parameter α is important to assess if a net-
work is biological one or not (see the duplicaton model
of Chung et al. [23]). For this reason, as described in
Additional file 1: Section S5, our integrated network is
deeply studied under its biological aspects. In the domain
of bacteria, for all we know, there is not another E.coli
protein-centric network more complete than this one.
For this reason, it is made available in the annexed
repository.

Definition of MLSs
In an integrated multi-omic space, as that in Fig. 1a, each
omic layer is arranged on the basis of its data-structure
relations. In the genomic layer, the genes disposed along
the double strand with specific positions are transformed
in a one line sequence. The gene order is considered
as an organism-specific order relation (≤) and is highly
conserved in duplication and during the translational pro-
cesses [24]. As shown in Fig. 1b (2), we described a gene
relationship of the type g1 ≤ g2 ≤ · · · ≤ gn for each gene
gi. The order induced on the multi-omic sequence repro-
duces the gene order relation on the double strand. In
particular, multi-omics are said to be adjacent with respect
to the gene pairs when they are in the positions gi and gi+1
∀i ∈[ 1 . . . n]. As it is shown in Fig. 1c (1)(2) g4, g5, g6 could
be on the same strand or on both. As said previously, the
gene reciprocal positions on the double strand are merged

and represented on a line sequence. Thus, when the gene
order changes in one of the two strands, then the multi-
omic pattern (Fig. 1b (3)) changes the arrangement of its
values. Indeed, in Fig. 1c (1) and (2) the fragment of the
pattern changes because of the swap of g5 and g6.
In an integrative approach, some specific data-structure

relations could involve more than one omic layer. For
example, the proteomic and the metabolomic layers can
be represented as a protein-centric network of reactions
G(V ,E) where the node-set V contains proteins and the
edge-set E represents the enzymatic reactions. In the
protein-centric network representation, as illustrated in
Fig. 1b (1), the reversible reactions are depicted as a dou-
ble arrow link ( ←→ ) and the irreversible reactions are
represented as single arrow links ( ← or →) [25].
In this setting, two proteins pi, pj ∈ V (G)) are said to

have a strong relationship if they are linked by an edge
e(pi, pj) ∈ E(G) or if they are the end points of an
undirected shortest path that must not be longer than
the average path length (APL) [26]. The proteins in a
strong relationship will be the subject of thorough analy-
sis as described in “An algorithm to discover multi-omics
relational adjacency (MORA)” section.
In literature, it is proved that the gene adjacency is con-

served across prokaryotes with a relevant operon archi-
tecture [27]. In particular, it has been shown that the
proteins encoded by conserved adjacent genes present
interactions on the metabolomic layer [28]. In presence of
protein complexes, these interactions are physical, while,
when dealing with anabolic and catabolic processes, they
are functional. Then, the genes are positioned on DNA
depending on their association to metabolic functions.
In order to model the relationship between the gene

order and the pathways, the concept ofMLS is introduced.
TheMLS represents the pathways (Fig. 1b (1) ) in combi-

nation with the gene order information (Fig. 1b (2)) study-
ing the patterns onmulti-omic sequences (Fig. 1b (3)). The
abbreviation mov is used when we refer to a sequence of
multi-omic values on the multi-omic sequences.
The multi-omics related to each pathway are used to

build a multi-omic subspace that represents the values
of each MLS. Furthermore, MLS represents the interac-
tions gi ↔ pi ∀i ∈ G between the elements in different
omic layers of the same subspace (Fig. 1b). Additionally,
Operon compression (Fig. 3a) and path extension (Fig. 3b)
are modifications of MLS, introduced to identify relevant
multi-omic pattern variations . The operon compression
maintains unaltered the MLS gene order. In this case, the
elements that belong to the same operon (Fig. 3a e2-e3-e4)
are compressed to the more frequent multi-omic. More-
over, path extension is a multi-omic pattern modification
accomplished into two steps: 1) adjacent non oscillating
elements on the pattern are labeled as end nodes of the
pathway (i.e. in Fig. 3b the multi-omics in positions e2-e3
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Fig. 3Multi-omic pattern operon compression is shown in Figure a. The elements that belong to the same operon ( e2-e3-e4) are merged to the
more frequent multi-omic value: in this case the low one (blue-head cylinder). The path extension is shown in Figure b. In this case, the MLS is
modified searching an alternative path, on the global metabolic network, that links two nodes associated to two not oscillating pattern adjacent
multi-omics (i.e the multi-omics in the positions e2-e3 and e3-e4). The multi-omic path, chosen from among all the alternative paths on the whole
metabolic network, is the shortest path with the most oscillating multi-omics. (i.e in the path extension between e3-e4 is chosen the path p3-p5-p4
(violet dotted lines) and not the path p3-p8-p4

and e3-e4); 2) we search for the best oscillating shortest
path that links the above end nodes.
As a result, the chosen multi-omic path is the shortest

between the most oscillating multi-omics. The alterna-
tion is measured by using the score defined in Eq. 7.
Then, these nodes extend the pathway and insert new
multi-omics in themulti-omic sequence, breaking in some
cases the gene order (Fig. 3b). Moreover, detailed aspects
of oscillating multi-omics are illustrated in the following
paragraphs.

Binary discretization of multi-omics taking into account
the global and the local effect
Protein abundance is a measure of the part per million
quantity of the proteins inside a cell, as provided, for
example, in Wang et al. [29]. Its definition and the pro-
tein abundance variation used in this paper, respectively
pa and pv, can be found in Additional file 1: S5 Section
5.0.3). Codon Adaptation Index (CAI) is an index of non-
uniform codon use defined by Sharp and Li [30] (a deeper
discussion is in Additional file 1: S5 Section 5.0.1). All
these quantities are extracted, integrated and normalized
with the purpose of identifying multi-omic patterns and
theirmov.

Then, the zero-mean unit-variance normalization is
applied twice: i) the first time it is computed on the
complete data set, i.e. considering the whole organism
(see Fig. 4a (1)). The second time it is computed con-
sidering the same omics but on a small sample filtered
from the multi-omic space by a specific pathway of N
elements (see also Fig. 4a (2)). Then, a vector of num-
bers called local effect, is obtained for each pathway:
mov1 = (̃e1, ẽ2 . . . , ẽN ). The same elements of the multi-
omic space are selected from the normalized complete
data set getting a vector of real numbers called global
effect: mov2 = (̂e1, ê2 . . . , êN ) (see Fig. 4). Both the vec-
tors represent the same elements and have the same length
of N. The normalization of the omics is described in the
following Eq. 1:

pvij = pvj − μpv
√

σ 2
pv

, paj = paj − μpa
√

σ 2
pa

, caij = CAIj − μCAI
√

σ 2
CAI

,

(1)

where μ is the mean and σ is the standard deviation.
Then, the local effect (mov1) and the global effect (mov2)
in steady state (see Eq. 2) and after the t-th treatment
(see Eq. 3) vectors are discretized into two classes: 0 and
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Fig. 4 Figure 4 (a) part (1): Multi-omics are normalized considering the complete multi-omic space. Figure 4 (a) part (2): For each recurring
multi-omic pattern, the multi-omics are normalized considering a small sample filtered from the multi-omic space by a specific pathway of N
elements. Then, the global effect vectormov2 and the local effect vectormov1 are obtained: both the vectors have the same lenght but different
multi-omic normalized values. Figure 4 b part (1): The vectors of the global effect (pink) and the local effect (gray) are binary discretized. Figure 4
b part (2): In order to consider the global response to treatments, the missingmov1 oscillations are substituted with themov2 oscillations (if they are
present). In this example the 4-th oscillation is FALSE (alocal1 ) on the local vector and is present (aglobal1 = TRUE) on the global vector. Then, the local
effect is updated with the information of the multi-omics that come from the global effect. This procedure is done in steady state conditions and
after perturbed by treatments multi-omic values

1 (Fig. 4b (1) red-head and blue-head cylinders, respec-
tively). Binary discretizedmulti-omics in steady-state con-
ditions are obtained considering paj and cai ∀j ∈ 1, ...,N
and i = 1, 2 as in the following Eq. 2:

movij =
⎧

⎨

⎩

1 if paj + caij
2 ≥ 0

0 if paj + caij
2 < 0

(2)

Instead, the binary discretized multi-omics perturbed by
treatments are obtained considering the protein variation
for the t-th treatment pvt and cai ∀j ∈ 1..N and i = 1, 2 as
in Eq. 3

movtij =
⎧

⎨

⎩

1 if
pvtj + caij

2 ≥ 0

0 if
pvtj + caij

2 < 0.
(3)

In some cases, the mov1
(

ormovt1
)

binary discretiza-
tion is not enough sensitive to discover an alternation.
Therefore, in the same positions it is possible to find oscil-
lating multi-omics on mov2 (or movt2) and not on mov1.
If it happens then the missing oscillating multi-omics on
mov1 are substituted with the oscillating multi-omics of
mov2. In this way, it is possible to combine in a binary
field the information about the system global response
and the pathway local response to antibiotics. Formally,
as shown in Fig. 4b (2), the i-th local

(

alocali

)

and global
(

aglobali

)

oscillations are taken in OR. The binary mov
(or movt) resulting from the multi-omic pattern is pro-
jected on the associated pathway.
Normalization processes are suited to deal with the

assumption of independent and dependent systematic
biases [31]. Moreover, the scale on which data should
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be included in these processes (global versus local scale)
has an extensive application to high-throughput omics
analysis [32]. In particular, local normalization has the
advantage of correcting systematic stress response bias
within small groups of multi-omics. Then, it is possible
to account inconsistencies among the multi-omics once
they are discretized in a binary field. The local variabil-
ities in standard and perturbed measurement conditions
could be more relevant with respect to global normal-
ization even if they could be affected by noise. This is
also the reason because we adopted noise robust tech-
niques of data-integration as described in “Data sources
and multi-omics data integration” section. However, the
local normalization process may over fit the data, reduc-
ing accuracy, especially, i.e., if the multi-omics are inte-
grated from genes that are not randomly spotted on the
array [33] and subject to local and global responses deter-
mined by the interaction of global and local regulatory
mechanisms, such the E.coli oxygen response [34]. For
these reasons, it is more accurate to combine the infor-
mation that comes from the global normalization with the
local one.

An algorithm to discover multi-omics relational adjacency
(MORA)
MORA is a search algorithm that weights the multi-omics
with respect to their positions on the MLS. Its purpose
is to assign a high score to the multi-omics that have
two properties at the same time: they are adjacent on the
sequence and strictly connected on the pathway. The algo-
rithm assigns a score equal to zero to the multi-omics
that are adjacent on the sequence but unconnected to
the pathway. In Fig. 5, the algorithm weights two adja-
cent multi-omics evaluating their positions (i.e. j and j+ 1
on the pattern movi = [

e1, e2, . . . , ej, ej+1, . . . en
]

). A high
score is assigned when the multi-omics ej and ej+1 are
directly connected on the pathway (green dotted lines)
or with the shortest path (magenta dotted lines), other-
wise a score of 0 is assigned. The multi-omic reciprocal
adjacency is computed for all the adjacent couples c. The
median value of theMORAweights is a summary index of
the reciprocal influences betweenmulti-omics and under-
lines the interplay among them on the MLS. Note that in
multi-omic sequence the propagation of influences of an
element becomes gradually weaker as the distance from

Fig. 5 Two steps of the MORA algorithm. In the first step (part a), given the average path length (APL), MORA searches the shortest paths between
the two adjacent multi-omics ej and ej+1. of length: ψ ∈[ 1, 	APL
]. The green dotted line indicates paths of length ψ = 1 and the magenta dotted
lines represents paths of length ψ = 1, MORA does not searches a path of length 3 (which would imply ψ = 3) because we supposed that the
APL = 2. The algorithm then updates the weight vector infl and moves on the next pattern positions where searches for the next adjacent
multi-omics (ej + 1 and eh=j+2). In the second step (part b) MORA evaluates the shortest paths for ψ = 1 and 2. The array of the weights infl is
updated, as shown in the step i to i + 3, according to the algorithm
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its neighbouring elements increases: the propagation of
influences is limited to the metabolic network average
path length (APL) (see Additional file 1: Section S5 -
Section 5.0.4), decreasing its influence gradually and in
an inversely proportional way with respect to the path
length. If sequences and pathways do not present recip-
rocal influences (RI = 0), the oscillating multi-omics lose
their significance with respect to the pathways and vice-
versa. In these cases, MLS interactions do not present a
real biological meaning.
MORA algorithm takes as input the following parame-

ters:movi, which is the pattern of the i-th MLS, Gi, which
is its pathway and APL. Let us define δ = 2 as the dis-
tance on the sequence from ej to ej+1,∀j ∈ [ 0, n− (δ − 1)].
δ is fixed to 2 and identifies the adjacency of positions j
and j + 1 on the pattern (as it is shown in Fig. 5). Itera-
tively, each couple of (ej, ej+1) is associated with a couple
of nodes in the pathway with the same index for simplic-
ity: (pj, pj+1). Then, the algorithm will search in Gi the
shortest paths with the end nodes nodefrom = pj and
nodeto = pj+1. Also, we define ψ ∈ [ 1, 	APL
] as the
path distance between pj and pj+1. For example, in Fig. 5,
MORA finds a direct link between the pathway nodes
(green dotted lines) and a path of length 2 (in magenta
dotted lines).
We define the array of weights infl as an array of all

zeros with the same length of movi. When the algorithm
finds the shortest paths on Gi from nodefrom to nodeto,
it takes the positions z of the path nodes on the movi
and in correspondence of these positions he gives a
weight to the vector element inflz (i.e the algorithm in
Fig. 5a takes for ψ = 2 the positions z = {j, j + 1, h} ).
The weights are computed with the following formula:
w = 1

ψy−1 , for the y -th shortest path found. These
weights are summed up in the vector infl as follows:
infl[ z]= infl[ z]+w. If there are c couples with δ = 2
and ψ = 2 then a perfect adjacency on movi and a direct
edge on Gi are present, and then w = 1. The weight w
becomes progressively smaller if the distance ψ between
the end nodes increases. The maximum distance between
the end nodes is limited by the upper bound that is
properly 	APL
. The supplementary Section S6-Figure
4 (Additional file 1) describes the whole procedure of
the algorithm with a toy example and a related Figure.
MORA is tested against several extreme structures
proving its correctness. In particular, MORA is shown
to be stable in case of cliques (supplementary Figure 4
(Additional file 1) part (b)), in snaked networks
(Additional file 1: Figure S4) part (c) and on complete
networks (not shown).
MORA is given as yardstick for validating and deciding

if the measures that are taken in next Sections for oscillat-
ing multi-omic patterns and pathways are comparable and
at what level of reliability.

Algorithm 1 presents a schematic description of
the MORA methodology. The code is available at
https://github.com/lodeguns/MORA.

Algorithm 1 Algorithm MORA (multi-omics reciprocal
adjacencies) searches and weights the occurrences of cou-
ples of adjacent multi-omics on sequences that, at the
same time, are strictly related on pathways. Then, MORA
checks if the positions of two adjacent e ∈ movi present
two associated enzyme p linked on the pathway (Gi) with
a distance ψ equal to at most 	APL
. The reciprocal adja-
cency is computed for all the couples on the sequence:
c = (ej, ej+1 ∀j ∈[ 1 to length(movi)]). Then, MORA
searches the shortest paths from pj to pj+1. In particu-
lar, MORA iteratively searches the shortest paths of length
from 1 to 	APL
 between all the couples of elements c.
Then, it weights the end nodes and those in between on
the array of influences infl with inflz = inflz + 1

ψ−1 .
The sequence is intended as cyclic, and then the last ele-
ments are coupled with the first ones. For this reason, infl
is extended during the computation. The concatenation
operator for the infl extension is indicated with ⊕
MORA(movi, Gi, δ = 2, ψ = 	APL
) {
c ← |movi| − 1
infl ← [

01, 02 . . . 0|movi|
] ⊕ [

01, 02 . . . 0(n≤ψ)

]

∀ y ∈[ 1 . . . ψ] ∀ j ∈[ 1 . . . n | n = |movi| − 1]
paths.found←get.shortest.paths(Gi,nodefrom=
pj, nodeto = pj+1)
∀k ∈[ 1 . . . n | n = |paths.found|]

if (|nodes(Gi)[ paths.foundk] | == ψy)⇒
∀z∈[ 1. . .n |n=|nodes(paths.foundk)|]⇒
inflz ← inflz + 1

ψy−1
r e tu rn ( infl ) }

Oscillating multi-omics on patterns
In this work, the multi-omics are discretized in a binary
field as described in the previous “Binary discretization of
multi-omics taking into account the global and the local
effect” section, so that these values are classified into two
classes (N = 2). Amulti-omic pattern presents an alterna-
tion if the two adjacent ej and ej+1 in the pattern sequence
are subtracted and | ej − ej+1 |= 1. If the result of the sub-
traction is 0 then ej and ej+1 are equal and there is not an
alternation ( i.e. Fig. 1d (2) a1).
Furthermore, l is defined as the length ofmov and div =

l−1 is the number of divisors between the ej. For each pat-
tern, the relative multi-omic pattern score a.s (Eq. 4) is the
number of adjacent alternated couples of values divided
by N :

https://github.com/lodeguns/MORA
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a.s =
div
∑

j=1
| ej − ej+1 | · 1

N
(4)

We are interested in patterns of oscillating multi-omics
with values close to the maximal score. We can obtain the
alternation score of multi-omic patterns leveraging Eq. 4.
A maximal score corresponds to a sequence of fully oscil-
lating multi-omic values, for examplemovs = 0− 1− 0−
1−...0−1 or alternativelymovs = 1−0−1−0....1−0−1−0.
Equation 4 returns themaximal score if and only if the pat-
tern sequence presents fully oscillating multi-omics. The
correctness of the last statement is proved in Theorem 1
(Additional file 1: Section S4 - Theorem 1). Fully oscil-
lating sequences of different lengths, l1 and l2, present
different scores depending on their length. Thus, it would
be better to normalize the score dividing it by the num-
ber of divisors. Then, the absolute score of alternation is
obtained, as in Eq. 5.

w.s =
∑div

j=1 | ej − ej+1 | · 1N
div

(5)

The maximal absolute score is proved to exist and it is
unique for each pattern sequence with a specific length
(Additional file 1: Section S4 - Theorem 2). Theorems 1
and 2 are important because they prove the correctness of
how to compute the distance d of an observed oscillating
multi-omic pattern movobs (i.e., movobs : 1 − 0 − 1 − 0 −
0 − 1 − 0 − 1 − 1 − 0) from the maximal absolute score
(that can be considered as the ideal score). Thus, we have a
powerful instrument to investigate how much the oscilla-
tions observed in movobs are found to be distant from the
ideal (maximal) oscillationsmovid. The distance d in Eq. 6
is the classical Manhattan distance:

d = N · (w.s(movid) − w.s(movobs)) ≥ 0 (6)

d is a geometric distances only if movobs and movid have
the same length. The similarity index movobs with respect
tomovid is computed using Eq. 7:

σobs = 1 − d (7)

Oscillating multi-omics on networks
In this Section, we illustrate the effect of oscillating multi-
omics when projected on pathways. We consider the Park
and Barabási [35] dyadicmodel on the pathways. In partic-
ular, a couple of proteins, linked in the pathway, presents
a dyadic property if they both have the same multi-omic
value (i.e., the couples of red-red nodes or blue-blue nodes
in Fig. 1b (1)). Instead, they show an anti-dyadic property
if they have oscillating multi-omics (couples of red-blue
nodes). Following the model of Park and Barabási, it is
possible to compute the expected value of an anti-dyadic
effect on the couples of nodes that present an alternation.
Let n1 be the number of pathway nodes with multi-omic

values equal to 1, and n0 be the number of pathway nodes
with multi-omic value equal to 0. In this way, the total
number of nodes in the pathway is N = n1 + n0. The
number of links between nodes that show the anti-dyadic
property are described by the variables m10 and m01. The
number of links between nodes that do not show an alter-
nation (dyadic property) are represented by the variables
m11 and m00. Therefore, the total number of edges for a
pathway is M = m10 + m01 + m11 + m00. Note that the
maximal possible number of edges in a directed network is
equal toN(N−1). The network density δ [36] of a directed
graph is described in the following Eq. 8:

δp = M
N(N − 1)

(8)

The random variables Xm10 ,Xm01 , Xm11 , Xm00 (where
Xm10 = Xm01 ) describe the events of oscillations or non-
oscillations in a network. The expected value of observing
an alternation (anti-dyadic property) on two nodes given
by Eq. 9 is the following:

E
[

Xm10

] = E
[

Xm01

] =
(

n0
1

)(

n1
1

)

M
N(N − 1)

= n1 ·n0 ·δp
(9)

On the other hand, the expected value of not observing an
alternation (dyadic property) is defined by Eqs. 10 and 11:

E
[

Xm00

] =
(

n0
2

)

δp = n0(n0 − 1)
2

δp (10)

E
[

Xm11

] =
(

n1
2

)

δp = n1(n1 − 1)
2

δp (11)

The last three Equations describe the link of every pair
of nodes with a given probability [37, 38] as described
by the Gilbert’s model for random networks. Therefore,
if the counts of m10, m01, m11 and m00 deviate from the
expected values described above, then it is possible that
the multi-omics on the pathways are disposed in a struc-
tured manner, differently from Gilbert’s model. The ratio
between the observed alternation and its expected value
is a direct measure of deviation (a.k.a. magnitude) of the
observed pathway from a random configuration. In par-
ticular, the pathways present oscillating multi-omics with
a magnitude m̂10 given by Eq. 12 :

m̂10 = m10

E
[

Xm10

] (12)

Following the properties of the network structure, if the
nodes present a dyadic effect, their magnitudes m̂11 and
m̂00 are given by Eqs. 13 and 14:

m̂11 = m11

E
[

Xm11

] (13)

m̂00 = m00

E
[

Xm00

] . (14)
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If m̂01 is greater than 1, it indicates that multi-omic
nodes are oscillating more than expected by a random
configuration. Multi-omics are not oscillating in the same
way when m̂00 > 1 or m̂11 > 1. Due to the configu-
ration of the pathways, it is possible that the anti-dyadic
magnitude (see Eq. 12) and both the dyadic magnitudes
(see Eqs. 13, 14) present values greater than 1; therefore,
a network is mainly oscillating if m̂10 > m̂11 and m̂10 >

m̂00.
The average dyadic-effect m̂0011 is defined as the average

between the magnitudes m̂11 and m̂00.

The whole procedure performance
Given an unweighted graph G(N ,E), with N the set of
pathway nodes and E the set of edges/reactions, MORA
searches the reciprocal influences with a polynomial com-
plexity on N. Additionally, MORA is coupled with the
measurement of oscillations making the whole procedure
exponential. The function get.shortest.paths is a modi-
fied function that implements a breadth-first search (BFS)
structure [26] and takes a track of all the shortest paths
between two end nodes. The worst case time complex-
ity for this search algorithm is of O(|N | + |E|), but 0 ≤
|E| ≤ |N |, thus, the complexity could be quadratic on
N: O

(|N |2). The latter is called for each adjacent cou-
ple (N − 1) of multi-omics along the sequence plus the
one taken considering the couples between the first and
the last elements (O(|N |(|N | + |E|)) [39]. Moreover, the
computation of the dyadic/anti-dyadic effect requires an
exhaustive enumeration of all the possible configurations
of the n1 nodes on the whole node set N:

(N
n1

) = O (Nn1).
The latter turns out to be exponential in time but it is pos-
sible to apply an approximation by analyzing the boundary
configurations of a phase diagram [35]. Unfortunately, in
this case, due to the high specificity of enzyme-substrate
reactions, with the latter approximation a large part of
the biological information is lost. The computation of the
oscillating multi-omics on sequences require a linear time
with respect the number of nodes (O(|N |)). As conse-
quence, the whole procedure is of f(N, n1) = O (Nn1) +
O

(|N |3)) + O(|N |).

Data sources andmulti-omics data integration
In the Additional file 1: Section S3 the data sources and
the differences between static and dynamic omic values
are described. Static omic values, as CAI, are those not
responsive to antibiotics. Dynamic omic values are those
sensitive to treatments, as, for example, mRNA amount,
protein abundance and its variation. In particular, for what
concerns the transcriptomic layer, the microarray com-
pendia are extracted with relevant between-studies relia-
bilities [40] as described in the Additional file 1: Section S5
pp.5.0.2. Furthermore, in the proteomic layer, a ran-
dom effect model is designed with affordable predictors

with the aim of obtaining a noise-robust protein varia-
tion pv as a fundamental dynamic omic (See [41] and
Additional file 1: Section S5 pp.5.0.3 for more details on
the model). For what concern the metabolomic layer, a
novel protein-centric network of reactions is obtained
by integrating two sources [42, 43] (Additional file 1:
Section S5 pp.5.0.4). Finally, in the genomic layer, rele-
vant information comes from the codon usage extraction
as described in the Additional file 1: Section S5 pp.5.0.1.

Results
The experiments were performed on 66 pathways in stan-
dard conditions and taking into account the average effect
of 69 antibiotic perturbations.
The sequence patterns and network motifs are studied

on 66 multi-layered structures four times. In fact, four dif-
ferent experimental set-ups were compared on the same
dataset: (i) MLS without modifications; (ii) MLS with
operon compression; (iii) MLS with path extension; (iv)
MLS with operon compression followed by path exten-
sion. (see violet block in Fig. 2)
The MORA algorithm evaluated the reciprocal influ-

ences RI on the 66 x4MLS (see white block in Fig. 2). Once
the associations between the recurring patterns and net-
work motifs were evaluated, the oscillating multi-omics
were computed with the following scores: (i) the similarity
between observed oscillating multi-omic patterns and the
ideal patterns (Eq. 7); (ii) the pathway dyadic/anti-dyadic
effect magnitudes, as illustrated in Eqs. 12, 13, 14 (see also
green blocks in Fig. 2).
For a detailed description of the experimental param-

eters see in the Additional file 2: Tables S1 and S2. Row
names are labelled with their unique E.coli KEGG identi-
fier codes (eco : pathNNNNN).

A small case study
Multi-omic oscillations of E.coli Glycolysis are shown in
the Additional file 1: Figure S5 Section S7. In this case, in
standard conditions, the similarity computed as in Eq. 7
is = 0.6 (red line) and the m̂01 is = 1.9, while the magni-
tude of the dyadic effect m̂0011 is= 1.5. These values could
change due to the perturbations, as shown in Additional
file 1: Figure S5 part (b). In this small case study, a single
pathway alternation analysis with the effect of path exten-
sions is shown in Additional file 1: Figure S6 highlighting
that with or without path extensions, the oscillations on
motifs are preserved.

Multi-omic oscillation features are present in standard
conditions and show amulti-scale behavior
For the 66 pathways and supra-pathways extracted from
KEGG the multi-omic oscillations in standard conditions
through their associated 66 MLSs and relative modifica-
tions are studied.
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Network Motifs: It is clearly shown (Fig. 6a) that most
of the pathways without path extensions (black dots)
presents a relevant anti-dyadic effect (median m̂01 =
1.87, sd = ±0.57 ) even if it is also present a relevant but
more variable dyadic effect (median 2.03, sd = ±0.81). In
the pathways with path extensions (blue dots) the anti-
dyadic effect is decreased with a median 1.35, sd = ±0.48;
contextually, also the average dyadic effect is decreased
(median 1.45, sd = ±0.57). In some cases, path exten-
sions, more than other MLS modifications, could increase
the oscillations. In some other cases MLS modifications
introduce new proteins as nodes and new edges as reac-
tions that could decrease the oscillations; it depends
on the network topologies. In this case, in the most
part of the pathways, the anti-dyadic effect magnitude
is decreased even if it remains relevant. In standard

conditions, pathways without path extensions present
only 18/66 combinedMLSs with a σobs > 0.7 and m̂01 > 1.

Sequence Patterns: In Fig. 6b it is shown how com-
bined and competitor structures interact. Furthermore,
pathways with path extensions (blue triangles) are more
oscillating on patterns (median σobs = 0.73, sd = 0.10)
with respect to those without extensions (black dots)
(median σobs = 0.53, sd = 0.14). On one hand, path-
ways with path extensions present a high anti-dyadic
effect, on the other hand, they decrement the σobs, mov-
ing the density center to a value nearer to 0.5. This
means that pathways with path extensions seem to be
more in combination than pathways without extensions.
Multi-omic pattern operon compression returns simi-
larity scores which are a little higher (median σobs =

a b

Fig. 6 The anti-dyadic effect magnitudes (y-axis) and the dyadic effect magnitudes (x-axis) of 66 pathways are shown in Figure a. The pink rectangle
underlines the area where the pathways present an anti-dyadic effect m̂01 ≥ 1, instead the blue rectangle individuates the area where the average
dyadic effect is m̂1100 ≥ 1. The pathways with path extensions are shown with blue dots while black dots depict the same pathways without
deviations. The number on the dots is the KEGG pathway identifier without its suffix path:eco. In Figure b the anti-dyadic effect is shown on the
y-axis m̂01 and the pattern similarity σobs to an ideal oscillating multi-omic pattern on the x-axis . Black dots describe pathways without extensions,
and triangles depict those with extensions. The black and blue curves correspond to the two-dimensional kernel density estimation both for the
dots and for the triangles. The plot is clearly separable with a binary classifier, individuating principally two bands (the black and the blue ones). Both
the plots show that pathways without extensions have a median reciprocal influence = 1 ± 0.27 per node. Instead, pathways with extensions
present a median reciprocal influences of = 2 ± 0.62 per node. Pathways with extensions present present better MORA reciprocal influences than
pathways without extensions. The pathway is presented with a big shape on the plot if the RI is > 1.5 (more adjacent). Opposite, pathways with
RI ≤ 1.5 are classified as less adjacent
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0.54, sd = 0.15) than in unmodified MLSs. Modifying
MLSs, coupling operon compression and path extension,
leads to lower oscillations in patterns (median σobs =
0.70, sd = 0.12). The presence of operons on the patterns
does not cause always the same effect: due to the compres-
sion, in some pathways, for example Glycolysis (KEGG
identifier path:eco00010) σobs changes from 0.62 to 0.66,
while, in the Citrate cycle (TCA cycle) path:eco00020, σobs
changes from 0.38 to 0.62. In other cases, σobs decreases
its value from 0.64 to 0.38, as, for example, in the Lysine
degradation (KEGG identifier path:eco00310). After all,
oscillation is still present for the most part of the pathways
without the MLS modifications. In this way, multi-omic
oscillations allow to uncover similarities between the net-
work structures, which can reveal the existence of generic
organization principles. A comparison of MLSs with and
without modifications reveals a multi-scale presence of
oscillations in sequences and networks of different dimen-
sions but with a widespread tendency to homeostasis.

Multi-omic oscillations are related toMLS reciprocal
influences showing a particular interplay between the
sequence gene order and the pathway structure
It is possible to assess that MLSs are related to multi-
omic oscillations underlining the interplay between the
gene order and the particular schema of reactions. In both
the plots of Fig. 6, pathways without extensions maintain
a relevant reciprocal influence (median 1, sd = ±0.27),

increasing their value for all the pathways with extensions
(median 2, sd = ±0.63). In both the cases, the reciprocal
influences are not near to 0, thus associating the anti-
dyadic motifs to the neighboring multi-omics along the
patterns. In this way, it is also proved that the network
plasticity [19] does not depends only on a particular cir-
cuit of reactions but could be investigated through the
extent of the MORA reciprocal influences between the
sequence gene order and the network structures. From an
evolutionary point of view, the sequence gene order and
the pathway structures are conserved along the organisms
[44, 45]. In future works, it could be interesting to inves-
tigate the interplay of gene order and network structures
on several species taking as a measure of the evolution-
ary pressure the comparisons between MORA reciprocal
influences.

Multi-omic oscillation features change in configuration due
to perturbations and reveal different regulatory behavior
We measured the multi-omic oscillations on the 66 MLSs
perturbed by considering the average effect of 69 antibi-
otic perturbations. A strong response from the MLSs, as
shown in Fig. 7, is obtained when pathways with exten-
sions in standard conditions (black dots) are compared
against the average effect of 69 treatments (blue triangles).
The treatment effects strongly lower the patterns oscil-
lation score moving the median from σobs = 0.72, sd =
0.10 to σobs = 0.57, sd = 0.11. On the other hand, on

Fig. 7 The anti-dyadic effect magnitudes m̂01 (y-axis) and the similarity score magnitudes σobs (x-axis) of 66 pathways are shown in Figure. The 66
pathways with extensions subject to the average effect of 69 treatments are shown with the blue triangles. The same pathways in steady state
conditions are represented with black dots. The pathway is presented with a big shape on the plot if the RI is > 1.5 (more adjacent). Opposite,
pathways with RI ≤ 1.5 are classified as less adjacent
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the networks, they led the median values of m̂01 from
1.36 to 1.41, with an increase in variability from sd =
0.50, to 0.87. These values show that the organism, in
response to the treatments, activates other oscillating cir-
cuits on the same pathway, silencing some others. For
example, in Fig. 7, base excision repair (KEGG pathway
id eco03410 with extension) reasonably increases its anti-
dyadic effect of more than 0.5. Mismatch repair (KEGG
pathway eco03430) also increases its anti-dyadic effect
magnitude, and in this case, its oscillating similarity on the
pattern is lowered. The same is for the Flagellar assembly
pathway (KEGG pathway eco02040) that, due to the label
overlapping not shown on the plot, in standard condi-
tions, is near to the black node 360 while in the treatments
it is behind the blue triangle 280, always in Fig. 7. The
structures (sequence and pathway) that form the MLS
are defined in combination if oscillating multi-omics are
present at the same time on the patterns and on the
network motifs. Instead, when oscillating multi-omics in
one structure are found on patterns and not on path-
ways or vice-versa, then these structures are defined in
competition. In our case, it is observed that the combined
structures in standard conditions are 47/66 considering
pathways with extension, those with operon compres-
sion are 14/66, while those with operon compression and

extension are 43/66. The average effect of the 69 treat-
ments causes only 25/66 MLSs in combination. Similar
results are obtained considering MLSs with operon com-
pression and with operon compression and path exten-
sion. Some structures that are combined in steady state
conditions due to the perturbations become competitors
and vice-versa. Configuration changes imply the activa-
tion or the deactivation of oscillating multi-omic circuits
on the pathways (as shown in Fig. 8) highlighting the pres-
ence of different and unbalanced regulatory functions.

Discussion
The proposed methodology with regard to performances
could be comparable with well-known mining method-
ologies of sequence patterns [46] and dyad motifs
[35, 47]. From the biological point of view, it is based
on an extensive perturbation multi-omic analysis related
to network and sequence structures. In this field, recent
studies are focused on frequency patterns, that, condi-
tioned by biochemical oscillators, are activated or deac-
tivated on regulatory network circuits. In particular, it is
proven, that different types of regulatory functions appear
to be related to particular network structures to such
an extent that different biochemical oscillators are asso-
ciated with specific structures [48]. Furthermore, some

Fig. 8 An MLS with high reciprocal influences (RI) but with a low number of oscillating multi-omics is shown in (1). On this MLS, due to the effect of
the treatments t, an oscillating multi-omic circuit is activated (orange links in the yellow circle) and is deactivated another one. The MLS become
combined due to the effect of t because both the pattern and the pathway show oscillating multi-omics at the same time. Opposite, in (2), the
effect of treatments activate and deactivate the same oscillating multi-omic circuits, but, due to the changed pattern elements order, only the
pathway shows oscillating multi-omics, instead the pattern shows a low number of oscillations. In this case, the structures are defined competitor.
The change of only two multi-omic values (p3 and p5) on the overall pathway and on the pattern ( e3 and e5) affect the whole recurring multi-omic
pattern and its MLS
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other studies are focused on bacterial network motifs and
sequences which deepen the topological features on com-
plex structures [49]. As a consequence, our methodology
is focused on multi-omic patterns and motifs by putting
them in a biological and structural relation. In this way,
it is possible to leverage the topological interplay between
networks and sequences for understanding the effect of
perturbations and the role of regulatory functions. Con-
sequently, discovered patterns and motifs are considered
part of the same multi-layered structure (MLS) and they
come from quite easily data integration processes use-
ful to compare dynamic omic sources and perturbations
(protein variation, mRNA amounts, etc.) with static omic
sources (codon usage, gene order, pathways). Therefore,
it is analyzed the extent of oscillating multi-omics and
their reciprocal influences investigating whether sequence
patterns and network motifs are combined or competi-
tor. In this setting, we have shown how perturbations
alter the MLS dynamically. These changes were proved to
trigger the activation and deactivation of oscillatingmulti-
omic circuits with major implications in the metabolic
response to antibiotics. Moreover, unknown structural
features are revealed, e.g. it is shown that the gene order
and the bacterial reaction circuits reveal a strong inter-
play in combined structures. MLSs were studied when
subject to modifications (operon compression and path
extensions) considering multi-scale multi-omic metabolic
networks. When the motifs present a lack of oscillating
multi-omics, then through the path extensions we have
seen how the metabolic network affects the recurring pat-
terns more than the operon compression. In this setting,
some patterns show high scores while others not. The rea-
son is that, in some cases, the network helps the recurring
pattern to maintain a structural oscillation, while, in other
cases, the network influences negatively the oscillations.
In this way, the variable multi-omic quantities could be
analyzed in order to discover unknown regulation mech-
anisms between the different omic-layers. Impressively,
competitor MLSs, after a perturbation, could become
combined showing a sort of synchronization used to real-
ize a catabolic or an anabolic process in an optimized
manner. Furthermore, the latter observations coupled
with the discretization of multi-omics depict the complex-
ity of metabolic processes and their response to antibi-
otics unveiling the rules behind the metabolic network
robustness and plasticity [19]. After all, MORA recipro-
cal influences betweenmotifs and patterns are obtained in
a reasonable time (see 2) on an almost complete dataset.
In fact, the whole protein-centric network is of 1.644
vertices and 369.863 edges and, in our knowledge, it
does not exist a larger network (in terms of vertices) on
which to project more multi-omics. The selected exper-
iments come from two compendia specifically suited for
antibiotic treatments (see Paragraph Data sources and

multi-omics data integration). In order to make results
comparable, it is possible to extend the whole proce-
dure to other experiments considering perturbations of
the same typology. Unfortunately, the complete proposed
methodology is exponential (see Paragraph The whole
procedure performance) because of the measurement of
oscillating multi-omics on networks (see Paragraph Oscil-
lating multi-omics on networks). It is possible to achieve
ad hoc algorithmic improvements reducing the pathway
redundancy [50] or saving and reusing the computations
done on overlapped pathway sub-circuits/sub-graphs in
specialized data-structures. After all, functional plastic-
ity, homeostasis, redundancy, and promiscuity conserved
biological aspects of metabolic networks and biological
processes which makes it possible to survive to external
perturbations [51]. Therefore, it is a better choice to not
remove redundancy preserving the biological mining of
the research. For the same thing it is recommended to pay
attention in the network edge pruning due to the promis-
cuity of small metabolites (i.e H2O,O2,AMP, etc . . . )
[25, 52]. Oscillating multi-omic patterns associated with
dynamic rates of substrate/compound transformations
might lead to predicting some specific biochemical pro-
cesses also in presence of missing data, by using inferential
methods based on the profiling of reaction velocities and
their dynamics. Future improvements might lead us to
study oscillations with N > 2 classes. In literature there
are several methodologies to define N as a discrete space
of features [53].We suggest to apply a consensus criterium
in order to project multi-omics on a discrete space with
N > 2 because there is not an a priori best methodol-
ogy. For example, we adopted the Sturge’s formula in one
of our precedent works [12]. Once the number of dis-
cretisation levels N is decided, the procedure to obtain
σobs is very similar to the one described in the para-
graph Oscillat ing multi-omics on patterns. Note that if
we have a set of discretization levels � = {0, 1, 2, ..N},
then each discretisation level contributes to the pattern
oscillation by its fraction 1/|�|. The ideal σobs is equal to
(max(�)−0)∗div

max(�)∗div = 1. It follows that the ideal oscillation with
N > 2 assumes the form of a series of min-max discreti-
sation levels: max(�) − min(�) − max(�) . . .min(�) −
max(�). More the adjacent values are nearer to max(�)

or min(�) the less we have oscillating multi-omics. The
multi-class dyadic effect follows the same rules presented
above where the maximal oscillation is equal to N and the
others are ∈ [ 0,N].

Conclusion
In this paper a multi-omic integration based methodology
is introduced to analyse bacterial oscillating multi-omics
on sequence patterns and network motifs. The subject of
our analysis is E.coli. The lack of methodologies for multi-
omics integration decreases the chance to detect emerging
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motifs and patterns across sequences, networks or path-
ways. The current need of analytics to compare and test
metabolic models, the accurate design of a new pathway
or the redesign of an existing metabolic pathway or the
experimental validation of an in silico metabolic model
using a nearby species require the information of how
multi-omics data build up multi-scale phenotypes. The
high level comparison is based on novel algorithms which
take the low level approach at pathway level framework
and generate multi-scale multi-omic metabolic networks.
The goal is to find relations between oscillating multi-
omic patterns on sequences and oscillating motifs on
metabolic networks. Recurring oscillatingmulti-omic pat-
terns are discovered to be related to multi-omic metabolic
network motifs. This last novel feature can be related to
the highly conserved gene order and to the highly speci-
ficity of enzymatic reactions and their network topology.
The discovered motifs can be not only useful in the study
of bacterial phenotypic responses but also in applications
of metabolic engineering and optimizations. Then, this
work can contribute to the study and to the creation of
new interesting metabolic circuits based on binary multi-
omic network motifs and their recurring patterns. Our
framework is implemented in a software written in R
which provides effective and friendly means to design
intervention scenarios in the perspective of the synthetic
biology.
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