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Abstract

Background: An open challenge in translational bioinformatics is the analysis of sequenced metagenomes from
various environmental samples. Of course, several studies demonstrated the 16S ribosomal RNA could be considered
as a barcode for bacteria classification at the genus level, but till now it is hard to identify the correct composition of
metagenomic data from RNA-seq short-read data. 16S short-read data are generated using two next generation
sequencing technologies, i.e. whole genome shotgun (WGS) and amplicon (AMP); typically, the former is filtered to
obtain short-reads belonging to a 16S shotgun (SG), whereas the latter take into account only some specific 165
hypervariable regions. The above mentioned two sequencing technologies, SG and AMP, are used alternatively, for
this reason in this work we propose a deep learning approach for taxonomic classification of metagenomic data, that
can be employed for both of them.

Results: To test the proposed pipeline, we simulated both SG and AMP short-reads, from 1000 16S full-length
sequences. Then, we adopted a k-mer representation to map sequences as vectors into a numerical space. Finally, we
trained two different deep learning architecture, i.e., convolutional neural network (CNN) and deep belief network
(DBN), obtaining a trained model for each taxon. We tested our proposed methodology to find the best parameters
configuration, and we compared our results against the classification performances provided by a reference classifier
for bacteria identification, known as RDP classifier. We outperformed the RDP classifier at each taxonomic level with
both architectures. For instance, at the genus level, both CNN and DBN reached 91.3% of accuracy with AMP
short-reads, whereas RDP classifier obtained 83.8% with the same data.

Conclusions: In this work, we proposed a 165 short-read sequences classification technique based on k-mer
representation and deep learning architecture, in which each taxon (from phylum to genus) generates a classification
model. Experimental results confirm the proposed pipeline as a valid approach for classifying bacteria sequences; for
this reason, our approach could be integrated into the most common tools for metagenomic analysis. According to
obtained results, it can be successfully used for classifying both SG and AMP data.
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Background

Metagenomic analysis has become an important focus
for the scientific community; it allows to characterise
bacterial community composition, deriving from a par-
ticular environment, avoiding the use of cell cultures
[1]. This characteristic allows to overcome the need to
culture and isolate bacteria, as many of them are dif-
ficult to culture under laboratory conditions [2]. The
analysis of bacterial communities is conceptually based
on two main features: species richness and differential
abundance [3, 4]. Indeed, when analysing and compar-
ing different microbial communities, it is important to
consider both characteristics as some of them could have
an equal number of species (species richness) but dif-
ferent abundances [5]. Metagenomic analysis has many
field of applications, as biotechnology [6], ecology (7],
bioremediation etc. It also has a motivation in the med-
ical field: the human microbial flora has a fundamental
role in infectious diseases diagnosis and gut microbe
studies. Recent evidence has suggested the potential
impact of gut microbiota on the development of differ-
ent kind of human diseases as diabetes [8], obesity [9,
10] and cardiovascular diseases [11]. An interesting study
on European women with normal, impaired or diabetic
glucose control, using shotgun sequencing to charac-
terise the faecal metagenome of the different cohorts of
study, showed compositional and functional alterations
in the metagenome of women affected by type II dia-
betes [12]. The 16S rRNA gene sequence is the most
widely used marker gene for profiling bacterial commu-
nities [13]. 16S rRNA gene sequences consist of nine
hypervariable regions that are separated by nine highly
conserved regions (V1 to V9) [14]. In the rest of this
section, we introduce the Next Generation Sequencing
(NGS) technologies used for 16S rRNA sequencing, and
some bioinformatics methods developed for the analysis
of metagenomic data.

16S rRNA sequencing techniques

The 16S rRNA sequencing uses two different NGS tech-
nologies. The former is a whole genome shotgun (WGS)
sequencing technique, and it allows to sequence all the
bacterial genes; the other one sequences only some of the
nine hypervariable regions of 16S gene, and it is called
amplicon sequencing technique. It is a lower throughput
fast-turnaround instrument type.

Different types of NGS platforms, as Illumina and
454-Roche, designed primers specific for various hyper-
variable regions. This method has the advantage to
sequencing shorter ¢cDNA fragments; moreover, the
hyper-variable regions contain the maximum heterogene-
ity and provide the maximum discriminating power for
identifying different bacterial groups, compared with the
16S ultra-conserved regions [15]. Furthermore, amplicon
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sequencing allows to deeper detect rare species in com-
plex communities compared to shotgun method [16]. It
also has the advantage to be applied in metagenomic
profiling studies where speed or limited input material
is a concern [17]. In contrast, sequence and analysis of
these amplicons have some technical limitations includ-
ing chimaera formation during the PCR step and errors
introduced by sequencing technologies.

The debate on which NGS technique is better for
metagenomic classification is still open. Indeed both types
of methods have strengths and weaknesses: for instance,
the shotgun Illumina Hiseq technology has a higher
instrument cost, a higher run time compared to AMP
Miseq technique. AMP method has a lower sequencing
cost per Gigabyte, and lower observed row error rate. Both
techniques have the advantage to have a good accuracy
(greater than Q30), a read length up to 150 base pairs (bp)
and to require to 50-1000 nanograms (ng) of DNA [18].

An interesting recent work of Yang et al. [15], tries
to analyse the sensitivity of different 16S hyper-variable
(V) regions, regarding phylogeny-related analysis. They
conclude that V4-V6 sub-regions could be the better
combination for phylogenetic studies. Indeed this region
provides extensive information for taxonomic classifica-
tion of microbial communities from samples coming from
human microbiome so that in the case of important
projects such as the Human Microbiome Project[19] it has
been adopted. Other studies confirmed the evidence that
V4 region has the most informative power on the other V
regions [20, 21].

Other studies evidenced V1-V3 regions as excellent
potential biomarkers of bacterial phyla, as showed by
the high level of measures of phylotype richness. This
lets hypothesise that V1-V3 offers a deeper assessment
of population diversity and community ecology for the
complex oral microbiota [22]. Finally, other experiments
showed that V3 region contained the maximum number
of SNPs between most bacterial species [23]. Consider-
ing these evidence, in this study we chose to use V3-V4
regions for amplicon analysis.

For all the above-discussed points it would be useful for
metagenomic studies, to have a single classifier applica-
ble to both shotgun and amplicon sequencing technique.
Indeed, there is no evidence that a method is better than
the other, but the choice about which to adopt depends
only on the type of research to conduct and the budget
availabilities.

Machine learning methods for taxonomic profiling
Several machine learning approaches have been proposed
so far to deal with analysis encompassing the full range of
metagenomic NGS data analysis.

Among them, the most relevant have been Operational
Taxonomic Unit-clustering (OTU-clustering), binning,
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taxonomic profiling, comparative metagenomics and gene
prediction. For a recent review of the related machine
learning solutions, the reader can take as reference the
work by Soueidan et al. [24].

Taxonomic profiling is the problem of identification
and quantification of organisms or higher level taxa
in a metagenome. This issue was subject to extensive
research and development in the past years, using differ-
ent approaches.

The first kind of methods use some reference data, such
as whole genome sequences, genes or other small parts of
the genome. Early approaches belonging to this category
were alignment based, i.e. they used alignment algorithms
to map the metagenomic reads to the reference genome,
and used the outcome information for identifying quanti-
fying taxa [25].

A second popular approach is based on the combi-
nation of genome assembly and gene prediction. Whole
genome sequencing reads from metagenomic samples are
first assembled into larger contigs using de-novo assembly
methods. The resulting contigs are annotated with gene-
finding methods, and identified genes are translated into
proteins. Finally, these proteins can be searched in cur-
rent protein databases. A successful method using this
paradigm is MOCAT [26].

Note that the two kinds of approaches described so
far are based on alignment and assembly, which are well
known to suffer from computational issues such as time
complexities. To avoid such problems, new approaches
have been proposed. Among them, for the consideration
stated above, emerge the ones based on the identification
of 16S small subunit ribosomal RNA (rRNA) genes in the
related metagenomic data.

Several pipelines that follow this idea have been recently
proposed for taxonomic profiling [27-31]. For sure, the
main core of these pipelines regards the adoption of a clas-
sification paradigm to infer the species related to an input
NGS read.

Despite the fact that there exist several classifi-
cation methods [32-34] that could be incorporated
into a general taxonomic profiling software pipeline,
the most recent [29-31] adopt the so called RDP-
classifier [34].

For these reason, we have decided to adopt this classifier
as a baseline. A brief description of the method is given in
the next section.

Moreover, we provide a classifier that is based on the
state of the art category for general pattern classification
i.e. the deep learning models.

Deep learning has recently emerged as a successful
paradigm for big data classification, also because of the
technological advances regarding the low-level cost of
parallel computing architectures, so that deep learning
has given significant contributions in several basic but
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arduous artificial intelligence tasks [35]. For sure, deep
learning techniques represent now state of the art for the
pattern classification.

The main contribution of deep learning methods
to bioinformatics has been in genomic medicine and
medical imaging research field. To the best of our knowl-
edge, very few contribution have been provided for the
sequence classification problem [36-38] (Di Gangi M,
Lo Bosco G, Rizzo R: Deep Learning Architectures for
prediction of nucleosome positioning from sequences
data, forthcoming). For a deep review about deep
learning in bioinformatics, see the review by Seonwoo
et al. [39].

Finally, in this work, we propose a classification method
based on deep learning neural network, able to identify
bacterial species in metagenomic data by the identifica-
tion of 16S small subunit ribosomal RNA (rRNA) genes.
Since deep neural network models represent the state
of the art for pattern classification, this leads to a bet-
ter identification of bacterial community with respect
to other classification schemes, as demonstrated by the
computed results. We adopted two deep learning archi-
tectures, namely convolutional neural network (CNN)
and deep belief network (DBN). We chose these two
algorithms because they are based on different computa-
tional models. CNN, in fact, implements a discriminative
model; DBN implements a generative model. Moreover,
another advantage that our classification model clearly
shows is the possibility of being trained on two different
technologies for 16S reads (i.e. SG and AMP) making it
more versatile.

Methods

In this section, we introduce the proposed training
pipeline for bacteria taxonomic classification of metage-
nomic data. We built two artificial datasets to simulate 16S
short-reads from both shotgun and amplicon sequencing
platforms; for each short-read, the taxa is known. Then,
we created a vector representation for both datasets using
the k-mers representation, to make a training input for a
deep learning architecture. Finally, we implemented both
convolutional neural network (CNN) and deep belief net-
work (DBN) architectures, to estimate the best model
for each taxonomical category, obtaining as many trained
models as taxonomical groups we can classify, i.e. from
class to genus taxa. Figure 1 shows the proposed pipeline.
All the steps of this process are detailed in the rest of this
section.

Dataset

As introduced in the Background section, metagenomic
data represents a mixture of different bacteria species,
each one with a different percentage of abundance. Start-
ing from bacteria short RNA reads produced by NGS
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Fig. 1 Proposed training process. Starting from 165 reads, we proposed a vector representation and a deep learning architecture to obtain trained
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platforms, the aim of this work is the classification from
class to genus level of metagenomic data. Of course, to
carefully train and validate the proposed classification
technique, we need a pre-labelled dataset giving the taxa
of each read.

Since reads available in public metagenomic datasets
have not a taxa classification, we built our artificial
dataset, generating simulated metagenomic reads, accord-
ing to the approach used in [29, 31]. We only generated
short-reads belonging to 16S (rather than consider the
WGS), since some tools, such as REAGO [29], can distin-
guish reads belonging (or not) to 16S with accuracy near
to 99%. According to available technologies for metage-
nomic analysis introduced in the Background section, in
this work, we simulated reads from both shotgun and
amplicon sequencing. In details, we downloaded from the
RDP database (release 11, update 5 dated September 30,
2016) a dataset of 16S gene sequences in unaligned fasta
format, belonging to the bacteria kingdom. We filtered
this dataset with the following parameters: Strain, both
Type and Non-Type; Source, Isolates; Size, greater than
or equal to 1200; Quality, Good. As a result, we obtained
57788 16S gene sequences. To build a balanced dataset at
the genus level, we randomly taken into account a sub-set
of these sequences belonging to Proteobacteria phylum
and composed by 1000 sequences with 100 genera and 10
species of each genus. The number of different categories
belonging to each taxa is summarised in Table 1.

At this point, we used the Grinder [40] tool for simu-
lating shotgun and amplicon metagenomic datasets from
16S reference sequences; we called these datasets respec-
tively SG and AMP. Grinder was adopted because it
is the only tool to generate both shotgun and ampli-
con reads. To simulate the Illumina Miseq v3 NGS

Table 1 Number of different categories belonging to each taxa
in simulated dataset

Proteobacteria phylum

# class # order

3 20 39 100

# family # genus

technology by Grinder, we have introduced mutations
(substitutions, insertions and deletions) at positions that
follow the polynomial distribution (with replacement)
3-1073 + 3,310 . i* where i indicate the nucleotide
position. Other used parameters have been a muta-
tion ratio equal to “80%” and a uniform distribution of
read length equal to 250+10 bp. As regard SG dataset,
we obtained 28224 short-reads using a 5.0x coverage
fold (about 28 reads per sequence). As regard AMP
dataset, according to the Background section, we only
consider the V3-V4 hypervariable region (approximately
469 bp) using the following primers: “CCTACGGGAG-
GCAGCAG” and “CCGTCAATTCMTTTRAGT”; these
primers are defined in [21], exploiting the IUPAC nota-
tion. As results, we obtained 28000 short-reads using a
13.0x coverage fold (about 28 reads per sequence). Notice
that, during simulation AMP sequencing process, we lost
86 16S gene sequences, because they do not match with
primers. Finally, all the short-reads belonging to AMP
dataset have been trimmed using the MICCA primer
trimming tool [30], to remove the primer sequences.
Datasets used in this study are available at the following
URL: http://tblab.pa.icar.cnr.it/public/BMC-CIBB_suppl/
datasets/.

Short-reads representation

In many sequence classification works, such as [41, 42],
the sequences were represented using a one-bit coding
with each nucleotide (A, C, G, T) corresponding to the
position of a single bit "1" in a 4-bit array. This coding
method, often referred as "one-hot", can be considered as
a "raw" representation of the sequence and leave to the
classifier algorithm the extraction of meaningful features
from the raw data.

In sequence classification tasks, features are k-mers, k-
mers combinations or co-occurrence, so that the features
of the sequences can be k-mers patterns in the represen-
tation [43]. According to this hypothesis, it is reasonable
to extract k-mers and model the sequence using k-mers
occurrence, leaving to the classification system only the
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task of detect k-mers co-occurrence or patterns obtained
from k-mers presence. k-mers (or k-grams) have been
successfully used in bioinformatics for the analysis of
genomic sequences [44—46], because they define a coor-
dinate space in a 4X dimensions vector space where it is
possible to compute distance measures among genomic
sequences. Vector representation of short-reads can be
used as the input of machine learning algorithms [47].
Of course, this representation technique does not give
any information about the position of k-mers in the
original sequence, since it implements a bag-of-words
model.

One of the main issues related to the use of k-mers is
to determine the appropriate value of the k parameter,
to give a good trade-off between a manageable compu-
tational complexity and the information content. Several
studies about k-mers length [48, 49] demonstrate small
values of k can be sufficient to provide enough informa-
tion content and avoid to define a vector space that suffers
from the effect of the curse of dimensionality. For this
reason, in this study, we chose to perform a k-mers repre-
sentation with 3 < k < 7. Finally, we applied a Min-Max
normalization to scale down the range of data between
0 and 1. Another aspect to take into account is that the
length of the representing vectors is L = 4% where k is
the dimension of the k-mers used for the sequence rep-
resentation. The convolution operation in the first stage
of the CNN network is made by using a sliding win-
dow over the input vector. For this reason, the number of
convolution operation is proportional to the input vector
length.

Short-reads classification

The short-reads classification task is still an open chal-
lenge in bioinformatics. Several pipelines for metage-
nomic analysis have been proposed, such as those
reported in the Background section, and most of
them use RDP classifier [34] as the state-of-the-art for
genomic sequences classification. RDP classifier algo-
rithm, described below in this section, performs well on
full-length 16S rRNA sequences (about 1600bp), but it
shows a loss of performance when only 16S regions are
taken into account for classification [50].

In this paper, firstly, we computed a short-read k-mers
representation, and secondly, we classified the obtained
data with a supervised deep learning architecture. To this
aim, we tested two well known deep learning architec-
tures, i.e. the convolutional neural network [35] and the
deep belief network [51]. The first one has been chosen
because it can extract some relevant features from input
data at different abstraction layers, whereas the second
one implements a generative probabilistic model, that can
reconstruct input signals with a good approximation in
a lower dimensional space, filtering the most informative
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features. Both of them can work with the proposed k-
mers representation. All the aforementioned classification
algorithms are described more in details later in this
section.

Adopted classifiers

In this Section, we provide a brief explanation about the
three classifiers tested in our work. First of all we intro-
duce our proposed methods, which are CNN and DBN
networks, and finally, we present the considered baseline
classifier, that is the RDP classifier.

CNN network classifier

Convolutional Neural Networks are often used for classifi-
cation purposes due to their ability of processing raw data
[52]. These networks are composed of two main parts: a
first part aimed to extract from the input vector useful
features, and a second part made of one or more fully con-
nected layers aimed to the classification task. The fully
connected layers process the features obtained from con-
volutional layers. This is an important characteristic of
these networks and the reason why these networks are
often used in image classification, where it is difficult to
decide what is a useful feature or which shape should have.
Moreover, the systems based on CNNs can recognise spe-
cific patterns or objects in the images regardless of their
position. As said before, in genomic sequence analysis the
CNN as sequence classifier was used in several works as
in [41], and [42]. In these works the sequence representa-
tion is the “one-hot” representation described in section
Short Reads Representation. Following the discussion in
the same section, we can extract the k-mers features
from sequences and leave to the CNN only the task of
detection k-mers co-occurrence and frequency. Assum-
ing that the k-mer frequency representation is suitable
for the convolutional network, it is necessary to decide
the architecture of the network. The network design has
two aspects: the network architecture that is related to
the number and kind of layers, the kind of non-linearity
involved and so on, and the number of network param-
eters that are tuned during the training phase of the
network. These two aspects are interconnected and vary-
ing the number of layers can have an effect similar to the
variation of the number of parameters of the network. A
discussion about the number and complexity of the con-
volutional layers is reported in [43], where one of the
conclusions is that the effects of the architecture are task
specific.

Deep belief network

A DBN, introduced by Hinton in [51, 53], is a proba-
bilistic generative model used to extract a hierarchical
representation of input data. Its building blocks are the so-
called Restricted Boltzmann Machines (RBM) [54]. They
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are neural networks composed of two connected layers,
the visible (or input layer) and the hidden layer, and they
are usually used for many tasks, such as dimensionality
reduction, classification, regression and feature extrac-
tion. There are no connections among units in the hidden
layers. In a DBN network, the goal of RBM is to obtain a
representation of the input in a lower dimensional space,
that can be used as input of the following layers. If the
reduced representation is, in turn, used as input of the
RBM, in a backwards manner, it is possible to obtain
an estimate of the probability distribution of the original
input. To minimise the error between the estimated prob-
ability distribution and the actual distribution of input
data, RBM aims at minimising the Kullback Leibler Diver-
gence [55] between them. In this way, each RBM layer
learns the structure of input data hierarchically. A DBN is
then defined as a stack of at least two RBM layers, and its
learning method is composed of two phases. In the first
phase, called pre-training, the RBM layers are trained in
an unsupervised manner to represent the original input
in a new dimensional space of lower size. In the second
phase, called fine-tuning, the DBN is seen as a classical
multilayer perceptron (MLP), and by stacking a final clas-
sifier layer, such as a logistic regression layer [56], it acts as
a supervised classifier, using backpropagation via gradient
descent.

RDP classifier

RDP classifier is a naive Bayesian classifier of sequence
data. This naive Bayesian classifier algorithm takes inspi-
ration from the Bayes Theorem. It is not only simple to
implement but can be extremely efficient in most of its
applications, sequence data classification included. The
term naive is referred to the assumption of independence
between data features. The RDP classifier uses a fea-
ture space consisting of all the k-mers substring of length
8. The probability that an unknown query sequence, s,
belongs to a genus g; is modeled according to the Bayes
rule P(gjls) = P(s|gi) * P(gi)/P(s), where P(s|g;) is the
joint probability of observing a sequence s from a genus
gi, P(gi) is the prior probability of a sequence being a
member of g; and P(s) is the overall probability of observ-
ing sequence s from any genus. The prior estimate of
the likelihood of observing a single k-mer r; in an rRNA
sequence is set to P; = (n(r;) + 0.5)/(N — 1) where
n(r;) is the number of sequences in the corpus containing
subsequence w; and N is the total number of sequences.
Finally, the joint probability is considered as: P(s|g;)) =

Hw,»evi m}f/?t :_JFIP’ where M; is the total number of sequences
in the training set T; of genus g;, m(r;) the number of
sequences in 7; containing k-mer rj and V; is the subset
of k-mers that are substrings of at least one sequence in
T;. Assuming all genera are equally probable (equal pri-

ors), the constant terms P(g;) and P(s) can be ignored,
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so that the rule to assign a sequence s to a genus g; is
i = argmax,P(s|g,).

Results

In this section, we first discuss the network design and
parametrization of the CNN and DBN classifiers. Then we
present the classification results obtained by our classifi-
cation pipeline. We performed two kinds of experiments:
in the first one, we tested our proposed methodology
through a tenfold cross-validation scheme to find the best
configuration concerning the size of k-mers and parame-
ters of the networks. In the second experimental tests, we
compared the best results we obtained against the classi-
fication performances provided by the reference classifier
for bacteria identification, which is the RDP classifier [34].

Classifiers design

An analysis of the dataset revealed that there are some
characteristics to take into account. The short reads
obtained from simulator were represented by using k-
mers of length from 3 to 7, and these representations have
features that guide the classifier design. Considering each
representing vector as a list of frequency values ordered
using the natural order of the k-mers, we calculated the
average length of sequences of adjacent zeros, to illustrate
the sparsness of the representation. We also calculated
the average length of sequences of non-zero values, to
understand if there are useful patterns of k-mer frequency
values; the results are summarised in Fig. 2. As k increases
adjacent non-zeros values became rare. The average dis-
tance between two non-zero values grows exponentially
as can be seen in Fig. 2, while the length of sub-lists
of non-zero values goes from 15 to 1. These results are
summarised in Fig. 2.

So that while the dimensionality of the representing
vector become high enough, the representation becomes
sparse; indeed, starting with K = 5 the average length
of a non-zero sequence is 1.2, and these sequences are
separated by 6 zeros (average value).

We consider as a basic architecture (i.e. the number
of layers and parameters) the one used in [57] that was
derived from the original LeNet-5 [52], Fig. 3 shows the
architecture. To understand if this network architecture
can detect patterns on an array we made some trials using
a set of simple binary patterns organised in 3 classes. We
used two short binary patterns (5 bits), with an Hamming
distance of 1, and a third pattern made by the union of
the two patterns with a gap of n zeros. A binary noise was
also added to the patterns by swapping the value of K bits
in a random position in the sequence. We made a set of
training -classification cycles using 3000 sequences of 64
bits (1000 for each class) with the patterns in a random
position, with and without noise. The results (not shown)
demonstrated that the CNN network could classify inputs
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with sparse patterns by using a small kernel, even in the
presence of noise.

The initial configuration for the CNN has a first convo-
lutional layer with 10 kernels and a kernel size of 5. In the
second layer, we have 20 kernels of the same dimension;
the non-linearity is the Rectified Linear (ReLU); the pool-
ing size was set to 2, and finally, the number of units in
the last hidden layer was set to 500. Starting from those

parameters, we performed a grid search to find a suit-
able configuration that would represent a good trade-off
between obtained results and processing time. In particu-
lar, we noticed that classification results had a very slightly
change (less than 1%) on kernel size and the number of
kernels, as can be seen in Figs. 4 and 5 at the genus level.
For this reason, we chose the CNN network configuration
shown in Table 2.

x P
1=

n/E>

d

Fig. 3 The convolutional neural network. The architecture of the convolutional neural network used. Here, L represents the dimension of the input
vector x, L = 4 were K is the dimension of the K-mers. In the upper part of the figure the representation of the C; convolutional-maxpooling layer,
where K stands for kernel size and ny is the number of kernels. The block My represents the set of weights for the connections from input to hidden
layer, the block M, represents the weighted connections from hidden layer to output. y is the CNN output
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Fig. 4 CNN kernel size configuration. Classification scores at varying of CNN kernel sizes at genus level for both (a) SG and (b) AMP

As for the DBN parameters, summarised in Table 3, we
selected the same number of units in the two RBM lay-
ers. The number of hidden units was set according to the
number of input features, that in turn depends on the k-
mer size. Because the number of input features is equal to
4%, with k = k-mer size, we set the number of hidden units
to 4%=D for k = 3,4,5 and 4* for k = 6,7 for processing
time efficiency. The network model for the DBN is shown
in Fig. 6.

Training and testing procedure

Experimental tests with both CNN and DBN were car-
ried out using a tenfold cross-validation procedure so
that the following results are averaged. All the experi-
ments have been done considering different sizes of k-mer

length, from 3 to 7, because we wanted to understand
what is the minimum k-mer length providing the most
of the information useful for classification. Classification
performances have been evaluated using the most used
statistical measures, such as accuracy, precision, recall and
F1 score. Considering that we have two kinds of input
data, the SG and the AMP data, we trained different
models according to the type of input data. Preliminary
experiments (see Additional file 1), obtained training a
classifier with one kind of data, for example, SG, and test-
ing it with the other one, for example, AMP, did not show
encouraging results.

So in the rest of the paper, we present only the results
obtained training and testing the classification models
with the same type of input data. The trends of accuracy
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Fig. 5 Configuration of CNN kernel numbers. Classification scores at varying of CNN number of kernels at genus level for both (a) SG and (b) AMP

scores for classification using CNN and DBN, at each tax-
onomic level, are presented in Figs. 7 and 8 respectively.
In those charts, we show how the accuracy changes as
the k-mer size changes, with the type of input dataset.
From those charts, it is immediately clear that regardless
the network type, the input dataset and the taxonomic
level, the highest accuracy scores are reached with the
largest value of k-mer size, that is k = 7. For k =

Table 2 Parameters used for training the CNN architecture

7, scores range from 99% at class taxon to about 80%
at genus level. These results will be further discussed
in the next Section. Because of the genus level, con-
sisting of 100 different categories (see Table 1), is the
most difficult to classify, we detailed the obtained results
at genus level in Table 4 for both CNN and DBN net-
work. There, for each input dataset and k-mer size, we
summarised classification results concerning accuracy,

CNN parameters

Layer 1 Layer 2 MLP
kernel size n. of kernel pooling size kernel size n. of kernel pooling size hidden units
(K) () (K) (n2)

5 5 2 5 10 2 500
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Table 3 Number of hidden units used for training the DBN
architecture, at varying of k-mer size

DBN parameters

k-mer size RBM layer 1 hidden units ~ RBM layer 2 hidden units
(k) () (h2)

3 32 32

4 128 128

5 256 256

6 256 256

7 256 256

precision, recall and F1 score, considering mean values
over the ten folds and the corresponding standard devi-
ations. From those tables, we can notice that, as seen in
the previous charts, with k-mer size kK = 7 we reached the
best scores, 91.3% of accuracy for AMP data and 85.5%
of accuracy for SG data, with very similar values of pre-
cision, recall and F1 score, and a standard deviation of
about 0.01.

Comparison with RDP classifier

Our classification approach of short reads of bacte-
rial 16S rRNA has been compared uniquely with the
RDP classifier [34] taking into consideration that it
is the most adopted among the recent metagenomics
pipelines, as highlighted in the Background Section. The
RDP classifier, version 2.5, has been trained and tested
with the same datasets we used in our experiments,
considering a ten-fold cross-validation procedure and
averaging all the results. Comparisons of classification
performances at the genus level, in terms of accuracy,
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among the RDP classifier and our approaches with CNN
and DBN, are presented in Fig. 9, using SG dataset
and AMP dataset. From those charts, we can state that
our approach, with both CNN and DBN, reaches higher
scores than RDP classifier, especially in the case of AMP
dataset, where the gap is about 8 percentage points
(83% vs. 91%).

Execution times
Experiments have been carried out on a cluster composed
of 24 nodes with the following configuration:

CPU: 1 X Intel(R) Xeon(R) CPU E5-2670 0 2.60GHz
RAM: 128 GBytes Memoria DDR3 1600 MHz

HD: 1TB SATA

GPU: 48 x GPU NVIDIA KEPLER K20

OS: Centos 6.3

Table 5 reports the average execution time in seconds
for a single fold. It shows obtained results for both training
and testing models at varying of k value. Although training
phase require several seconds, the testing phase is quite
fast, even for k = 7.

Discussion

The most interesting results we obtained is that there
are actual differences in classification performances on
the basis of the two type of input data analysed, SG or
AMP. Considering the AMP dataset, in fact, all the clas-
sifiers, CNN, DBN and RDP, reach their own best scores.
This trend can be explained considering how the different
sequencing techniques, shotgun and amplicon, work. As
explained in the Background Section, the reads produced
with the shotgun sequencing cover all the available

L1°RBM —IL2°RBM —j

Fig. 6 The deep belief network. An example of deep belief network with two RBM layers for binary classification. In this figure, L represents the
dimension of the input vector x, whereas, h and w represent the hidden units and the weights of each RBM respectively. y is the binary output
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Fig. 7 Accuracy validation of CNN classifier, according to k-mer size. Classification of (@) SG and (b) AMP datasets with CNN architecture

genome; whereas with the amplicon technique, only well-
defined genomic regions are sequenced. In the case of
16S rRNA, therefore, the SG dataset is composed of reads
extracted from every part of the gene; the AMP dataset, in
turn, is composed of reads belonging exactly to one hyper-
variable region that, in our work is the V3-V4 region. That
means the SG dataset is affected by noise in those reads
covering the regions of 16S rRNA gene with little infor-
mation content. On the other hand, the AMP dataset is
very focused, in a sense, it contains the most of the infor-
mation content. The fact that a classifier trained on one
dataset can’t be used with data of the other type indicates
that the two datasets convey different information sets,
even if the SG dataset seems a superset of the AMP. As

for the performance of the two deep learning approaches,
we noticed that the key parameter is the size of the
k-mer, because it is directly related to the size of input
representation since the latter is equal to 4X. Especially
for CNN, in fact, from Fig. 7 it is clear the improvement
of the accuracy score as the size of k-mer increases. This
trend is more evident at the genus taxonomic level, where
there are 100 different categories to classify. Moreover,
looking at Fig. 7, from k-mer size = 5 to k-mer size = 6,
the CNN approach has a noticeable boost of performance.
The DBN approach, instead, has a more stable grow-
ing trend (see Fig. 8). That means the generative model
inferred by the DBN can better estimate the statistic of
the input data even for k-mer size below 5. In the case of
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Fig. 8 Accuracy validation of DBN classifier, according to k-mer size. Classification of (a) SG and (b) AMP datasets with DBN architecture

DBN, however, it is important to recall that also the
number of hidden units depends on the value of k, because
we set the number of hidden units to 4%~ for k =
3,4,5 and 4% for k = 6,7. With regards to both compu-
tational approaches, CNN and DBN, we noticed a very
similar trend, above all for large value of k-mer size (6
and 7). Considering, however, that the increase of per-
formances between k=6 and k=7 is shrunk, we did not
further investigated for larger value of k (i.e., 8 and 9),
also taking into account the huge amount of needed
processing time, with input vector of size 65536 and
262144, respectively. Finally, considering the comparison
among the classifiers, our approach based on CNN and
DBN clearly overtakes the scores provided by the RDP

classifier. In particular, with regards to the AMP dataset,
we reached an accuracy score at genus level of about
91% with both networks against the 83% obtained with
RDP. As for the SG dataset, our best result at genus
level is about 85% with CNN, against 80% obtained with
RDP.

In this work, all the experiments have been carried
out using real 16S gene sequences, downloaded from the
RDP database, from which simulated reads have been
generated. We performed that approach in order to val-
idate our classification pipeline but also because, at the
best of our knowledge, at present time there are not any
real metagenomic datasets providing reads labelled with
a taxonomic rank. Without that information, in fact, we
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Table 4 Comparison among classification performances of CNN, DBN and RDP algorithms at varying of k-mer size. for both SG and

AMP datasets
Evaluation of short-reads classification at genus level
Dataset Algorithm K Accuracy Precision Recall F1
mean % std mean % std mean % std mean % std
AMP 3 51.01 0.005 51.40 0.005 50.90 0.005 50.84 0.015
4 77.69 0.004 7791 0.005 77.69 0.005 7757 0.014
CNN 5 88.13 0.005 8838 0.005 88.07 0.006 88.98 0.014
6 90.92 0.005 91.14 0.005 90.91 0.005 90.82 0.009
7 91.33 0.004 91.57 0.004 91.32 0.004 91.18 0.015
3 56.69 0.013 57.88 0.011 56.62 0.013 5556 0.013
4 85.10 0.004 85.47 0.005 85.08 0.004 84.53 0.008
DBN 5 89.82 0.003 90.12 0.004 89.82 0.003 89.63 0.004
[§ 90.55 0.005 90.73 0.005 90.53 0.005 90.45 0.005
7 9137 0.005 91.62 0.005 9137 0.005 91.26 0.005
RDP - 83.84 0.007 8442 0.007 83.57 0.007 83.65 0.007
SG 3 17.02 0.018 1732 0.013 16.53 0.015 16.69 0.006
4 32.98 0.015 3342 0.012 32.59 0.013 32.65 0.005
CNN 5 59.80 0.015 60.34 0.014 59.41 0.015 59.31 0.005
6 80.77 0.009 81.10 0.010 80.41 0.009 80.33 0.005
7 85.50 0.014 85.70 0.014 85.20 0.014 85.11 0.005
3 17.75 0.009 19.80 0.010 17.50 0.009 16.32 0.010
4 54.11 0.007 55.62 0.007 53.67 0.007 53.17 0.007
DBN 5 7144 0.007 7245 0.009 71.07 0.007 70.99 0.008
6 77.85 0.007 7836 0.008 77.53 0.008 7747 0.008
7 81.27 0.002 81.87 0.004 80.92 0.003 80.94 0.002
RDP - 80.38 0.009 80.83 0.008 80.18 0.008 80.09 0.009

are unable to measure the performances of our classifiers
in terms of the main statistical scores introduced in the
previous Sections.

Implementation details

Both CNN and DBN models have been implemented
as Python 2.7 scripts. As for CNN, we used the Keras
library (www.keras.io) with tensorflow backend; as for
DBN,it has been implemented in Tensorflow, adapting
the code available at https://github.com/albertbup/deep-
belief-network. Source code and dataset are available at
https://github.com/IcarPA-TBlab/MetagenomicDC

Conclusions
In this work, we proposed a 16S short-read
sequences classification technique, for the analy-

sis of metagenomic data. The proposed pipeline is
based on k-mer representation and deep learning
architecture, and provide a classification model for
each taxa.

Experimental results confirmed the proposed pipeline
as a valid approach for classifying bacteria sequences
for both type of NGS technologies; for this reason, our
approach could be integrated into the most common tools
for metagenomic analysis. Also, we obtained a better clas-
sification performance compared with the reference clas-
sifier for microbiome analysis, i.e. the RDP classifier, for
all considered taxa (until genus level). In detail, the per-
centage of accuracy reached from our classifier, applied to
AMP sequencing, has an increased score of about eight
percentage points at genus level with both CNN and DBN.
Results showed that there are actual differences in classi-
fication performances by the type of input data analysed,
which are SG and AMP. In detail, the performance of
our classifier applied to AMP technology is, in average,
better than SG. Further investigations will be conducted
trying to characterise the two kinds of networks, CNNs
and DBNS, on special taxa or group of sequences, with the
final goal of combining the two networks to improve the
final classification of metagenome sequences.


https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/IcarPA-TBlab/MetagenomicDC
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Fig. 9 Accuracy validation of CNN, DBN and RDP classifiers, at genus level. Comparison among CNN, DBN and RDP classification algorithms, with

Table 5 Average execution time in seconds for a single fold, obtained for both training and testing models at varying of k value.

Although models training require several seconds, the testing phase is quite fast, even fork = 7

Execution times for training and testing models

K DBN CNN
Train (s) Test (s) Train (s) Test (s)
3 7288913 0.111 686.403 0.240
4 8170.077 0.122 1256.652 0.375
5 11875.716 0.060 3091.721 0.719
6 20346.112 0.053 8021.737 1.506
7 37161.237 0.128 24204.754 3.986
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Additional file 1: Preliminary classification results. Preliminary
classification results obtained training a model with a kind of input data, e.g.
SG, and testing it with the other type of input data, e.g. AMP. (XLSX 9.52 kb)
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