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Abstract
Background: Determining the value of kinetic constants for a metabolic system in the exact physiological conditions
is an extremely hard task. However, this kind of information is of pivotal relevance to effectively simulate a biological
phenomenon as complex as metabolism.
Results: To overcome this issue, we propose to investigate emerging properties of ensembles of sets of kinetic
constants leading to the biological readout observed in different experimental conditions. To this aim, we exploit
information retrievable from constraint-based analyses (i.e. metabolic flux distributions at steady state) with the goal to
generate feasible values for kinetic constants exploiting the mass action law. The sets retrieved from the previous step
will be used to parametrize a mechanistic model whose simulation will be performed to reconstruct the dynamics of
the system (until reaching the metabolic steady state) for each experimental condition. Every parametrization that is
in accordance with the expected metabolic phenotype is collected in an ensemble whose features are analyzed to
determine the emergence of properties of a phenotype. In this work we apply the proposed approach to identify
ensembles of kinetic parameters for five metabolic phenotypes of E. Coli, by analyzing five different experimental
conditions associated with the ECC2comp model recently published by Hädicke and collaborators.
Conclusions: Our results suggest that the parameter values of just few reactions are responsible for the emergence
of a metabolic phenotype. Notably, in contrast with constraint-based approaches such as Flux Balance Analysis, the
methodology used in this paper does not require to assume that metabolism is optimizing towards a specific goal.

Keywords: Ensembles, Fluxes, Kinetic parameters, Mechanistic simulations, Metabolism, ODEs, Steady state,
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Background
Advances in the understanding of biological processes has
revealed that living organisms must be analyzed by taking
into account the complex network of interactions among
different entities such as genes, transcripts, proteins and
metabolites in order to decipher emergent behaviors and
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regulatory processes. In the context of Systems Biology
[1], the study of metabolism has received great interest,
especially due to the fruitful applications in metabolic
engineering [2]. In these studies, metabolic networks are
typically represented as hyper-graphs in which nodes
denote metabolites and edges indicate reactions [3].

Omics data in metabolic modeling
High throughput information allowed the generation of
detailed genome-scale metabolic reconstructions, defined
ad hoc for different cell types (as e.g. unicellular organ-
isms [4], healthy and diseased tissues in mammalian [5]).
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Despite this, there are still technological hindrances
preventing mechanistic simulation of genome-scale
metabolic models: currently, simulated temporal dynam-
ics of metabolic concentrations are practical only for
small models due to shortage of retrievable parameter
values and high computational costs [6].

Constraint-basedmethods
The points raised above determine the current strategy
in metabolic modeling, namely the exploitation of the
so called constraint-based approaches [7]. This model-
ing framework uses information about the structure of
the metabolic network and assumes that internal metabo-
lites reach a steady-state concentration. Even if these
approaches neglect the temporal evolution of the system,
they can be considered a valid framework to describe
metabolism because of experimental studies pointing out
that in vivo metabolism reaches the steady state in few
seconds [8]. In the context of constraint-based model-
ing, a metabolic network is usually described as a set of
chemical reactions fromwhich it is possible to retrieve the
stoichiometric matrix, i.e. the table illustrating changes
in metabolites quantities due to the firing of reactions.
Moreover constraint-based approaches define the mathe-
matical space containing flux distributions (i.e. flux values
for each reaction in the model) that can be reached by
the system under different functional states. This “feasible
solution space”, is determined by imposing a mass bal-
ance constraint, as well as boundaries on fluxes (e.g. to
specify their reversibility). Once the stoichiometric matrix
and the boundaries are defined, it is possible to assume
that the system is optimal toward a given Objective Func-
tion (OF) – such as the production of biomass or a given
metabolite – to be maximized or minimized. Following
this an optimal flux distributions can be calculated by
means of optimization techniques such as Flux Balance
Analysis (FBA) [9].
Choosing an appropriate formulation of the OF is of

paramount importance when conducting FBA, however
often its exact formulation is not definable. Moreover,
questioning the concept of optimal behavior, recent stud-
ies [10] speculate that it is reasonable to assume that the
system is found in a sub-optimal state.

Ensemble FBA
To analyze the potentiality of a cell to explore alternative
metabolic behaviors by altering its fluxes, we previously
introduced the Ensemble Evolutionary FBA (eeFBA): [11]
an extension of FBA defined with a goal to investigate
putative flux distributions that can give rise to a specific
metabolic behavior. With eeFBA, analyses are performed
by generating a set of OFs where both terms and coef-
ficients are selected randomly. Random OFs are subse-
quently optimized by means of linear programming and

the computed flux distributions are filtered on the basis of
one or more metabolic phenotypes definitions, to retrieve
ensembles of solutions that are in agreement with the
defined phenotypes.

Retrieving kinetic parameters form amechanism-based
ensemble approach
Due to lack of information on kinetic constants, either
with FBA or eeFBA it is not possible to determine
metabolic concentrations at steady state. To overcome this
limitation, in a recent paper [12], we proposed a strategy,
where ensembles of phenotypes are still populated accord-
ing to flux properties, but steady states are retrieved from
mechanism based simulations. The parameters of the
kinetic model are set using initial concentrations from the
literature (whenever possible) and values for kinetic con-
stants have been sampled randomly from a given interval
(e.g. from 0 to the thermodynamic limit) thereby avoid-
ing biases in their definition (see “Methods” section for
further information).
With the above described procedure, we have been able

to determine steady state metabolic concentrations that
satisfy the definition of a given metabolic response to
changing experimental conditions. It is worth to underline
that, this readout was obtained without defining an OF,
thus avoiding the assumption that the cell is performing
an optimization towards a certain objective.
In this work we slightly modify the approach in order

to take into account the fact that kinetic constants may
assume different values under various experimental con-
ditions due to enzymatic regulation. In order to associate
a set of specific rate constants to the phenotype associated
to each experimental condition, the kinetic constants are
retrieved from a set of parameterizations of a mechanistic
model that, when dynamically simulated with those con-
stants, is able to generate time courses in agreement with
the phenotype definition.
Strikingly, our method can be used to predict ensem-

bles of rate constants that are in agreement with a given
metabolic phenotype of interest only by providing its def-
inition and a flux distribution for the same condition,
obtained by means of FBA.

EColiCore2: a case study
In [12], we applied our procedure exploiting a toy
metabolic model of S. cerevisie and filtering trajectories
accordingly to a definition of the Crabtree phenotype. In
the present paper, we aim at investigating a more realistic
metabolic reconstruction focusing on Escherichia coli, the
prokaryotic model organism for which a number of core
models have been built in a bottom-up fashion and are
currently retrievable from the literature. A notable exam-
ple, due to its wide exploitation, is the E. coli core model
illustrated in Orth et al. [13].
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Conversely, there is a relative scarcity of top-down
metabolic models built starting from genome scale recon-
structions of these bacteria. The EColiCore1 recon-
struction was manually derived from the iAF1260
[14] genome scale model. However, this model has
mainly testing and training purposes and is not com-
pletely consistent with the corresponding genome wide
model.
Starting from the genome wide model iJO1366 [15],

Hädicke et al. in [16] aimed at reconstructing a metabolic
model of the central metabolism of E. coli called
EColiCore2. This model, built with the final goal of
establishing a reference core model for E. coli constraint-
based analyses, has been derived reducing redundan-
cies in biosynthetic routes and maintaining the degrees
of freedom in the central metabolism, moreover, this
core model is completely consistent with its genome
wide counterpart. One key aspect of EColiCore2 is
its ability to reproduce pivotal features of iJO1366,
achieving a notable complexity reduction without los-
ing its ability to depict emerging behaviors of E. coli
metabolism.
ECC2comp, presented in [16] and illustrated in Fig. 1,

is a further reduction of EColiCore2 derived by exploiting
NetworkReducer [17], i.e., an algorithm able to automati-
cally compress metabolic models by lumping linear chains
of reactions in a single cumulative equation and by remov-
ing elements (metabolites and reactions) that are non
essential to represent key metabolic functions referred to
as “protected functions”.

Methods
The procedure introduced in [12] and schematically rep-
resented in Fig. 2 has been used here to setup the “exper-
iments” hereafter illustrated. For a large number P of
parametrizations we extract each of the M distinct kinetic
constants of the model

(�kp =
(
k1p , . . . , kMp

))
from a uni-

form distribution in [0, 100). Every parametrization of this
set is exploited to produce different simulations in accor-
dance with each metabolic phenotype under study. We
call metabolic phenotype a set of values assumed by key
fluxes in defined experimental conditions. The mecha-
nism based simulations, one for each different experimen-
tal condition, is performed using constant concentrations
of the associated nutrient (e.g., glucose), oxygenation level
and ions.

Running deterministic simulations
To perform mechanism based simulations we assume
mass-action kinetics within the ODEs deterministic
framework. The metabolic model has been simulated
until the achievement of a steady state for internal
metabolites concentrations (Fig. 2a). Every simulation is
considered at steady state at its ending time te if

∑M
w=1 σ

(
[χw] (t̄, te)

)

M − S
< θ (1)

where σ([χw] (t̄, te)) is the standard deviation of the con-
centration [χw] of species w computed over te − t̄ with
t̄ = 0.9 te and S the number of species kept constant
throughout the simulation and θ is a tolerance threshold.

Calculating flux values
Afterwards, fluxes values vi are calculated for every reac-
tion (when the dynamic reaches the steady state) bymeans
of the relation expressed by the mass action law illustrated
in Eq. (2).

vi = ki
M∏

w=1
[χw]αwi (2)

where ki is the rate constant of reaction i, [χw] is the
concentration of species w and αwi the stoichiometric
coefficient with which species w participates in reaction i
(Fig. 2b).

Filtering the experiments
Once flux values have been obtained, experiments are fil-
tered exploiting key metabolic fluxes in order to populate
ensembles of metabolic phenotypes that are in agreement
with the filter definition (Fig. 2c). In particular, in this
work, to filter the experiments we defined 5 different
phenotypes based on FBA simulations presented in [16].

Analyzing the experiments
Finally, it is possible to analyze (Fig. 2d) the experiments to
identify properties shared by elements of each ensemble,
e.g., by investigating the presence of putative subphe-
notypes or by evaluating which reactions exhibit kinetic
constants whose value depart from the average.

E. coli case study
To test the procedure herein described we defined 5 dif-
ferent metabolic phenotypes (“protected phenotypes” in
[16]) built on the basis of both the nutrient supplied and
the oxygenation state observed (Table 1): exp1 - aerobic
growth on glucose, exp2 - anaerobic growth on glucose,
exp3 - aerobic growth on acetate, exp4 - aerobic growth
on succinate, exp5 - aerobic growth on glycerol.
To evaluate the effectiveness of the procedure in dis-

criminating the 5 phenotypes and in selecting corre-
sponding ensembles of kinetic constants and steady state
metabolic concentrations, we used ECC2comp [16]. We
split the reversible reactions of the original compressed
“core” into backward and forward reaction, obtaining a
total of 114 irreversible reactions and 93 metabolites, of
which 60 are internal, while 33 are external. The final
model used in this study is provided in Additional file 1.
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Fig. 1Wiring diagram of the EColiCore2 model. Metabolic network is modified (adding reverse reactions and cofactors) from Hädicke et al. [16]. In
the map, reaction names are labeled in blue and placed next to the corresponding edge. The external environment is represented by a dashed
contour, the cell is delimited by a solid contour. Significant reactions emerging from the Kolmogorov-Smirnov test described in section Results are
labeled in red

To determine the initial concentrations of metabolites
involved in the E. coli model, we set them accordingly to
the average values illustrated in the E. coli Metabolome
Database (ECMDB) [18], an expertly curated database
containing extensive metabolomic data and metabolic
pathway diagrams about Escherichia coli (strain K12,

MG1655). The ECMDB contains 3755 entries for metabo-
lites and small molecules manually compiled including
identification, taxonomy, concentrations, spectra, phys-
ical and biological properties. Information are derived
from “original” data and from metabolic reconstruc-
tions, scientific articles, textbooks and other electronic
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Fig. 2 Schematic workflow illustrating the four main phases of the computational procedure. a Run deterministic simulations; b Calculation of flux
values; c Filtering of experiments; d Analysis of outcomes. See main text for a complete description of the approach

databases. For metabolites in the model not having a
concentration in ECMDB, we used the average value cal-
culated over other retrieved values. The set of metabolic
concentrations is provided in Additional file 2.
Metabolic phenotypes defined in this section need to

be translated using a mathematical formalism in order to
unequivocally characterize them as described in the fol-
lowing section. To this end we evaluated fluxes that in the
ECC2comp model are proxies for the 5 phenotypes listed
in Table 1.

Populating the ensembles
To perform the procedure illustrated in this section, we
implemented a set of scripts in plain vanilla Python
available on GitHub (see Additional file 3). As already
mentioned, dynamic simulations of the E. coli “core”
metabolic model (step Fig. 2a) have been performed until
reaching of the steady state exploiting a set of ordi-
nary differential equations (ODEs) determined under the
mass action kinetic assumption. The numerical integra-
tion of the ODEs system has been realized exploiting
the software library LSODA (Livermore solver for ODEs
with automatic method) [19] efficiently implemented in
SciPy [20].

Table 1 Protected phenotypes. Phenotypes and maximal
growth rate in the core model ECC2 obtained with FBA

ID Description Reached μ (ECC2)

exp1 aerobic growth on glucose 0.982

exp2 anaerobic growth on glucose 0.289

exp3 aerobic growth on acetate 0.244

exp4 aerobic growth on succinate 0.492

exp5 aerobic growth on glycerol 0.563

Due to a large volume of data produced with simulations
(stored on GitHub, see Additional file 3), we decided to
separate data generation and analysis phases. An efficient way
to organize and access simulation outputs is to store them
in a database. In particular here we exploited PyTables
[21], a package for managing hierarchical datasets
designed to efficiently and easily cope with extremely
large amounts of data. PyTables makes use of the NumPy
package and of the HDF5 library under the Python
language.
Ensembles of kinetic constants sustaining the 5 different

metabolic phenotypes have been populated by perform-
ing a large number of “experiments” conducted first by
randomly defining, for each of them, the set of kinetic
constants and then by executing a simulation for each
given experimental condition providing, for each of them,
a unique nutrient selected among glucose (exp1 and exp2),
acetate (exp3), succinate (exp4), glycerol (exp5) and a non
limiting amount of oxygen.
To populate the ensembles of kinetic constants, we fil-

tered the experimental dataset according to conditions
that have been implemented on the basis of fluxes illus-
trated in Table 2. The flux values in the table have been
obtained by simulating the ECC2comp model under the 5
different experimental conditions (see Table 1) with FBA.
In particular, to build filters we evaluated only

ECC2comp reactions: (A) having non zero flux value in
just one of the experimental conditions (Table 2, in bold),
(B) defining the experimental conditions and oxygenation
state (Table 2, in italic). For example, as the reaction GLYK
is active only in metabolic phenotype exp5, flux distribu-
tion is assigned to metabolic phenotype exp5 iff the GLYK
flux is greater than zero. Along similar lines O2Up, which
defines the oxidation state, is active in every metabolic
phenotype except exp2. Its flux distribution is assigned to
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Table 2 Flux values used to set up filters in order to populate the 5 ensembles of kinetic constants corresponding to experimental
conditions

exp1 exp2 exp3 exp4 exp5

G6PDH2r 4.142 0.000 0.000 0.000 0.000

O2Up 17.587 0.000 9.451 13.735 10.699

GlycUp 0.000 0.000 0.000 0.000 10.000

MALS 0.000 0.000 2.627 0.000 0.000

AcEx 0.000 7.835 0.000 0.000 0.000

GND 4.142 0.000 0.000 0.000 0.000

SUCCt2_2pp 0.000 0.000 0.000 10.000 0.000

PGL 4.142 0.000 0.000 0.000 0.000

F6PA 0.000 0.000 0.000 0.000 4.586

SuccUp 0.000 0.000 0.000 10.000 0.000

GLYCDx 0.000 0.000 0.000 0.000 4.586

ALCD2x 0.000 7.806 0.000 0.000 0.000

ICL 0.000 0.000 2.627 0.000 0.000

EthEx 0.000 7.806 0.000 0.000 0.000

GLCptspp 10.000 10.000 0.000 0.000 0.000

AcUp 0.000 0.000 10.000 0.000 0.000

GlcUp 10.000 10.000 0.000 0.000 0.000

ME2 0.000 0.000 0.000 3.488 0.000

GLYK 0.000 0.000 0.000 0.000 5.414

Target fluxes have been calculated by means of FBA experiments. Reactions having non zero value in only one experimental condition are in bold; reactions defining the
experimental condition (i.e., specific nutrients and oxygenation state) are in italic

metabolic phenotype exp2 iff the O2Up flux is equal to
zero.
Formally these constraints relative to the phenotypes are

summarized by logical expressions shown in Eqs. (3) to
(6) where vi represent the metabolic flux through the i
reaction.

exp1 : (vG6PDH2r > 0) ∧ (vGND > 0) ∧ (vPGL > 0)
∧ (

vGLCptspp > 0
) ∧ (

vO2Up > 0
)

(3)

exp2 : (vAcEx > 0) ∧ (vALCD2x > 0) ∧ (vEthEx > 0)
∧ (

vGLCptspp > 0
) ∧ (

vO2Up = 0
)

(4)

exp3 : (vMALS > 0) ∧ (vICL > 0) ∧ (
vAcUp > 0

) ∧ (
vO2Up > 0

)

(5)

exp4 :
(
vSUCCt22pp > 0

) ∧ (vME2 > 0) ∧ (
vO2Up > 0

)

(6)

exp5 : (vGLYK > 0) ∧ (vF6PA > 0) ∧ (vGLYCDx > 0)
∧ (

vO2Up > 0
)

(7)

An experimental set of kinetic constants is assigned to
a given ensemble (metabolic phenotype) if and only if all
the constraints associated to that phenotype are satisfied.

Results
Obtained ensembles
To test the procedure on the simplified E. coli model, we
tossed multiple different random sets of kinetic cons-
tants, keeping the concentration of ions and exchanged
species (i.e., ac_ex, ca2_ex, cl_ex, co2_ex cobalt2_ex,
cu2_ex, fe2_ex, fe3_ex, for_ex, glc_DASH_D_c,
glc_DASH_D_ex, glc_DASH_D_p, h_ex, h2_ex, h2o_ex,
k_ex, mg2_ex, mn2_ex, mobd_ex, MTHTHF_ex, nh4_ex,
ni2_ex, o2_ex, pi_ex, so4_ex, succ_ex and zn2_ex) con-
stant throughout the simulation time of 100 seconds,
defined accordingly to [8] in order to allow the metabolic
steady state to be reached after a perturbation (e.g. a pulse
of nutrient).
Every simulation is considered at steady state if θ <0.1%.

If the steady state is verified, the random parametriza-
tion is retained, otherwise is dropped. To obtain a dataset
of 104 random sets of kinetic constants, we performed
a total of 11520 samplings, thereby discarding the 13.2%
of performed simulations. The total computational time
to produce the data set has been 1d 2h 20min to run
ODEs simulations on a workstation (8 x CPU 3.8 GHz
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Intel Core i7, RAM 32 GB) and producing 20.3 GB
of data.
The input of the filtering procedure has been a dataset

composed of 5 · 104 simulations, i.e. 104 random sets of
kinetic constants tested over 5 experimental conditions.
We tamed numerical instability by imposing a thresh-

old considering fluxes with a value less than 10−10 to be
0. From the dataset of 5 · 104 solutions 15267 have been
assigned to exp1, 101 to exp2, 19616 to exp3, 22719 to
exp4 and 16033 to exp5, as illustrated by the last 6 rows of
Fig. 3 reporting the cardinality of solutions, i.e. the num-
ber of random parameterizations that are assigned to one
or more phenotypes at the same time.
Data presented in Fig. 3 show that we have been able

to identify a subset of parametrization that work for all
cases (1345 in Fig. 3) but not for the anaerobic condition
(exp2 – 2 in Fig. 3). This reflects the consistent metabolic
differences that can be pointed out in vivo between aero-
bic and anaerobic conditions.
In connection to this issue, we noticed that combina-

tions exp2 - exp3 (23 in Fig. 3) and exp2 - exp5 (25
in Fig. 3) are empty sets due to the fact that in phe-
notype exp2 (anaerobic) reactions sustaining respiration
are blocked (e.g. in TCA cycle the flux for reaction CS,

leading to citrate is almost zero – see Fig. 4) while in
exp3 and exp5 (aerobic conditions) the same reactions
are active.
To compare flux values at steady state for each reac-

tion in the system before and after the filtering, we drew
the heatmap of Fig. 4 where rows list reactions, columns
list sets of dynamics ensembles associated with each
metabolic phenotype and the color represents the median
value of that ensemble for that reaction at steady state
(range [1 · 10−13, 1 · 101]). We made two distinct asso-
ciations of the dynamics to the phenotypes, the columns
labeled as sC# have the dynamics assigned according to
flux values at steady state emerging from their parameter-
ization, whereas columns labeled as fC#, the filtered ones,
are populated with the dynamics that satisfies pheno-
types constraints at steady state, disregarding their initial
condition. Overall, it is possible to notice that flux val-
ues in sC# and fC# for a given phenotype exhibit almost
always a comparable flux value, there with only few excep-
tions to this behavior (e.g. reactions: O2Up_reverse less
active in the fC2; h2Ex, PGM, PGM_reverse, PGK less
active in fC3, SUCCt2_2pp more active in fC3; GlcUp
and GLCt2pp more active in fC4). Moreover, comparing
the different phenotypes, it is possible to notice that exp5

Fig. 3 Cardinality of solutions illustrating the intersection among the different ensembles. Numbers on Y axis indicate the ensemble(s) (e.g. 12,
indicates the ensemble exp1 and exp2) while the length of the bar indicates the number of solutions belonging to the ensemble or group of
ensembles
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Fig. 4 Heatmap. Figure illustrates median flux values through model reactions (rows) at the steady state, when the dynamic is labeled according to
flux values at steady state emerging from their parameterization (columns labeled with sC#) and when it is filtered according to phenotypes
(columns labeled with fC#). Red labels indicate reactions used to implement the filtering conditions for the metabolic phenotypes
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(sC and fC5) has flux values dissimilar to the other 4
phenotypes.
To better characterize the ensembles, we also plotted

the median and the standard deviation for kinetic con-
stants values retrieved for each ensemble after the filter-
ing. Results illustrated in Fig. 5 show that there are little
but non negligible differences in the median of kinetic
constant values for all the reactions of the model (e.g.
exp1 has different median values for h2o_Ex_reverse,
F6PA_reverse, PGL, PGI, GND, h2o_Ex; exp5 has con-
stant associated to ATPM greater than the average). Fur-
thermore, supporting the findings that have emerged from
analyzing cardinalities (Fig. 3), median values for the
group of four aerobic phenotypes are very similar, while
the medians for anaerobic phenotype are different form
the previous group.

Relevant fluxes
To identify relevant fluxes able to discriminate the 5
metabolic phenotypes, we performed a Kolmogorov-
Smirnov (KS) test, a non-parametric hypothesis test pro-
cedure able to discern if two samples derive from the same
distribution without investigating the actual shape of the
distributions. The KS test has been performed for each
possible pair of conditions and for each flux. The goal was
to identify those fluxes that statistically differ for each pair
of conditions (with significance 0.05) and that should thus
be able to discriminate each of the 5 conditions.
From the output of the KS test we found a subset of

38 fluxes that can be regarded as relevant fluxes. Rel-
evant fluxes are reported (red color) in Fig. 1. From
their mapping on the metabolic network it emerges that
these reactions are mainly part of functional elements in
the network: in particular exchange reactions and hubs
(i.e. network junctions connecting different pathways).
Instead, reactions internal to pathways are less repre-
sented among the significant ones. This may suggest that
the cell performs a tight regulation of fluxes among dif-
ferent pathways and a less stringent tuning for reactions
belonging to the same pathway.

Discussion
The analysis of average concentrations and relative stan-
dard deviations for molecular species during time courses
shed light on some relevant issues hereafter discussed.
Overall, we underline that standard deviation values (σ )

are small and few parameterizations (only 13% of the total)
are discarded, suggesting that for the sampled interval
[0, 1 · 102] metabolism is robust towards kinetic constant
variation. This parameter insensitivity has been further
investigated in [22] where authors showed that many
models in Systems Biology exhibit a “sloppy” spectrum
of parameter sensitivities, concluding that besides the
mere estimation of the parameter value, the community

should focus on analyzing models in a predictive
fashion.
Concerning biomass (Fig. 6) it is possible to notice that

it is accumulating over time in all metabolic phenotypes.
Interestingly, when we tested a further experimental con-
dition (exp0 – not used as a metabolic phenotype) rep-
resenting an enriched growth media (i.e., when all the
nutrients are simultaneously available), this turned out
not to be the condition leading to the maximal level of
biomass (it is for instance the aerobic growth on succinate,
exp4 – purple line).
Furthermore, the analysis of time courses (Fig. 7) reveals

that many metabolic pathways remain active through-
out the simulation since they are generating metabolic
intermediates. As an example E. coli is performing
both alcoholic fermentation, as it appear from the time
course for ethanol (Fig. 7 top), and TCA cycle, a path-
way considered as indicator for respiration and illus-
trated at the bottom of Fig. 7, with the time course for
malate.
Data supporting the actual activation of biochemi-

cal pathways in the model are also the presence of
steady states for cofactors such as NAD/NADH and
NADP/NADP which appear to be dynamically inter-
converted as shown in Fig. 8 where, comparing the time
courses for NAD (top) and NADH (bottom), it is possi-
ble to notice a symmetrical trend. This fact indicates that
metabolic pathways are maintaining the system energeti-
cally active and capable of generating biomass. Focusing
on the set of kinetic constants assigned to the different
metabolic phenotypes, the procedure illustrated in the
present paper led to the population of all the 5 phenotypes
and to the identification of a subset of kinetic constants
assignable to the four aerobic conditions. Unfortunately,
there is no single “universal” parametrization assignable to
all 5 phenotypes. This fact could be determined by differ-
ent causes such as an under sampling of random kinetic
constants, a too narrow sampling interval (in this study
2 orders of magnitude), or an excessively relaxed filtering
condition not allowing a complete discrimination among
the phenotypes.
Furthermore, the evaluation of median and standard

deviation for the kinetic constants belonging to the 5
ensembles (Figs. 4 and 5) suggests that there are only few
reactions that have to be finely tuned in order to direct the
system towards a specific metabolic phenotype, a fact that
suggests once more that metabolism is a system partic-
ularly robust towards perturbations. In this case a global
sensitivity analysis would help to investigate the issue of
robustness more specifically.

Conclusions
Constraint-basedmodels have been successfully implemen-
ted to study metabolic fluxes at steady state, nevertheless,
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Fig. 5 Boxplot. Illustration represents model reactions (rows), median for kinetic constants associated to the 5 phenotypes and not associated with
any phenotype (colored vertical bars, see key for color code)
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Fig. 6 Time course for the species “biomass”. Figure shows that the mass of the system is accumulating during the simulation for every
experimental condition, i.e., the system is able to grow under the experimental conditions. Shaded areas indicate the σ for every experiment, solid
line represent a trajectory averaged over a subset of 200 parameterizations due to computational time limitations

information about the temporal evolution of the system
during the transient phase preceding the steady state can
not be derived from them. In addition, the metabolic
concentrations at steady state can not be deduced from
constraint-based methods since there is no information
about kinetic constants.
Computational approaches developed in [12] and exploi-

ted in the present work are an improvement designed to
override limitations by exploiting mechanism-based sim-
ulations. Here, initial conditions are partially retrieved
from the literature (molecular concentrations) and kinetic
constants are randomly determined. Figure 3 sums up
the readout of the procedure: through a filtering proce-
dure based on a loose definition of the 5 experimental
conditions (metabolic phenotypes) involving some key
reactions, the developed method is able to assign ran-
dom sets of kinetic constants to one or more metabolic
phenotypes.
With the present contribution we aimed at improv-

ing and testing a computational framework capable of
retrieving ensembles of kinetic constants that can be asso-
ciated with different metabolic phenotypes. It is worth

underlying that, in contrast with constraint-base approa-
ches, our method is not assuming that metabolism is
optimized to perform a specific task.
We underline that the methodology used here can be

exploited to retrieve ensembles of kinetic constants for
any metabolic phenotype providing only its formal def-
inition (in terms of nutrients supplied and oxygenation
state together with an estimation of initial concentrations
for modeled species) and a flux distribution obtained by
means of a constraint-based simulation (for which no
kinetic parameters are needed).
For what concerns perspectives, we plan to better

characterize the metabolic steady state by exploiting
more efficient strategies to calculate whether the system
reaches a stationary condition. Among these strategies
a promising approach includes the use of the NLEQ2
non-linear root-finding algorithm [23]. Moreover, we are
considering to significantly expand the sampled set of
kinetic constants through a significant speed-up of sim-
ulations achieved by means of high performance and
parallel computing applied to Systems Biology modeling
problems [24, 25].
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Fig. 7 Time course for the species ethanol and malate. The time course for the species ethanol (top) shows that the species (not evaluated for the
determination of the steady state) is accumulating during the simulation for every experimental condition, i.e., the system is able to perform
alcoholic fermentation. Instead the time course for malate (bottom), shows the reaching of the steady state indicating that the system is also using
the TCA cycle. Shaded areas indicate the σ for every experiment, solid line represent a trajectory averaged over a subset of 200 parametrizations due
to computational time limitations
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Fig. 8 Time courses for the species NAD (top) and (NADH) bottom. Figure illustrate that the species are satisfying the steady state condition (i.e., are
not varying more than 1% in the last 10 s of simulation. Moreover, NAD/NADH ratio is compatible with “sustained steady states” in all experimental
condition except experiment 5. Similar time courses are obtained for NADP and NADPH. Shaded areas indicate the σ for every experiment, solid line
represent a trajectory averaged over a subset of 200 parametrizations due to computational time limitations
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Additional files

Additional file 1: ECC2C.xml. SBML file for the ECC2comp model of E. coli
used for the analysis. (XML 69.8 kb)

Additional file 2: X0etc.xlsx. In tab “conc” are listed initial concentrations
of metabolites for the 5 different phenotypes. In tab “FeedNoFilt” are listed
metabolites provided at constant concentration throughout the simulation
and metabolites not evaluated to verify the steady state. (XLSX 14.8 kb)

Additional file 3: Github. The generated dataset (ECcoliExpsParam_
10_Filter_0.001.h5) and python scripts implemented for this study are
deposited on a GitHub repository at http://github.com/riccardocolombo/
kineticensemble (ZIP 1.52e+7 kb)
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