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Abstract

Background: The aim of this article is to analyze the effect on biochemical recurrence and on overall survival of
removing an extensive number of pelvic lymph nodes during prostate cancer surgery. The lack of evidence from
randomized clinical trials to address this specific question has hampered the ability to determine the true effect of the
number of nodes removed.

Results: Our analysis is based on a large observational study, and this can lead unadjusted estimates to be very
sensitive to confounding bias due to the different prognosis of individuals. We assess the effect of the number of
lymph nodes removed by means of an Inverse Probability Weighting adjustment based on a Poisson regression
model, and by a Doubly-robust adjustment.

Conclusions: Our findings suggest that a large number of nodes removed is associated with a significant
improvement in time to biochemical recurrence. However, it appears to have no impact on overall survival.

Keywords: Prostate cancer, Retrospective study, Doubly-robust estimation, Survival analysis

Background
In prostate cancer (PCa) studies it is still debatable
whether more extensive pelvic lymph node dissections are
associated with better oncological outcomes. Nowadays,
no prospective randomized study aimed at assessing
the benefit on cancer control of anatomically defined
extended pelvic lymph node dissection (PLND) as com-
pared to limited or no PLND is indeed currently available.
Recent literature [1] reports that extended PLND is

associated with higher rates of node positive findings,
as the probability of detecting lymph node invaded by
prostate cancer invasion is directly related to the extent of
PLND. Another retrospective trial found a statistically sig-
nificant association between the extent of PLND and can-
cer specific survival. The hazard of cancer-related death
was found to be significantly lower for higher numbers
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of nodes removed [2]. The main limitation of this mul-
ticentre study is the lack of a homogeneous and stan-
dardized pathologic assessment of the removed lymph
nodes. Given the long natural history of treated PCa, it
is likely that if a potential beneficial effect of extended
PLND existed, this is more likely to be detected in men
with more aggressive cancer characteristics. Such hypoth-
esis has been tested in more recent retrospective studies
focusing on men with adverse pathological features. For
example, Moschini et al. analyzed a large cohort of 1586
patients with locally advanced PCa treated with RP plus
ePLND and found that a higher number of removed LNs
was an independent predictor of increased cancer-specific
survival, suggesting a potential therapeutic role of a more
extensive PLNDs in this subgroup of patients [3].
Taken together, all of these data show that the impact of

PLND as a curative treatment remains an open question.
After the withdrawal of the only available prospective

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2180-8&domain=pdf
mailto: chiara.gigliarano@uninsubria.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Gigliarano et al. BMC Bioinformatics 2018, 19(Suppl 7):200 Page 32 of 154

study reported on this topic [4], the scientific com-
munity is eagerly awaiting the results from the two
ongoing randomized clinical trials comparing extended
and limited PLND during RP in intermediate and high-
risk PCa to provide definitive evidence to this highly
controversial topic.
Overall, a general agreement exists that whenever

PLND is indicated, this should be anatomically extended
at least for diagnostic purposes [5, 6]. Nevertheless,
whether this approach improves patient outcomes is
still unknown. In case of detection of positive nodes at
PLND, patients may be offered different post-operative
adjuvant treatments, such as: (i) radiotherapy, (ii) hor-
mone therapy, (iii) a combination of both. Correct patient
staging may help in tailoring the optimal post-operative
patient management and thus indirectly improve patient
outcomes. Therefore, the correct identification of men
potentially harboring prostate cancer nodal metastases is
crucial to optimize patient outcome. Moreover, assessing
whether such extensive dissections are directly associated
with improved cancer control rates using methodologi-
cally sound approaches, which can account for the effect
of patient selection biases, is still an unmet need.

Methods
The aim of this article is to examine the effect on BCR
and on all-causes t-month survival of removing different
numbers of nodes during prostate cancer surgery. Our
analysis is based on non-randomized observational study
including 3046 PCa patients. In randomized studies the
distributions of the patients characteristics are balanced
across groups, so that groups are similar expect for the
treatment. This constitutes a critical issue, since in non-
randomized (or observational) studies treatment exposure
may be associated with covariates that are also associated
with the survival function, and thus “treated” patients
may differ from “untreated” ones. We specify that in the
paper we refer to “treatment” meaning the removal of
a given number of lymph nodes. In this framework the
usual analysis based on unweighted Kaplan-Meier survival
curves may be misleading due to confounding [7].
Interpreting differences in groups or effects of covari-

ates in observational studies is a major debatable point,
since it is tempting to attribute the differences to the
lack of random treatment assignment. Indeed, the lack
of randomization can lead observational effect esti-
mates to be very sensitive to confounding bias due
to the different prognosis of individuals between treat-
ment groups. As a consequence, observational random-
ized discrepancies cannot be automatically attributed to
randomization itself.
Thus, observational studies need adjustments for base-

line confounders, for time varying confounding an for
selection bias. Guidelines that rely on observational data

due to the absence of randomized trials benefit when
the analysis mimics the analysis of a hypothetical tar-
get trial. To this extent inverse probability weight (IPW)
can be considered as an adjustment for pre- or post-
randomization variables in observational studies. In par-
ticular, in this article we use IPW to emulate the random
allocation of patients to treatment groups (defined by
the number of nodes removed), within a prostate can-
cer observational cohort study. We consider only pre-
treatment variables for the adjustment.
The IPW approach, although being one of the most

popular methods used for adjusting for confounding, is
subject to some criticism. In particular, it tends to be
sensitive to misspecification of the treatment assignment
model. To overcome this problem we also exploit the
Doubly robust method proposed by [8, 9], which tends
to be more robust against misspecification either of the
treatment assignment model or of the survival model. In
the Appendix we report on a simulation study aimed at
illustrating and exploring such properties for large and
moderate sample sizes.
The rest of this paper is structured as follows. We first

describe the data, and show by means of some prelimi-
nary analysis how the number of nodes removed clearly
affects the probability of missing a positive-node patient
modelled as beta binomial distribution. We then analyze
whether the removal of more lymph nodes during prosta-
tectomy may improve patient time from surgery to BCR
and OS through better treatment assignment due to a
more precise nodal staging assessment. For that reason,
our analysis is split into two parts: the first part of our
“Results” section focuses on time to BCR, while the sec-
ond part reports the results of the analyses on overall
survival (OS). Concluding remarks are reported in the
“Discussion and conclusion” section.

Results
Data and patient classification
Our analysis is based on a prostate cancer dataset col-
lected at San Raffaele Hospital (HSR) in Milan, Italy,
between years 1991 and 2012. We consider a sample of
3046 patients with localized prostate cancer treated with
radical prostatectomy and pelvic lymph node dissection.
The median follow-up is 38 months. During the entire

follow-up period, 359 patients (12%) experienced BCR,
while 84 patients (3%) died. Patients are aggregated in
three groups according to the number of nodes removed
during surgery: (i) 1-10 nodes, (ii) 11-20 nodes and (iii)
more than 20 nodes removed. Preliminary descriptive
statistics are shown in Table 1.
We note that almost half (45%) of the patients in the

study belong to the second nodes group, with num-
ber of removed nodes between 11 and 20, and that the
overall average number of nodes removed is 16.6. Table 1
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Table 1 Descriptive statistics

Nodes group 1-10 Nodes group 11-20 Nodes group 21+ Total

Mean Med Freq Mean Med Freq Mean Med Freq Mean Med Freq

Nodes removed 7.1 7 15.3 15 27.8 26 16.6 15.0

Positive nodes 0.1 0 0.3 0 0.8 0 0.4 0.0

Age (years) 64.8 65.4 65.4 65.9 64.7 64.8 65.0 65.0

Gleason score 6.1 6 6.2 6 6.4 6 6.2 6.0

PSA 8.8 6.9 11.6 7.1 12.3 7.1 11.1 7.0

T1 stage 485 (58%) 756 (55%) 425 (50%) 1666 (55%)

T2 stage 281 (34%) 448 (33%) 288 (26%) 1017 (33%)

T3 stage 67 (8%) 163 (11.9%) 133 (14.0%) 363 (11.9%)

BCR (1=yes) 93 (11%) 187 (14%) 79 (9%) 359 (12%)

OS (1=dead) 19 (2%) 49 (4%) 16 (2%) 84 (3%)

N 833 (27%) 1367 (45%) 846 (28%) 3046 (100%)

Note: Med indicates the median of the variable; Freq refers to absolute frequencies (the corresponding percentage frequencies are in italics)

also reveals that patients with larger numbers of nodes
removed are more likely to have higher T stage, to be
slightly younger, to have higher PSA values as well as
higher Gleason scores than patients with fewer nodes
removed. Therefore the distribution of the covariates does
not seem to be independent from the treatment (the num-
ber of nodes removed). Moreover, the average number of
positive nodes for all patients is 0.4, a value that is dou-
bled for the groups of patients with more than 20 nodes
removed. Hence, there seems to exist a positive associ-
ation between the number of nodes removed and the
number of positive nodes detected: the higher the number
of nodes removed the higher is the probability of detecting
a positive node.
For each i-th node-positive patient with number of

removed nodes Nexi, let Xi be the number of observed
positive nodes among the given number Nexi of removed
nodes, and pi be the unknown probability that an exam-
ined node is positive.
The idea is to estimate the probability of missing a pos-

itive node (thus classifying incorrectly a patient - false
negative) for a node-positive patient, based on the total
number of removed nodes (Nex) and the number of nodes
found positive (x).
The model assumes that X follows, conditionally on p,

a binomial distribution with Nex (assumed independent)
trials and success probability p. To allow for individual
heterogeneity, it also assumes that p comes from a beta
distribution with parameters α and β . The marginal dis-
tribution of X will be, therefore, the Beta-binomial distri-
bution with parameters α,β ,Nex, with probability mass
function

P(X = x|Nex,α,β) =(
Nex
x

)
Be(x + α,Nex + β − x)

Be(α,β)
,

with x = 0, 1, ...,Nex and where B(·, ·) is the Beta func-
tion. For each patient with Nex examined nodes it is then
possible to easily estimate the probability of observing no
positive nodes as

P(X = 0|Nex,α,β) = B(α,Nex + β)

B(α,β)
.

This model relies on several assumptions which,
although strong, are needed to ensure mathematical
tractability. Among others, we are here assuming that our
data do not contain incorrectly staged positive nodes, and
that, within the same patient, all nodes have the same
probability of being positive. For an extended discussion
of the method and the reliability of those assumptions see
Gönen et al. (2009).
We fitted a Beta-Binomial model to our data in R by

maximization of the likelihood function, using the VGAM
package v.1.0-4 [10]. The estimated parameters α and
β led to the results showed in Fig. 1, together with a
confidence band based on the endpoints of the marginal
confidence intervals of the two parameters. The probabil-
ity of not detecting the positive nodal status of a patient
is plotted as a function of the number of nodes exam-
ined (Nex). The graph clearly shows that the probability
of misclassifying node-positive patients decreases as the
number of nodes removed increases. In particular, the
probability of a false negative decreases quickly as Nex
increases from 1 to 10, reaching a value around 0.3 for
Nex=10. Starting from Nex=11, the curve becomes flat-
ter. It reaches a value of 0.21 for Nex=15, and it remains
between 0.2 and 0.1 with more than 15 removed nodes,
with no further notable drop beyond that level. Consider-
ing also a clinical point of view, in terms of both feasibility
of the procedure and quality of life of the patient that
undergoes surgery, a removal of about 15 lymph nodes
represents a good trade off to obtain a fair estimate about
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Fig. 1 Estimated probability of missing nodal disease as a function of the number of nodes examined

the real nodal status of a patient, while removing less
than 10 lymph nodes may cause an excessively high false
negative rate.

Time to biochemical recurrence analysis
Unweighted survival analysis
We first perform an unweighted survival analysis, based
on the Kaplan Meier estimation of the survival functions
for each of the three node groups.
Figure 2 plots the estimated survival curves for each

group, while Table 2 shows the p-values of the log-rank

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to BCR (months)

P
ro

ba
bi

lit
y

Nodes 1−10
Nodes 11−20
Nodes 20+

Fig. 2 Estimated survival function for time to BCR, based on naive
unadjusted estimation

tests for the difference in the survival functions between
each pair of nodes groups. Both the graph and the tests
indicate no differences among the three survival curves,
thus suggesting that the number of nodes removed (Nex)
does not seem to affect time to BCR.
However, since the study is observational as we have

mentioned, the unweighted Kaplan-Meier survival curves
may provide misleading results due to confounding: the
apparent absence of differences across the groups might
be in part explained by differences in the composition of
the patient groups. If the experiment were randomized,
then the number of nodes removed (that is, the treat-
ment) would have been distributed in the same way across
the patients, regardless of their covariates (PSA, Glea-
son score, age). In the previous section we have seen that
this is actually not the case, since the surgeon’s decision
was likely affected by these covariates. As more nodes are
removed from patients with higher T stage, PSA andGlea-
son score, who also might be at higher risk of recurrence,
the time to event distributions need to be adjusted for the
effect of such confounding.

Inverse probability weighted analysis
A first possible method to adjust the analysis is based
on the Inverse Probability Weights (IPW) adjustment,

Table 2 Log-rank tests for the difference in survival estimates
among node groups - BCR

Node groups Log rank test p-value

1-10 vs 11-20 0.116

1-10 vs 21+ 0.718

11-20 vs 21+ 0.265
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according to which each patient receives a weight that
is inversely proportional to the estimated probability
of having his number of nodes removed equal to the
observed number; see, among others, [7, 11]. The IPW
is a particular type of the propensity score method,
which is aimed at adjusting for confounding by weighting
observations by the inverse of the estimated propensity
scores, that are probabilities of exposure to the treatment
received conditionally on the covariates; see, among oth-
ers, [12–15]. We have estimated the weights by fitting a
Poisson regression model to estimate each patient’s prob-
ability of receiving any number of nodes removed. As
covariates (Z) we have included age, PSA score, T-stage
and Gleason score. We have also truncated the weights to
a maximum of 35 (similarly to [16]).
More in detail, the IPW adjustment consists of the

following steps:

• Step 1. Fit a Poisson regression model and compute
the predicted probabilities of having the number of
removed nodes be equal to the observed number
given the covariates, P(Nex = x|Zi), i = 1, . . . , n, so
that n is the total number of patients. Then, sum over
the three nodes groups to obtain the predicted
probability of each node group g = 1, 2, or 3 and each
covariate value:

P1(Zi) =
10∑
j=1

P(Nex = j|Zi)

P2(Zi) =
20∑

j=11
P(Nex = j|Zi)

P3(Zi) =
∞∑

j=21
P(Nex = j|Zi)

• Step 2. Generate the Inverse Probability Weights
(IPWs) for each patient as the inverse function of the
corresponding predicted probability, which depends
both on the number of nodes removed (g) and on the
covariates:

wg(Zi) = 1
Pg(Zi)

,

where g indicates the treatment group (1, 2, or 3).
• Step 3. Fit three weighted Kaplan Meier estimators

with weights wg(Zi), separately for each nodes group:
S1(t) = P(T ≥ t|g = 1), S2(t) = P(T ≥ t|g = 2) and
S3(t) = P(T ≥ t|g = 3).

• Step 4. Estimate the treatment effects in terms of
difference in survival probabilities at time t among
the three groups:

S1(t) − S2(t); S1(t) − S3(t); S2(t) − S3(t).

• Step 5. Estimate confidence intervals for the
treatment differences using a bootstrap technique,
for each time t.

The estimates from the Poisson regression are shown in
Table 3, from which we notice that all covariates have a
significant impact on the number of nodes removed.
Using the Inverse Probability Weights, whose distribu-

tion is shown in Fig. 3, we obtain the weighted Kaplan-
Meier survival estimates shown in Fig. 4.
The graph reveals how the time to BCR curves would

have looked like, had each of the node groups had the
same covariates distribution. In particular, time to BCR
seems to improve as the number of removed nodes
increases.
Comparing Figs. 4 to 2 in the previous section we

note that the estimated survival function of the group of
patients with more than 20 nodes removed is higher in the
IPW-adjusted KaplanMeier than in the unweighted analy-
sis. Moreover, no difference emerges between the survival
distribution of patients with fewer than 10 nodes and the
distribution for patients with 11-20 nodes removed.
Hence, once adjusting for confounding, we can conclude

that there is a significant positive effect on time to BCR of
removing a higher number of nodes.

Doubly robust analysis
An alternative way for adjusting for the non-randomized
nature of treatment is provided by the Doubly robust
method; see, among others, [8, 9, 17]. The IPW method
tends to be possibly sensitive to misspecification of the
treatment assignment model, while the Doubly robust
method tends to be more robust against misspecification
either of the treatment assignment model P(Nex = x|Z)
or of the survival estimate model S(t|Z,Nex, x).
Indeed, while one will never know whether the weights

are correctly specified, if that is the case then the survival
probabilities are estimated consistently by IPW, as long
as the model for the outcome is also correctly specified.
The parameter estimators of the model for outcome, on
the other hand, are not guaranteed to be consistent if that
corresponding model is not correctly specified. So, IPW
methods require that both models be correctly specified.
Doubly robust methods, on the other hand, are theoreti-
cally guaranteed to consistently estimate the true survival

Table 3 Output of Poisson regression

Coefficient Coefficient

Intercept 2.576∗∗∗ Gleason 0.045∗∗∗

T2 stage 0.038∗∗∗ PSA 0.002∗∗∗

T3 stage 0.147∗∗∗ Age -0.003∗∗∗

***indicates statistical significance at the 0.01 level
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Fig. 3 Histogram of the Inverse Probability Weights

probabilities even if one of the two models is wrongly
specified (hence the name “robust”). In our setting, the
survival estimates based on the Doubly robust method are
consistent as long as either the Cox model or the weight
(or both) models are correctly specified.
As stated in [9], “In a causal inference model, an

estimator is Doubly Robust (DR) if it remains consis-
tent when either (but not necessarily both) a model for
treatment assignment mechanism or a model for the
distribution of the counterfactual data is correctly spec-
ified.” “With observational data one can never be sure
that a model for the treatment assignment mechanism
or a model for the counterfactual data is correct.” “DR
estimators, in contrast with inverse probability weighted-
estimators, give the analyst two chances, instead of one,
to make valid inference.” In that article, the authors also
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Fig. 4 Estimated survival function for time to BCR, based on IPW
estimation

present the results of a simulation study that demon-
strates the impressive finite sample performance of DR
estimators in terms of finite sample efficiency and robust-
ness. In [18], additional simulation based evidence is pro-
vided to quantify the theoretical properties of the Doubly
Robust approach.
The Doubly robust method can be summarized in the

following steps:

• Steps 1. and 2. Proceed analogously as in Step 1 and
Step 2 of the IPW method.

• Step 3. Fit three weighted Cox models, with weights
wg(Zi). In particular, we fit one model for each
treatment group g = 1, 2, 3, where group 1 refers to
1-10 nodes, group 2 refers to 11-20 nodes, and group
3 to 21+ nodes. For detailed notation see also Section
2.2 of Bang and Robins [9].

• Step 4. Compute three predicted survival functions
at month t for every patient one for each treatment
group: S̃i(t|Group = g,Z). In this way each patient is
assigned three estimated survivals, one factual and
the other two counterfactual.

• Step 5. For each group g, compute the average
survival function at month t over all n patients:

S̃g(t) = 1
n

n∑
i=1

S̃i(t|Group = g,Z).

• Step 6. Estimate the effects in terms of differences in
survival at time t among groups:

S̃1(t) − S̃2(t); S̃1(t) − S̃3(t); S̃2(t) − S̃3(t)

• Step 7. Estimate confidence intervals using
bootstrap, for each time t.

Results are shown in Fig. 5. The graph confirms the
results obtained with the IPW method, showing also in
this case that the survival curve of the group of patients
with highest number of removed nodes lies always above
the survival curves of the other two groups, which are
again identified as not being significantly different from
each other.
Finally, in Table 4 we compare the three analyses that

we have performed for estimating the group-specific time
to BCR, focusing on t = 60, 90 and 120 months from
surgery. The table shows that there is no difference across
the three nodes groups in terms of probability of sur-
viving more than 5 years (60 months) according to all
estimationmethods. This is also confirmed by the survival
functions depicted in Figs. 2, 4 and 5. Differences between
the high nodes group (21+ nodes) and the other groups
start emerging from time t = 90, that corresponds to
the probability of surviving more than 7.5 years from the
surgery. Consistently with earlier results, these differences
emerge only when considering the two weighted models.
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Fig. 5 Estimated survival function for time to BCR, based on Doubly
Robust estimation

Overall survival analysis
We now move from time to BCR to time to OS, and
repeat the same analyses as for time to BCR. Results of
the naive unweighted analysis are shown in Fig. 6 and
Table 5. Figure 6 plots the estimated survival curves for

each group, while Table 5 shows the p-values of the unad-
justed log-rank tests for the difference in the survival
functions among each pair of nodes groups.
Also for time to OS, both the graph and the tests show

that there are no differences across the three survival
curves, thus revealing that the number of nodes removed
(Nex) does not seem to affect OS.
We performed the weighted Kaplan-Meier estimation

based on IPW as well as on the Doubly robust estimation;
results are shown in Figs. 7 and 8, respectively. Differently
from the analysis on time to BCR, in case of OS when
we adjust for the presence of non-randomized study we
do not see any significant differences; hence an increased
number of nodes removed does not seem to significantly
influence OS.
This is also confirmed by looking at Table 6, which com-

pares the three analysis performed for the OS at t = 60, 90
and 110 months from surgery.
After adjusting, no significant impact of the number of

removed nodes on OS emerges for the three time points.

Discussion and conclusion
Extended pelvic lymph node dissection (PLND) has
certainly a key staging role in Prostate Cancer (PCa).
Assessing the relative benefits and burden of PLND for
oncological and non-oncological outcomes in patients
undergoing radical prostatectomy for PCa is still

Table 4 Time to BCR

Nodes group t=60 months t=90 months t=120 months

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.

Unweighted KM 1 (1-10) 0.866 0.836 0.898 0.764 0.710 0.822 0.692 0.612 0.782
2 (11-20) 0.841 0.815 0.867 0.748 0.710 0.789 0.679 0.627 0.736
3 (21+) 0.855 0.820 0.892 0.795 0.729 0.868 0.795 0.729 0.868

1 vs 2 0.026 -0.015 0.066 0.016 -0.051 0.083 0.031 -0.048 0.111
1 vs 3 0.011 -0.038 0.061 -0.031 -0.119 0.057 -0.047 -0.141 0.048
2 vs 3 -0.014 -0.061 0.032 -0.047 -0.124 0.030 -0.078 -0.160 0.004

Weighted KM 1 (1-10) 0.847 0.839 0.855 0.717 0.701 0.732 0.627 0.605 0.650
2 (11-20) 0.835 0.812 0.858 0.744 0.711 0.778 0.681 0.637 0.728
3 (21+) 0.883 0.871 0.895 0.846 0.828 0.863 0.846 0.828 0.863

1 vs 2 0.013 -0.032 0.058 -0.027 -0.102 0.047 -0.031 -0.119 0.057
1 vs 3 -0.036 -0.092 0.020 -0.129 -0.232 -0.026 -0.161 -0.271 -0.050
2 vs 3 -0.049 -0.104 0.006 -0.102 -0.197 -0.007 -0.130 -0.229 -0.031

Doubly Robust 1 (1-10) 0.839 0.791 0.887 0.705 0.605 0.805 0.592 0.432 0.752
2 (11-20) 0.812 0.773 0.850 0.693 0.625 0.762 0.614 0.516 0.713
3 (21+) 0.852 0.809 0.896 0.819 0.764 0.873 0.819 0.747 0.890

1 vs 2 0.027 -0.035 0.089 0.012 -0.098 0.122 0.035 -0.112 0.182
1 vs 3 -0.014 -0.080 0.052 -0.113 -0.222 -0.005 -0.141 -0.275 -0.007
2 vs 3 -0.041 -0.103 0.021 -0.125 -0.225 -0.025 -0.176 -0.298 -0.054

The table contains, for each estimation method: (i) the estimated survival probabilities at 60, 90, and 120 months for each of the three treatment groups; (ii) the pairwise
differences between the estimated survival probabilities across the three treatment groups. All estimated quantities come with bootstrap 95% confidence intervals
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Fig. 6 Estimated overall survival function, based on naive unadjusted
estimation

debatable. The issue of whether PLNDmay affect prostate
cancer outcomes such as progression and survival has
been an argument of extreme interest in the urologic
community over the last decades. Indeed, the impact of
PLND on cancer outcomes remains controversial [1] due
to the lack of prospective, randomized trials. The authors
of [19] found a statistically significant negative association
between the number of removed lymph nodes and BCR-
free survival in patients with no positive nodes found.
However, there is currently no available study supporting
its role with regards to oncological outcomes in men with
clinically localized disease. Thus, our approach represents
a novel perspective to evaluate – within an observational
setting – the effect on biochemical recurrence and on all-
causes t-month survival of removing different numbers
of nodes, providing important evidence also from non
randomized trials.
We have shown how it is possible to assess the effect

of the number of lymph nodes removed by means of an
Inverse Probability Weighting adjustment (here, based on
Poisson regression) and by a Doubly-robust adjustment
method.
As a first analysis we had run traditional Cox mod-

els both for BCR and OS, with the number of nodes

Table 5 Log-rank tests for the difference in survival estimates
among node groups - OS

Node groups Log rank test p-value

1-10 vs 11-20 0.13

1-10 vs 21+ 0.797

11-20 vs 21+ 0.255
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Fig. 7 Estimated overall survival function, based on IPW estimation

removed being classified in the three groups, and with
the log-transformed original variable. The results of such
standard analyses do not show an effect of the number of
nodes removed (results not shown).
Our use of a Poisson regression model was motivated

by the very nature of the treatment of interest here,
clearly a counting variable. Using a multinomial distribu-
tion would have forced (at most ordinal) categories onto
that variable. That would be a natural choice in presence
of multiple (unordered) treatments, when a fully categor-
ical analysis is appropriate (see, e.g., Feng et al., [20]).
In our setting, such a classification would also have led
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Fig. 8 Estimated overall survival function, based on Doubly Robust
estimation
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Table 6 Overall survival

Nodes group t=60 month t=90 month t=110 month

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.

Unweighted KM 1 (1-10) 0.969 0.953 0.985 0.947 0.918 0.977 0.934 0.895 0.974
2 (11-20) 0.963 0.948 0.977 0.934 0.910 0.959 0.900 0.863 0.939
3 (21+) 0.970 0.947 0.993 0.945 0.905 0.987 0.906 0.842 0.975

1 vs 2 0.006 -0.016 0.029 0.013 -0.025 0.051 0.033 -0.019 0.086
1 vs 3 -0.001 -0.032 0.030 0.002 -0.049 0.053 0.027 -0.048 0.102
2 vs 3 -0.007 -0.037 0.022 -0.011 -0.059 0.037 -0.006 -0.079 0.067

Weighted KM 1 (1-10) 0.963 0.959 0.968 0.945 0.938 0.952 0.935 0.926 0.944
2 (11-20) 0.964 0.952 0.976 0.920 0.897 0.943 0.889 0.856 0.922
3 (21+) 0.979 0.973 0.986 0.954 0.942 0.967 0.923 0.906 0.941

1 vs 2 -0.001 -0.027 0.025 0.024 -0.019 0.067 0.046 -0.013 0.104
1 vs 3 -0.016 -0.053 0.021 -0.009 -0.069 0.051 0.012 -0.073 0.096
2 vs 3 -0.016 -0.050 0.019 -0.033 -0.090 0.023 -0.034 -0.118 0.050

Doubly Robust 1 (1-10) 0.974 0.956 0.991 0.963 0.930 0.996 0.952 0.896 1.008
2 (11-20) 0.972 0.955 0.988 0.936 0.892 0.980 0.908 0.842 0.974
3 (21+) 0.985 0.972 0.998 0.975 0.941 1.008 0.937 0.839 1.035

1 vs 2 0.008 -0.069 0.085 0.038 -0.060 0.136 0.060 -0.068 0.188
1 vs 3 -0.011 -0.090 0.067 -0.010 -0.121 0.100 0.020 -0.160 0.200
2 vs 3 -0.020 -0.071 0.032 -0.048 -0.141 0.045 -0.040 -0.202 0.122

The table contains, for each estimation method: (i) the estimated survival probabilities at 60, 90, and 110 months for each of the three treatment groups; (ii) the pairwise
differences between the estimated survival probabilities across the three treatment groups. All estimated quantities come with bootstrap 95% confidence intervals

to an increase in the number of parameters to be able
to model all odds ratios with respect to the covariates
potentially influencing the number of nodes extracted.
Discretizing the problem to just a binary treatment out-
come would have forced an even stronger classification
of the treatment variable. So our choice was to allow for
a parsimonious model for the number of nodes through
the Poisson regression model, and to then consider (ordi-
nal) groups for the estimation process. The reasons for
such a two-step approach are the need to allow for
easy interpretability and description of the results, while
still keeping a moderate number of patients in each
group for the estimation, while maintaining a modeling
approach coherent with the nature of the underlying treat-
ment variable. Here, “moderate number” is meant as a
number of patients that allowed us to obtain informa-
tive 95% confidence intervals for the reported differences
in survival probabilities across treatment groups. As a
last comment, note that IPW could be very sensitive to
the presence of extreme weights [16]. We truncated the
weights to a maximum of 35, but we also performed the
estimation with a truncation value of 20, with no apparent
changes in the results.
Our findings suggest that a large number of nodes

removed may be associated with a significant improve-
ment in the time to BCR but there is no detectable impact
on OS. However, the lack of any benefit of the extent of
pelvic lymph node dissection on patient OS could also

be related to the relatively short median follow-up of our
population.

Appendix
Simulation study
In this Appendix we report on a simulation experiment
designed to illustrate and explore the finite-sample and
the large-sample properties of the estimation procedures
that we have used.
We simulated data from the following setup. Covariates

were generated for n i.i.d. subjects as

• √
PSA ∼ N(2, 2)

• Age ∼ N(60, 9)
• Stage ∼ Multinomial(1,(.22,.33,.45)), i.e. taking the

three values 1, 2, and 3
• (Number of nodes examined - 1) ∼ Poisson(λPM(zi)).

Treatment group (Tx) was then set equal to 1 (1-10
Nodes), 2 (11-20 Nodes) or 3 (> 20 Nodes).

The vector zi indicates the covariate vector for subject i,
excluding the treatment group Txi, and λPM(zi) indicates
the mean parameter defined as

log (λPM(zi)) = γ0 + γ1PSAi + γ2Agei
+γ311(Stagei = 2) + γ321(Stagei = 3).

The propensity score models PM were defined as follows
(in parentheses the values of the regression parameters):
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Table 7 Root Mean Squared Error (MSE) and Bias for the estimation of the marginal survival probability S(1000) for the three groups
defined by the number of nodes received

Generation Estimation Unadjusted Weighted Doubly Robust

PM SM PM SM n Nodes S(1000)
√
MSE Bias

√
MSE Bias

√
MSE Bias

1 1 1 1 1000 1-10 0.4808 0.0908 -0.0287 0.0987 -0.0060 0.0845 0.0093

11-20 0.4808 0.0299 -0.0071 0.0292 -0.0004 0.0262 0.0011

> 20 0.4808 0.1113 0.0728 0.1002 0.0001 0.0935 0.0183

1 1 1 1 5000 1-10 0.4769 0.0459 -0.0259 0.0436 0.0002 0.0373 0.0027

11-20 0.4769 0.0147 -0.0073 0.0128 -0.0005 0.0113 -0.0001

> 20 0.4769 0.0836 0.0756 0.0463 -0.0001 0.0417 0.0029

1 1 1 1 10000 1-10 0.4775 0.0356 -0.0235 0.0306 0.0005 0.0261 0.0017

11-20 0.4775 0.0116 -0.0071 0.0093 -0.0002 0.0080 0.0000

> 20 0.4775 0.0786 0.0742 0.0336 -0.0007 0.0298 0.0013

[5pt] 2 2 2 2 1000 1-10 0.4108 0.0948 -0.0329 0.1067 -0.0060 0.0951 0.0102

11-20 0.4108 0.0293 -0.0070 0.0288 -0.0005 0.0265 0.0005

> 20 0.4108 0.1091 0.0728 0.0968 0.0006 0.0927 0.0160

2 2 2 2 5000 1-10 0.4067 0.0498 -0.0312 0.0463 0.0003 0.0414 0.0031

11-20 0.4067 0.0141 -0.0068 0.0125 -0.0002 0.0116 -0.0001

> 20 0.4067 0.0778 0.0697 0.0439 -0.0001 0.0410 0.0018

2 2 2 2 10000 1-10 0.4069 0.0391 -0.0289 0.0320 -0.0012 0.0292 0.0002

11-20 0.4069 0.0111 -0.0064 0.0092 0.0002 0.0084 0.0002

> 20 0.4069 0.0739 0.0695 0.0322 0.0006 0.0300 0.0016

[5pt] 2 3 2 3 1000 1-10 0.4108 0.0948 -0.0329 0.1067 -0.0060 0.0951 0.0102

11-20 0.2971 0.0283 -0.0044 0.0284 0.0001 0.0269 0.0014

> 20 0.5514 0.1056 0.0727 0.0978 0.0009 0.0895 0.0186

2 3 2 3 5000 1-10 0.4067 0.0498 -0.0312 0.0463 0.0003 0.0414 0.0031

11-20 0.2941 0.0131 -0.0046 0.0125 -0.0000 0.0120 0.0001

> 20 0.5461 0.0764 0.0687 0.0443 0.0002 0.0390 0.0027

2 3 2 3 10000 1-10 0.4069 0.0391 -0.0289 0.0320 -0.0012 0.0292 0.0002

11-20 0.2936 0.0099 -0.0045 0.0090 0.0000 0.0086 0.0001

> 20 0.5473 0.0708 0.0666 0.0317 -0.0001 0.0281 0.0015

[5pt] 3 2 3 2 1000 1-10 0.4108 0.1562 -0.1401 0.1061 -0.0082 0.0949 0.0100

11-20 0.4108 0.0292 0.0011 0.0292 -0.0001 0.0264 0.0009

> 20 0.4108 0.1930 0.1710 0.1110 0.0099 0.0969 0.0241

3 2 3 2 5000 1-10 0.4067 0.1429 -0.1399 0.0455 -0.0023 0.0416 0.0008

11-20 0.4067 0.0133 0.0010 0.0133 0.0000 0.0122 0.0002

> 20 0.4067 0.1754 0.1711 0.0490 0.0010 0.0414 0.0020

3 2 3 2 10000 1-10 0.4069 0.1362 -0.1345 0.0324 -0.0006 0.0300 0.0007

11-20 0.4069 0.0095 0.0011 0.0094 0.0000 0.0086 0.0001

> 20 0.4069 0.1721 0.1698 0.0349 0.0002 0.0297 0.0008

Both models for propensity score and survival used in the estimation process here match the corresponding models used for data generation. Results are based on 3000
simulated samples. PM stands for Propensity Score Model, and SM stands for Survival Model. Please refer to the text for the description of the models

PMmodel: Variables and parameter values
1: Constant, Stage
γ0 = 2.5, γ31 = 0.15, γ32 = 0.25
2: Constant, PSA, Age, Stage
γ0 = 2.2, γ1 = 0.002, γ2 = 0.005, γ31 = 0.15, γ32 = 0.25
3: Constant, Age, · (Stage=3)
γ0 = 2.1, γ2 = 0.007, γ32 = 0.25

and covariates absent from a specific model were multi-
plied by a coefficient equal to zero in the generation step,
and not estimated in the estimation process.

Conditionally on the covariates (including now the
number of nodes examined, as classified in Tx), we gen-
erated survival times according to an exponential Cox
proportional hazards model. The parameter λSM(t|zi) of
the exponential distribution for subject i was defined as

log (λSM(t|zi)) = λ0 + λ1PSAi + λ2Agei

+λ311(Stagei = 2) + λ321(Stagei = 3)

+λ411(Txi = 2) + λ421(Txi = 3).
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Table 8 Root Mean Squared Error (MSE) and Bias for the estimation of the marginal survival probability S(1000) for the three groups
defined by the number of nodes received

Generation Estimation Unadjusted Weighted Doubly Robust

PM SM PM SM n Nodes S(1000)
√
MSE Bias

√
MSE Bias

√
MSE Bias

2 2 3 2 1000 1-10 0.4108 0.0948 -0.0329 0.1144 0.0423 0.0929 0.0095

11-20 0.4108 0.0293 -0.0070 0.0287 -0.0027 0.0265 0.0005

> 20 0.4108 0.1091 0.0728 0.1038 -0.0715 0.0895 0.0159

2 2 3 2 5000 1-10 0.4067 0.0498 -0.0312 0.0668 0.0483 0.0398 0.0029

11-20 0.4067 0.0141 -0.0068 0.0126 -0.0023 0.0116 -0.0001

> 20 0.4067 0.0778 0.0697 0.0813 -0.0747 0.0377 0.0011

2 2 3 2 10000 1-10 0.4069 0.0394 -0.0294 0.0569 0.0471 0.0283 0.0000

11-20 0.4069 0.0112 -0.0064 0.0094 -0.0021 0.0085 0.0002

> 20 0.4069 0.0735 0.0692 0.0809 -0.0776 0.0275 0.0006

[5pt] 2 3 3 3 1000 1-10 0.4108 0.0948 -0.0329 0.1144 0.0423 0.0929 0.0095

11-20 0.2971 0.0283 -0.0044 0.0282 -0.0010 0.0269 0.0014

> 20 0.5514 0.1056 0.0727 0.1250 -0.0866 0.0882 0.0173

2 3 3 3 5000 1-10 0.4067 0.0507 -0.0325 0.0657 0.0468 0.0397 0.0020

11-20 0.2941 0.0131 -0.0044 0.0125 -0.0008 0.0121 0.0003

> 20 0.5461 0.0769 0.0690 0.1004 -0.0923 0.0373 0.0022

2 3 3 3 10000 1-10 0.4069 0.0391 -0.0289 0.0575 0.0478 0.0279 0.0001

11-20 0.2936 0.0099 -0.0045 0.0090 -0.0010 0.0086 0.0001

> 20 0.5473 0.0708 0.0666 0.1008 -0.0969 0.0270 0.0013

[5pt] 2 3 2 4 1000 1-10 0.4108 0.0948 -0.0329 0.1067 -0.0060 0.0920 0.0186

11-20 0.2971 0.0283 -0.0044 0.0284 0.0001 0.0270 0.0082

> 20 0.5514 0.1056 0.0727 0.0978 0.0009 0.1013 -0.0114

2 3 2 4 5000 1-10 0.4067 0.0498 -0.0312 0.0463 0.0003 0.0413 0.0056

11-20 0.2941 0.0131 -0.0046 0.0125 -0.0000 0.0134 0.0069

3 0.5461 0.0764 0.0687 0.0443 0.0002 0.0470 -0.0029

2 3 2 4 10000 1-10 0.4069 0.0391 -0.0289 0.0320 -0.0012 0.0290 0.0019

11-20 0.2936 0.0099 -0.0045 0.0090 0.0000 0.0105 0.0065

> 20 0.5473 0.0708 0.0666 0.0317 -0.0001 0.0335 -0.0024

Either the propensity score model or the survival model (but not both) used in the estimation process is different from the corresponding model used for data generation.
Results are based on 3000 simulated samples. PM stands for Propensity Score Model, and SM stands for Survival Model. Please refer to the text for the description of the models

We considered the following four survival models SM
(in parentheses the values of the regression parameters):

SM model: Variables and parameter values
1: Constant, Stage
λ0 = 0.0005,β31 = 2,β32 = −0.5
2: Constant, PSA, Age, Stage
λ0 = 0.0002,β1 = 0.01,β2 = 0.02,β31 = 2,β32 = −0.5
3: Constant, PSA, Age, Stage
λ0=0.0002,β1 = 0.01,β2 = 0.02,β31 = 2,β32 = −0.5,
β41 = 0.5,β42 = −0.7
4: Constant, Age, · (Stage=3)
λ0 = 0.0002,β2 = 0.02,β41 = 0.5,β42 = −0.7.

Here, too, covariates absent from a specific model were
multiplied by a coefficient equal to zero in the genera-
tion step, and not estimated in the estimation process.
The generated survival times were right censored with an

independent censoring variable distributed as a negative
exponential random variable with parameter 1/500.
Propensity scores for the three treatments (1-10, 11-20,

and > 20 Nodes examined) were computed as described
in themain text, i.e. by adding the appropriate terms of the
Poisson probability mass function. The theoretical sur-
vival probabilities were computed as the average over the
observed covariate distribution (fixed for each simulation)
of the quantities

e−t∗λ(t|zi) exp(−β411(Txi=2)−β421(Txi=3)).

We estimated the survival probability at t∗ = 500, 1000,
and 1500 days. For simplicity, below we only report the
results for t∗ = 1000 days. The conclusions drawn from
for the other two time points were analogous.
Tables 7, 8 and 9 show the empirical root-MSE and

Bias in estimating S(1000) with the naive Kaplan-Meier
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Table 9 Root Mean Squared Error (MSE) and Bias for the estimation of the marginal survival probability S(1000) for the three groups
defined by the number of nodes received

Generation Estimation Unadjusted Weighted Doubly Robust

PM SM PM SM n Nodes S(1000)
√
MSE Bias

√
MSE Bias

√
MSE Bias

2 3 3 4 1000 1-10 0.4108 0.0948 -0.0329 0.1144 0.0423 0.1175 0.0671

11-20 0.2971 0.0283 -0.0044 0.0282 -0.0010 0.0258 0.0051

3 0.5514 0.1056 0.0727 0.1250 -0.0866 0.1015 -0.0641

2 3 3 4 5000 1-10 0.4067 0.0498 -0.0312 0.0668 0.0483 0.0733 0.0589

11-20 0.2941 0.0131 -0.0046 0.0124 -0.0010 0.0120 0.0039

3 0.5461 0.0764 0.0687 0.1005 -0.0926 0.0823 -0.0751

2 3 3 4 10000 1-10 0.4069 0.0391 -0.0289 0.0575 0.0478 0.0643 0.0565

11-20 0.2936 0.0099 -0.0045 0.0090 -0.0010 0.0088 0.0034

3 0.5473 0.0708 0.0666 0.1008 -0.0969 0.0840 -0.0804

Both the propensity score model and the survival model used in the estimation process differ from the corresponding models used for data generation. Results are based on
3000 simulated samples. PM stands for Propensity Score Model, and SM stands for Survival Model. Please refer to the text for the description of the models

estimator (“Unadjusted”), with the weighted nonparamet-
ric estimator (“Weighted”), and with the Doubly robust
estimator (“Doubly Robust”). Simulations were based on
3000 samples, and for sample sizes 1000, 3000, and 10000.
Data were simulated and estimated by using different
combinations of models PM and SM for the generation

(“Generation”) and for the estimation (“Estimation”) pro-
cesses.
Results show that the naive estimator is always biased.

On the other hand, when both models used for estima-
tion match the models used to estimate the data (i.e. they
are the correct models), then both the weighted and the

Table 10 Estimated marginal survival probability S(1000) for thee three groups defined by the number of nodes received

Generation Estimation Unadjusted Weighted Doubly Robust

PM SM PM SM Nodes S(1000) Est Surv Est Surv Est Surv

1 1 1 1 1-10 0.4740 0.4522 0.4749 0.4751

11-20 0.4740 0.4669 0.4739 0.4738

> 20 0.4740 0.5476 0.4743 0.4740

2 2 2 2 1-10 0.4037 0.3767 0.4042 0.4040

11-20 0.4037 0.3974 0.4041 0.4041

> 20 0.4037 0.4734 0.4035 0.4035

2 3 2 3 1-10 0.4037 0.3767 0.4042 0.4040

11-20 0.2911 0.2864 0.2910 0.2909

> 20 0.5438 0.6100 0.5427 0.5427

3 2 3 2 1-10 0.4037 0.2693 0.4014 0.4015

11-20 0.4037 0.4047 0.4037 0.4037

> 20 0.4037 0.5756 0.4031 0.4032

2 2 3 2 1-10 0.4037 0.3767 0.4536 0.4040

11-20 0.4037 0.3974 0.4017 0.4041

> 20 0.4037 0.4734 0.3261 0.4038

2 3 3 3 1-10 0.4037 0.3767 0.4536 0.4040

11-20 0.2911 0.2864 0.2899 0.2909

> 20 0.5438 0.6100 0.4454 0.5430

2 3 2 4 1-10 0.4037 0.3767 0.4042 0.4046

11-20 0.2911 0.2864 0.2910 0.2972

> 20 0.5438 0.6100 0.5427 0.5422

2 3 3 4 1-10 0.4037 0.3767 0.4536 0.4605

11-20 0.2911 0.2864 0.2899 0.2941

> 20 0.5438 0.6100 0.4454 0.4613

Estimates are based on one sample of size 10 millions. PM stands for Propensity Score Model, and SM stands for Survival Model. Please refer to the text for the description of
the models



Gigliarano et al. BMC Bioinformatics 2018, 19(Suppl 7):200 Page 43 of 154

Doubly robust methods estimate the survival probabili-
ties properly, with Bias and MSEs that tend to zero as
the sample size increases. When only the propensity score
is correctly specified, then both estimators are known to
be consistent, and this is confirmed by the results. If, on
the other hand, only the survival model is correctly spec-
ified, then the weighted estimator is clearly biased (as
expected), while the Doubly robust estimator still shows
its consistency. Lastly, when both models are wrongly
specified, both estimators are clearly shown to be biased.
Interestingly, for the smaller sample size (1000) the

MSE of the (biased) naive estimator is quite similar
to that of the adjusted estimators, even when the lat-
ter two are known to be consistent. This implies that
the former estimator has misleadingly smaller variance
that the adjusted estimators. As sample size increases,
as expected, the unadjusted estimator maintains a larger
MSE than the other two estimators. Note that in the limit
the MSE should become equal to the squared bias term
(since the variance term tends to zero – recall that the
MSE is equal to the sum of the variance of the estimator
and the squared bias term). Indeed, for the n=10000 cases
one can see that the absolute value of the Bias term of the
unadjusted estimator approaches the value of the square
root of the MSE.
For completeness, Table 10 shows the results of the

three estimation procedures when they are applied,
for each combination of propensity score and survival
models, to just one sample of size n=10million. That table
again confirms the impressions gained from Tables 7, 8
and 9, and described above.
Note: Simulations were performed using the seed 13794

in R version 3.3.2.
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