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Abstract

Background: Recent advances in data analysis methods based on principles of Mendelian Randomisation, such as
Egger regression and the weighted median estimator, add to the researcher’s ability to infer cause-effect links from
observational data. Now is the time to gauge the potential of these methods within specific areas of biomedical
research. In this paper, we choose a study in metabolomics as an illustrative testbed. We apply Mendelian
Randomisation methods in the analysis of data from the DILGOM (Dietary, Lifestyle and Genetic determinants of
Obesity and Metabolic syndrome) study, in the context of an effort to identify molecular pathways of cardiovascular
disease. In particular, our illustrative analysis addresses the question whether body mass, as measured by body mass
index (BMI), exerts a causal effect on the concentrations of a collection of 137 cardiometabolic markers with different
degrees of atherogenic power, such as the (highly atherogenic) lipoprotein metabolites with very low density (VLDLs)
and the (protective) high density lipoprotein metabolites.

Results: We found strongest evidence of a positive BMI effect (that is, evidence that an increase in BMI causes an
increase in the metabolite concentration) on those metabolites known to represent strong risk factors for coronary
artery disease, such as the VLDLs, and evidence of a negative effect on protective biomarkers.

Conclusions: The methods discussed represent a useful scientific tool, although they assume the validity of
conditions that are (at best) only partially verifiable. This paper provides a rigorous account of such conditions. The
results of our analysis provide a proof-of-concept illustration of the potential usefulness of Mendelian Randomisation
in genomic biobank studies aiming to dissect the molecular causes of disease, and to identify candidate
pharmacological targets.
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Background
Ideally, the causal effect [1, 2] of a phenotype or exposure
(X) on an outcome (Y ) should be assessed by setting up
an experiment, where we have control on the value of X in
each experimental unit. Unfortunately, the experimental
approach is not universally applicable: in a wide range of
research fields and situations we shall be forced to assess a
causal effect of interest via an observational study, that is,
a study where we have no control on the values of X, and
where all we can do is to passively observe the values of
that variable in each sample unit. Sometimes X represents
a variable that is inherently uncontrollable in humans in
an experimental setting as is the case with, say, body mass
and smoking habit.
Unfortunately, the observational assessment of a causal

effect is highly vulnerable to biases. No matter how
immaculate is our study design, we shall generally be
unable to eliminate sources of bias like confounding and
reverse causation between X and Y. We tackle this prob-
lem in a study of the possible causal effect of body mass
(X) on the concentration of each of a collection of 137
cardio-metabolites. Our main analysis tool are methods
of Mendelian randomization (MR) [3–5], in combination
with techniques of multivariate data analysis. The basic
idea behind these methods is that for X to be a causal
influence on Y, we, under certain assumptions, expect a
genetic variant Z that modulates X to likewise affect Y.
The mathematical methods we illustrate in this paper use
information about Z to assess the causal effect of X on
Y without the need to conduct an experiment. In this
case, we say that Z acts as an instrument in the assess-
ment of the causal effect of X on Y. The term “instrument”
echoes the name of another important class of methods
for assessing causal effects, known as instrumental vari-
able [6] analysis (IV analysis). It is common to use the
term “Mendelian randomisation” rather than “IV analy-
sis” when, as in our case, the instrumental variables are
genetic variants associated with X (in our case, with BMI).
The instrumental use of genetic variables is very fruitful in
the era of genomewide genetic association and expression
studies, which provide us with a wealth of information
about relationships between varuants and phenotypes. In
fact, MR provides us with a coherent framework for trans-
forming the growing body of genome-wide association
knowledge into causal knowledge.
MR methods may play an important role in pharma-

cological and medical research [7]. They have been used
to predict the outcome of clinical trials and to test the
causal hypothesis that motivates them [8]. Moreover, MR
analysis of biobank data can be used to validate causal
hypotheses of therapeutic and pharmacological relevance,
e.g. the putative causal effect of a protein on a disease.
Early implementations of MR used one or few instru-

mental variants, under the untestable assumption that

these variants are not pleiotropic, i.e., that they affect
the outcome only through the changes they induce in
the exposure. Later developments have produced meth-
ods that use multiple instruments, while allowing some
(unspecified) subset of them to affect the outcome
directly. Among these are the Egger regression (ER) and
the weighted median estimator (WME) [9] methods,
which we use in this paper.
Our illustrative study takes the putative causal pheno-

type, X, to represent body mass, as measured by the body
mass index (BMI), and considers a collection of outcomes
representing the concentrations of a large array of car-
diometabolic markers. The markers can be subdivided
into biologically meaningful clusters. One of these is a
cluster of very low density lipoprotein (VLDL) metabo-
lites, known to be highly atherogenic (in the sense that
they tend to induce atherosclerotic plaques). Other clus-
ters comprise correlated sets of moderately atherogenic
or neutral metabolites. In this paper, we use MR methods
to assess the causal effect of BMI on each of the car-
diometabolites in the study, and analyse the variability of
the causal effect within and across the clusters. Our MR
analyses suggest that BMI exerts a significant causal effect
on each of a large subset of the studied metabolites, and
that the effects of BMI on the cardiometabolites belong-
ing to the same cluster tend to be homogeneous and with
the same sign. In particular, our analysis suggests that BMI
tends to increase the concentrations of those markers that
are known to represent strong risk factors for coronary
artery disease.

Methods
Study motivation and data
Excess of body fat, also called adiposity, is a growing threat
to public health, despite the fact that it can be prevented
or reversed by eating less and exercising more. A popu-
lar measure of body fat, BMI, is defined as the person’s
weight (kilograms) divided by the square of their height
(meters2). Although this measure fails to capture varia-
tion in the way the mass of fat is distributed in the body,
it is regarded as a useful summary for large epidemio-
logical studies. Individuals with higher BMI suffer from
a higher risk of developing such cardiometabolic diseases
as heart failure and stroke. There is evidence (see, for
example, [10]) that the increased risk of disease and death
associated with excess adiposity is partly attributable to
abnormalities in the way individuals with high adipos-
ity metabolize carbohydrates and fats, these abnormalities
being responsible for a higher concentration of blood
sugar and cholesterol levels. This motivates interest in
the changes induced by BMI in an individual’s systemic
metabolic profile – so far a largely unexplored theme.
Würtz and colleagues [11] point out that if there is a causal
effect of adiposity on cardiometabolic risk factor levels,
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it might be possible to prevent the progression towards
cardiometabolic diseases by weight loss.
A number of authors tackle the problem by calculat-

ing the association between BMI and each metabolite of
interest. However, these associations are of limited use-
fulness. They will generally differ from the causal effects
of interest, due to the relationship between BMI and each
metabolite concentration being generally confounded by
a constellation of unobserved biological agents. Luck-
ily, we are able to estimate those causal effects via
MR. This idea is exploited by Würtz and colleagues
[11], who perform a MR analysis where BMI acts as
exposure (X), cardiometabolic markers act as outcomes
and genetic variants associated with BMI act as instru-
ments. One limitation of Würtz’s MR analysis is that
it was performed by using a two-stage least squares
approach, which assumes validity of the questionable
“no-pleiotropy” condition (see Condition (c) in the next
subsection).
In the remaining part of this paper, we perform a MR

analysis along lines similar to Würtz and colleagues [11],
this time by using up-to-date MR methods, notably ER
and WME, which will dissolve the fear of biases due to
unaccounted-for pleiotropy.
Our analysis is based on data from the Dietary, Lifestyle

and Genetic determinants of Obesity and Metabolic Syn-
drome (DILGOM) study [12]. This study contains obser-
vational measures for 137 metabolite concentrations in
n = 520 subjects from a Finnish population cohort
plus various phenotypic features, including BMI, age, sex,
∼ 35, 500 gene expressions and 38 millions of single
nucleotide polymorphisms (SNPs) measured in n = 688
subjects who include the 520.
Cardiovascular disease risk is thought to be causally

affected by the concentrations of such metabolites as low
density lipoprotein (LDL) and high density lipoprotein
(HDL). The DILGOM Study exploits the possibility of
measuring these lipoproteins in the plasma in terms of
particle numbers, sizes and concentrations, in contrast
to the traditional measures restricted to concentrations.
Thus, our data files contains information about such
metabolites as small, medium and large-sized lipoprotein
particles, for a more informative analysis. The small LDL
particles are considered more atherogenic (generators of
atherosclerosis) than the large LDL particles.
From a substantive point of view, our aim is to use

instrumental information extracted from a genomewide
list of SNPs to investigate the existence of causal rela-
tionships between BMI and the concentrations of car-
diometabolic markers, and to assess whether a high BMI
tends to increase the concentration of those metabolites
that are known to be highly atherogenic, that is, respon-
sible for an increased risk of atherosclerotic plaques and
life-threatening coronary artery disease.

Mendelian randomisation assumptions
It is sometimes possible, and in such a case helpful, to
discuss the assumptions at the basis of MR with the aid
of the conditional independence graph in Fig. 1, where
the nodes represents random variables in the problem,
and the arrows may, or may not, represent causality. The
graph may be interpreted to represent the class of all
joint distributions over the graph variables that satisfy all
the conditional independence relationships that the graph
imposes between the variables. These relationships can be
read off by using Pearl’s d-separation criterion [13], which
we omit from this discussion.
In our study the exposure, denoted by X, is the natural

logarithm of BMI, whereas the outcome, Y, is the natural
logarithm of the concentration of the generic cardio-
metabolite. Symbol Z represents the generic instrumental
SNP, with value in (0, 1, 2) according as the SNP allele is
the homozygous major “AA”, the heterozygous “Aa”, or the
homozygous minor “aa”, respectively.
Figure 1 shows a graph where one node, U, repre-

sents the set of imperfectly observed (perfectly known to
Nature, but not to us) confounders, which are responsi-
ble for the correlation between X and Y not being entirely
attributable to causation [2]. It is sometimes assumed
in MR that Z (in our study the generic instrumental
variant) satisfies the following conditional independence
relationships:

a) Z �⊥⊥ X,
b) Z ⊥⊥ U ,
c) Z ⊥⊥ Y |(X,U),

where the phrase “A ⊥⊥ B | C” stands for “A is condition-
ally independent of B given C” [14], and �⊥⊥ for “not inde-
pendent of”. Condition (a)may be interpreted as requiring
that each instrumental SNP be associated with the expo-
sure X, whereas Condition (b) requires the instrument
to be independent of the confounders, and Condition (c)
excludes pleiotropic associations, that is, any instrument-

Fig. 1 Conditional independence graph representation for a class of
Mendelian randomisation problems that does not violate Conditions
(a), (b) and (c) in the main text. Here Z represents the instrumental
variable(s), the symbol X represents an (intermediate) phenotype or
exposure, Y represents the outcome, and U a set of imperfectly
observed confounders of the relationship between exposure and
outcome
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outcome association (or causal effect of the instrument on
the outcome) that is not entirely mediated by the expo-
sure. None of the three conditions is violated by the graph
in Fig. 1. In particular, Condition (b) follows from the
absence of an unblocked (in the sense of d-separation)
path between nodes X and U in the graph. Condition (c)
follows from the fact that the node pair (X,U) blocks all
paths between Z and Y in the graph.
Presence of an arrow from node Z to node X, in the

graph, should not prevent the reader from interpreting
Condition (a) as compatible with instruments associated
with the exposure in a non-causal way. In most situations
we shall not know the variants that are causal for X. Many
instruments, typically single nucleotide polymorphisms
(SNPs), will be associated with X, but simply because they
are in linkage disequilibrium (LD) with an unobserved
causal variant. Luckily, the methods we use are compatible
with this type of non-causality, provided the instrumental
variants are independent of each other.
Pleiotropic associations incompatible with (c) (but com-

patible with (b)) are often represented in the graph by a
Z → Y arrow (missing in Fig. 1). They arise, for exam-
ple, when an instrumental SNP is associated with both X
and an unknown variant that exerts a causal effect on Y
independent of X. Presence of pleiotropy that violates (c)
is biologically plausible but statistically untestable. Luck-
ily, the methods used in this paper are robust to violations
of this condition, provided (a) and (b) are satisfied. This
means that they allow some of the instruments, which we
are not asked to identify, to have an association with Y
that is not mediated by either X or U. The flip side of this
is that we need to introduce a further condition requir-
ing that the pleiotropic effects be uncorrelated with the
associations of the instruments with the exposure. This
is called the Instrument Strength Independent of Direct
Effect (InSIDE) condition, and is untestable.
If the association of an instrumental SNP with X (BMI

in our study) is very significant, it is said to be a “strong
instrument”. If it is scarcely significant, we say that the
instrument is weak. Presence of weak instruments, espe-
cially in conjunction with a small sample size, may induce
bias in the estimate of the causal effect.
Because Conditions (b) and InSIDE are not testable, and

cannot be eschewed, the conclusions from anMR analysis
will always have to be interpreted with caution.
In any specific application, an important task will be to

search the genome for genetic variants to act as instru-
ments in the MR analysis. In our study, these were
selected genomewide from among all the SNPs associated
with BMI, in compliance with Condition (a), under the
assumption that they also comply with (b).
We assume that dependence of X and Y on their direct

influences in the graph is governed by a linear nor-
mal additive regression, where each SNP, Z, takes values

(0, 1, 2) on an interval scale, so that the expected incre-
ment in either X or Y due to an additional occurrence of
the minor allele is represented in the model by a single
unknown parameter. Note that we are assuming X and U
not to interact in their effects on Y, and Z and U not to
interact in their effects on X. These two assumptions are
untestable.

Mendelian randomisation methods
Two recent MR methods are Egger regression (ER) [15]
and the weightedmedian estimator (WME) [9]. Unlike the
two-stage least squares method, ER and WME are robust
to violations of Condition (c). ER is consistent regardless of
the number of instruments that violate Condition (c), pro-
vided Conditions (a)-(b) and InSIDE hold, whilst WME
makes an assumption on the proportion of instruments
that satisfy (c) [9].
Assume linear additive dependencies between Y (the

cardio-metabolite of interest), U, X (log BMI) and Z (the
instrumental SNP of interest). Let β̂Y and β̂X denote
the estimated slopes of the regressions of Y on Z and
X on Z, respectively. Assume that the instruments are
independent. Assume validity of Conditions (a)-(b) and
InSIDE. Then the instrumental variable (IV) estimator
of the causal effect of X on Y is β̂Y /β̂X . In a multi-
instrument situation, each jth instrument contributes a
separate IV estimate of the causal effect of X on Y, which
we denote by β̂Yj/β̂Xj. When the IV estimates of several
instruments, relative to a given outcome Y, show reason-
able concordance, it would appear that a causal conclusion
is defensible, pleiotropy notwithstanding. The ER method
is based on the idea that concordance can be tested by
regressing β̂Yj on β̂Xj. A significant linear regression of the
β̂Yj on the β̂Xj (with appropriate weights) will support (and
provide an estimate of) the causal effect of X on Y. A point
and interval estimate of the causal effect is obtained from
the slope of the regression, whereas the mean pleiotropic
effect is estimated by the intercept of the regression.
The WME method represents a different approach to

the problem. Assume that Conditions (a)-(b) and InSIDE
are valid, and that the instruments are independent, and at
least half of them satisfy Condition (c). Then the median
of the instrument-specific IV estimates will be a con-
sistent estimate of the causal effect. The WME method
implements this idea by introducing instrument-specific
weights that take into account the uncertainty arising
from the estimation of the βYj. TheWME estimator is con-
sistent if at least half of the instruments satisfy Condition (c).

Data analysis
In our study, the exposure X was defined to be the natural
logarithm of the BMI. Analyses were performed con-
ditional on age and sex. We performed a separate MR
analysis for each of the 137 cardio-metabolites, with Y
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being defined in each analysis as the natural logarithm
of the concentration of the studied metabolite. In each
analysis the instrumental variables were selected from a
genomewide sequence of SNPs on the basis of the statisti-
cal significance of the SNP’s association with the exposure
[16]. Some of these SNPs were imputed. The final set of
instruments consisted of SNPs with a call rate (both per
SNP and subject) ≥ 0.95, minor allele frequency > 0.01,
and absolute value of the Hardy-Weinberg equilibrium
observed statistic < 4. These numerical thresholds have
been frequently used in past genomewide genetic asso-
ciation studies. The causal effect of BMI on each of the
137 metabolites was estimated by using the ER and then
the WME methods. Each of these two methods was used
to calculate a point estimate, an interval estimate and a
p-value for the causal effect of BMI on the metabolite in
analysis.
We removed an extremely small number of outlying

individuals in order to make the metabolite distributions
approximately normal. We performed a hierarchical clus-
tering of the log metabolite concentrations by using the
Ward method, and by defining the distance between
metabolites j and k to be given by Djk =

√
1 − R2

jk , where
Rjk is the sample Pearson correlation coefficient between
the two log-concentrations.

Results
The instrumental SNPs were selected from a genomewide
list on the basis of their BMI associations, which we
assessed by performing an age- and sex-adjusted regres-
sion of log BMI on each candidate SNP. The selec-
tion was based on commonly used criteria, that is, in
such a way that their Wald test statistics were signifi-
cant with p ≤ 1 × 10−5, and the LD score between
pairs of SNPs, as obtained by using the R snpStats
package, never exceeded the threshold value of 0.05.
This led to the selection of 18 SNPs, which we used as
instrumental variables in our MR analysis. See Table 1
for information about the frequencies of the selected
SNPs. The BMI-associations of the 18 instrumental SNPs
did not necessarily remain significant at a 5% level
after Benjamini-Hochberg adjustment for genomewide
multiplicity.
Figure 2 displays a heatmap based on the Pearson cor-

relation coefficients between the 137 metabolites. The
ordering of the metabolites along the axes is based on
the results of a cluster analysis of their concentrations.
Three main clusters are highlighted in the figure. They
are delimited in the figure by a blue (top left), a red and a
blue (in lower positions) enclosure, respectively. The top
left cluster contains 22 metabolites, predominantly LDLs
associated with the idea of “bad” (atherogenic) choles-
terol and Intermediate Density Lipoproteins (IDLs). The
red-bordered cluster contains further LDLs and VLDLs,

Table 1 Percentage allele frequencies for the 18 instrumental
SNPs in our DILGOM analysis, computed over 688 individuals

SNP label (dbSNP) 0 1 2

RS143298427 97.1 2.3 -

RS148966272 96.5 2.8 -

RS34364548 93.5 2 -

RS13413025 92.9 3.2 0.1

RS1502591 49.7 39.2 6.5

RS1504056 41.3 44.3 14.4

RS76755887 93.2 5.5 0.4

RS1109179 10.6 43.5 42.6

RS17052428 96.2 3.8 -

RS142181699 97.1 2 -

RS10269617 92.4 6.1 -

RS17159014 94 2.8 -

RS17109797 73.1 24.9 1.7

RS10459315 52.8 36.3 7.8

RS4782306 - 3.3 94

RS141336523 94.0 5.2 0.1

RS4816160 71.8 26.0 2.2

RS116920478 91.7 7.0 0.4

Allele coding: 0 stands for homozygous major, 1 for heterozygous, and 2 for
homozygous minor, except for SNPs RS1109179 and RS4782306, where the
homozygous categories are inverted

these latter being characterised by extreme degrees of
atherogenicity. The lower blue-bordered cluster con-
tains HDL- related metabolites associated with a low
degree of atherogenicity (“good” cholesterol). The “good”
cholesterol concentrations turned out to be negatively
correlated with those of the bad cholesterol metabolites in
almost all the cases.
A finer subdivision of the main clusters, also based on

the heatmap of Fig. 2, led to 10 clusters, formed by 22, 8,
7, 37, 5, 17, 6, 26, 4, 5 metabolites, respectively. Additional
files 1 and 2 contain a description of the metabolite labels
and a description of the metabolite memberships with
respect to the finer clusters, respectively. Each of the 10
clusters contained a group of adjacent metabolites in the
heatmap, the only exception being metabolite 75, which
we included in cluster 6 on the basis of the pattern of its
correlations. The ten clusters appeared as compact groups
in a two-dimensional principal component representation
of the set of metabolite log-concentrations, calculated on
the basis of the metabolite-metabolite correlation matrix.
Body mass, as measured in terms of BMI, was found to

exert a significant causal effect on a large number of the
studied metabolites. Figure 3 illustrates our analysis of the
putative causal effect of BMI on one particular metabolite:
the Serum Total Triglycerides (SERUMTG) concentra-
tion. The figure shows an Egger regression plot [9, 15],
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Fig. 2 Heatmap representation of the Pearson correlations and clustering of the log-transformed metabolite concentrations

where each dot corresponds to one of the 18 instrumental
SNPs. The ordinate of each SNP corresponds to the coef-
ficient of that SNP in a linear regression of SERUMTG on
that SNP, adjusted for age and sex. The abscissa of each
SNP corresponds to the coefficient of that SNP in a sex
and age-adjusted linear regression of log BMI on that SNP.
The estimated slope of the regression through the points
is represented in the plot as a black line. Under Condi-
tions (a) − (b), and under InSIDE, this slope corresponds
to the Egger estimate of the causal effect of log BMI on
log SERUMTG. The slope of the red line corresponds to
the WME [9] estimate of the same effect. The fact that
the regression intercept is not significantly different from
zero corresponds to lack of evidence of a non-null aver-
age pleiotropic effect. In such a case, the Egger regression
estimate of the causal effect coincides with the Invariance
Weighted Estimator [15].
Both the ER and the WME estimates of the causal

effect of log BMI on log SERUMTG were significant

(p = 0.075 and 0.0053 respectively). The standard error
of the WME estimates was calculated by using a boot-
strap procedure, where the estimate of the causal effect is
re-calculated from each of a long sequence of simulated
datasets obtained from the original dataset via random
selection of the sample individuals with replacement.
We also looked at the wider picture of the metabolite-

specific causal effects. We found an interesting (if not
unexpected) pattern. The causal effects of BMI on the
metabolites in a given cluster tend to have the same sign,
and this is the sign we expect on the basis of biological
considerations: positive for highly atherogenic cholesterol
metabolites, and negative for “good” cholesterol metabo-
lites. These results suggest that an increase in BMI tends
to increase the good cholesterol, and decrease the highly
atherogenic cholesterol. This finding is further discussed
in the next section.
We imputed the missing metabolite concentrations and

SNPs with the aid of the R mice package. In the analysis of
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Fig. 3 Illustration of Egger regression approach to Mendelian
randomisation. Each point in the scatter plot represents an
instrumental SNP. The vertical axis represents the estimated slope of
the regression of Y (serum total triglycerides) on the SNP. The
horizontal axis represents the estimated slope of the regression of X
on the SNP. The black and red lines correspond to the Egger
regression and weighted median estimate of the causal effect of X on
Y, respectively. In this particular example, the intercept of the Egger
regression is not significantly different from zero, which we interpret
to indicate little evidence of directional pleiotropy (p = 0.574). The
estimates of the causal effect produced by Egger regression and by
the weighted median estimator are both significant and in
reasonable concordance. Grey dashed lines represent the 95 percent
confidence intervals for the slopes in the regressions

every new metabolite, we used the least absolute shrink-
age and selection (LASSO) sisVIVE estimator [17] to esti-
mate the number of instruments that violate Condition
(c), so called “imperfect” instruments.We found this num-
ber to be always less than 9. In our WME calculations,
the percentage of weight contributed by the imperfect
instruments was always less than 50%, which ensures
the consistency of the WME estimates of the causal
effects.
Figure 4 reports about the causal effects estimates

obtained via WME, this method having been found to
provide more precise estimates than ER in a simulation
study performed by Bowden and colleagues [15]. In fact,
in our study, WME estimates had more significant p-
values than ER estimates. Figure 4 displays the signed
p-values for the WME estimates, for each metabolite and
cluster. These p-values were not adjusted for multiple test-
ing, partly because there is little point in adjusting for
multiple testing on a set of highly correlated metabolites
[18]. Each subfigure corresponds to one of 10 fine clusters
ofmetabolites. In each subplot, the horizontal axis indexes
the set of metabolites contained in the corresponding
cluster. Reported in each subplot are the −log10pvalues
for the causal effect of log BMI on each metabolite in
the relevant cluster, with the same sign as the sign of the
causal effect estimate. The dotted horizontal lines indicate

thresholds for significance of each individual estimate.
Visual inspection of the figure reveals a tendency of the
sign of the causal effect to be identical for each metabo-
lite in each cluster. BMI appears to exert near-significant
positive causal effects on almost all the LDL metabo-
lites of cluster 1, which are known to be atherogenic.
BMI appears to exert significant positive causal effects on
most of the VLDL (very low density lipoprotein) metabo-
lites of clusters 3 to 5, which are known to be extremely
atherogenic, which is in accord with the available epi-
demiological evidence. All the estimates for the HDL
metabolites that form clusters 6-7 are negative. In par-
ticular, our analysis provides convincing evidence that an
increase in adiposity causesmost of the HDL (high density
lipoprotein, not atherogenic) metabolites to decrease in
concentration.
Clusters 4, related to VLDL, and 6, to HDL, are signif-

icantly enriched in the number of significant causal esti-
mates with log transformed BMI (p = 2× 10−5, 0.000168;
Benjamini and Hochberg q = 0.00018, 0.00084 respec-
tively), whilst clusters 1 and 2, both related to LDL
metabolites and the like, are significantly depleted
in the same number (p < 10−6, 0.00538; Benjamini
and Hochberg q = 2 × 10−6, 0.02689 respectively),
according to one-sided Fisher’s test for the enrichment
or depletion of significant causal estimates and when
assuming a hypergeometric random variable for the
marginal counts in the 2 × 2 tables with the number
of significant causal estimates in each cluster against
the rest.
One referee correctly pointed out that the homogene-

ity of BMI causal effect within each cluster is partly a
consequence of the clustering itself. However, we would
emphasize that themetabolite clusters used in our analysis
were strongly characterized from a functional and biolog-
ical point of view. In particular, cluster 3 contains mildly
atherogenic LDL-related metabolites, cluster 4 contains
highly atherogenic VLDL-related metabolites, and cluster
6 contains HDL-related metabolites. The clustering was
little or not sensitive to the clustering method used.

Discussion
Würtz and colleagues [11] estimated the causal effect of
BMI on each of a set of metabolic concentrations, via
a two-stage least squares analysis based on instrumen-
tal information provided by a a set of SNPs associated
with BMI. We carried out a similar analysis based on
our DILGOM data, by using more robust MR methods,
specifically methods that allow a subset of the instruments
(which we are not asked to identify) to exert a pleiotropic
influence on the outcome. Unsurprisingly, the results of
our analysis agree with the notion that an increase in BMI
tends to cause an increase in the concentrations of the
atherogenic metabolites (such as those associated with
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Fig. 4 Scatter plot of the − log10 p-values for the WME estimates of the causal effects of log BMI on each studied metabolite in each of ten clusters
of metabolites. Each plot in the figure refers to the metabolites in a particular cluster, with cluster 1 represented by the left top subplot, and cluster
10 represented by the right bottom subplot. In the plots, the sign of each p-value equals the sign of the corresponding causal effect. The horizontal
axes index the metabolites in each cluster, their order depending on the clustering method. The black dashed lines indicate thresholds for
significance (± log10 0.05). The blue lines are smoothing splines

low density cholesterol) and, perhaps more interestingly,
a decrease in the concentrations of the non-atherogenic
metabolites (such as those associated with high-density
cholesterol).
Our genomewide search highlighted 77 SNPs very

significantly associated with BMI, some of which were
eliminated from the analysis at LD filtering stage. The
set of these 77 SNPs did not include any of the 97 SNPs
most significantly associated with BMI in a big meta-
analysis on the European population [19]. Because our
SNP data set contained 88 out of those 97 SNPs, this
finding is surprising. Also, there was no overlap with
the set of SNPs found in [20], nor with the set of 32
SNPs significantly related to BMI that form the genetic
score in [11]. This finding may perhaps be ascribed to
genetic differences between populations, and to BMI-
related alleles being under-represented in our data set
[20]. Another explanation of the finding could be the
relative lack of power of our study, due to a smaller
sample size than the previous studies, in conjunction
with the small magnitude of the BMI-SNP associations
[11, 19, 21].
Our estimates of the causal effects of BMI on the

metabolites are in good accord with the available biologi-
cal knowledge, and we regard them as a proof of principle

in favour of using MR methods for dissecting the causal
structure of disease.

Conclusions
Substantive
Due to the relatively small size of our sample, and to the
cross-sectional nature of the study, our findings deserve
future independent validation. We were pleased about
their agreement with pre-existing biological knowledge.
The results of our analysis of DILGOM data strengthen
our confidence in the possibility to reduce the concentra-
tion of atherogenic VLDLs by reducing BMI via diet and
physical exercise.

Methodological
MR methods are rooted in the more general field of sta-
tistical causality [2]. As such, they are part of a framework
that provides a new logic and language for reasoning
about disease, and for developing a causal theory of ill-
ness on the basis of empirical data.We hope our DILGOM
analysis provides a helpful proof-of-concept illustration of
this fact.
Our careful review of the assumptions behind MR

(many of which are, at best, only partially verifiable)
should dispel any impression of MR representing an
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epidemiologist’s Holy Grail. Because of the untestable
assumptions, we shall rarely be entirely convinced by
the results of a single MR analysis. MR is a useful tool,
but we must learn to use it in a wise and scientifically
sensible way.

Additional files

Additional file 1: Contains the metabolite labels in the same order as in
Fig. 2. (DOCX 5 kb)

Additional file 2: Contains an Excel Table with the metabolite labels, in a
cluster by cluster fashion. (XLSX 8 kb)
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