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Abstract

Background: Maize is a leading crop in the modern agricultural industry that accounts for more than 40% grain
production worldwide. THe double haploid technique that uses fewer breeding generations for generating a maize
line has accelerated the pace of development of superior commercial seed varieties and has been transforming the
agricultural industry. In this technique the chromosomes of the haploid seeds are doubled and taken forward in the
process while the diploids marked for elimination. Traditionally, selective visual expression of a molecular marker
within the embryo region of a maize seed has been used to manually discriminate diploids from haploids. Large scale
production of inbred maize lines within the agricultural industry would benefit from the development of computer
vision methods for this discriminatory task. However the variability in the phenotypic expression of the molecular
marker system and the heterogeneity arising out of the maize genotypes and image acquisition have been an
enduring challenge towards such efforts.
Results: In this work, we propose a novel application of a deep convolutional network (DeepSort) for the sorting of
haploid seeds in these realistic settings. Our proposed approach outperforms existing state-of-the-art machine
learning classifiers that uses features based on color, texture and morphology. We demonstrate the network derives
features that can discriminate the embryo regions using the activations of the neurons in the convolutional layers. Our
experiments with different architectures show that the performance decreases with the decrease in the depth of the
layers.
Conclusion: Our proposed method DeepSort based on the convolutional network is robust to the variation in the
phenotypic expression, shape of the corn seeds, and the embryo pose with respect to the camera. In the era of
modern digital agriculture, deep learning and convolutional networks will continue to play an important role in
advancing research and product development within the agricultural industry.

Keywords: Corn, Double haploid induction, Agriculture, Convolutional neural networks, Molecular markers, Deep
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Background
Feeding the growing population amidst shrinking farm
lands across the world requires increases in innovation
and efficiencies in agricultural output through high yield-
ing crops. Maize (aka corn) is a major crop that accounted
for 28.3% harvested acres within US in 2015, with 38,105
million bushels produced across the world in 2015-2016
[1]. Maize breeding programs generate better yielding and
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more predictable hybrid seed varieties by crossing two
distinct inbred lines. Traditional development of inbred
lines, whose copies of genomes are 99% identical, takes
about 6-7 generations of recurrent selfing or crossing.
Double haploid (DH) based induction technology enables
large commercial breeding programs in Europe, North
America and China to efficiently generate homozygous
lines within 2-3 generations of breeding [2]. For exam-
ple, using DH process, Dupont-Pioneer has reported that
they have developed a greater number of inbred lines since
2012 than they had produced in the first 80 years of their
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breeding program. [3]. In addition to the shortening of the
generation time, DH process provides other benefits such
as simplified logistics, efficiency and precision of selec-
tion, accelerated product development, and fulfillment of
DUS (distinctness, uniformity, and stability) requirements
for plant variety protection [2].

Sorting the diploids from the haploids seeds is a criti-
cal step in a DH induction process. Double haploid based
induction uses a dominant anthocyanin color marker or
gene, referred to as R1-Navajo (R1-nj), to distinguish puta-
tive haploid seeds from diploids. This R1-nj marker when
expressed in a particular tissue leads to its purple col-
oration. R1-nj marker is expressed in both the outermost
layer of the maize endosperm (aleurone) as well as the
embryo (scutellum) in diploid maize seeds, whereas in
haploid seeds it is expressed only in the endosperm layer.
Using these visual differences, the most common method
for sorting haploid seed is by a manual inspection pro-
cess [4, 5]. In an agricultural industry setting, hundreds of
thousands of seeds are sorted to separate haploids from
the diploids during every breeding cycle. Manually sorting
these high volumes of haploid/diploid seeds by visual dis-
crimination is both labor intensive and error prone, and
developing automated methods to classify haploids from
diploids is critical.

To our knowledge, within the agricultural indus-
try there have been two automation efforts using the
R1-nj molecular marker system [6, 7]. The primary
advancement of the disclosure [6] can be attributed to
developments in the mechanical handling and image
acquisition; however the image analysis methods are
preliminary (uses thresholding with erosion and fill
morphological operations) and its performance demon-
strated in only 24 seeds. In the patent disclosure [7],
a different mechanical system along with a PC Eye-
bot system (Sightech Vision Systems, Inc.) was imple-
mented for image classification that recovered 38-53%
haploids and 92-98% diploids correctly. However robust
approaches in recovering haploids at industrial scale
are lacking.

Automated sorting of haploid seeds from the diploid
seeds robustly is challenging due to the differences in the
expression of the R1-nj marker in maize seeds from dif-
ferent genetic backgrounds used in DH induction [8, 9],
morphological variations due to incomplete pollination
of corn cobs, and several environmental factors [10, 11].
In addition, variations that naturally arise during real-
time image acquisition in field settings pose a challenge
to the image analysis methods. Researchers have resorted
to developing alternative phenotyping methods based on
oil content [9] and NMR [5]. However, the throughput of
these methods are constrained by multiple image acqui-
sitions [9], and requires expensive equipment as com-
pared with visible range RGB cameras. In this context,

development of robust computer vision methods to enable
automated seed sorting becomes imperative.

Recent developments in deep learning algorithms and
availability of modern powerful GPUs have spurred a rev-
olution in the areas of image classification, speech recog-
nition, and genomics [12]. State-of-the-art performance
was demonstrated in the ImageNet challenge where the
images were classified into a thousand categories [13]
using deep convolutional networks. Convolutional neu-
ral networks (CNN) were initially developed to efficiently
represent images using neural nets with far fewer param-
eters (using local connectivity and weight sharing) and
train them using backpropagation algorithm [14]. CNN
has been widely used for several applications such as
predicting sequence specificities for DNA and RNA bind-
ing proteins [15], chromatin effects of sequence alterna-
tions [16], self driving vehicles, automated phenotyping of
developing C. elegans embryos and connectomics [12].

Applications of convolutional networks are starting to
emerge in agriculture/plant sciences recently. Convolu-
tional networks have been used to recognize paddy field
pests localized using saliency maps [17], identify 44 dif-
ferent plant species using leaf images collected at the
Royal Botanic Gardens, Kew, England [18] and classifi-
cation of forest and agricultural regions in Indian Pines
hyperspectral image dataset [19].

In this work, we propose an application of a convolu-
tional network (DeepSort) to discriminate maize haploids
from diploids using several thousand corn seed images
based on our earlier preliminary work [20]. We demon-
strate that performance of the convolutional network
closely matches the visual classification of the seeds by the
human experts. We also show this performance remains
robust under diverse lighting conditions, seed shapes,
embryo orientation relative to the camera field of view,
and heterogeneous genetic backgrounds; something that
has remained challenging in practice. Using visualizations,
we show that the convolutional network derives infor-
mation that are discriminative of haploids and extracts
features from the embryo regions. Our experiments using
multiple network architectures indicate that the pres-
ence of more layers (i.e. deeper network) contributes to
improved classification accuracy.

Methods
Diploid and haploid images
Corn seeds expressing the R1-nj marker are shown in the
Fig. 1. Haploid seed embryos that receive only the mater-
nal genetic material do not show the purple coloration
from dominant R1-nj marker expression (see Fig. 1b in
the region marked embryo), but diploid seed embryos
that also receive the genetic material from the inducer
carrying the R1-nj marker exhibits purple coloration in
the embryo (shown next to the arrow in Fig. 1a). R1-nj
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Fig. 1 Corn seeds expressing the R1-nj marker in (a) Diploid and (b) Haploid seeds. The marker is only expressed in the diploid embryo as a vertical
dark purple patch indicated by the arrow in (a). Variability in visual indications of marker expression, seed morphology, color and texture, embryo
positioning with respect to camera, and lighting conditions across multiple (c) diploid and (d) haploid seeds

marker expressed in the endosperm of both diploid and
haploid seeds leads to a dark coloration as seen at the bot-
tom of the seed images shown in Figs. 1a & 1b (below
the embryo). We acquired images of 4021 seeds for train-
ing, and 710 seeds for testing the performance of the
automatic seed classification system. A substantial hetero-
geneity in the level of expression of the R1-nj marker, seed
morphology, color and embryo region texture is observed
in our dataset. In addition, image acquisition introduces
further variations such as lighting inconsistencies and
embryo positioning relative to the camera field of view.
Sample images from our dataset that demonstrate this
heterogeneity in both diploids and haploids are shown in
Figs. 1c & 1d respectively.

Our dataset consists of 4731 RGB images of corn seeds
(3779 diploids, 952 haploids) obtained from multiple
proprietary inbred lines. Seeds were manually classified
into haploid and diploid categories using high resolution
images by a human expert. The images were acquired
under realistic settings across several days and different
genetic populations using uEye high-speed cameras. The

image acquisition apparatus returns two images; approx-
imately half the images do not depict the embryo side
and were discarded. The raw 640× 480 pixel images were
pre-processed using basic techniques (cropping, center-
ing and resizing). Each seed was repositioned so that it’s
pixel-based center of mass was located in the middle of
64× 64 cropped image and having its tip oriented upward.
These 64× 64 RGB images were used for training the
convolutional network and testing its performance.

Convolutional network
We adopt an exemplar CNN architecture for the clas-
sification of haploid and diploid seeds shown in Fig. 2
(termed DeepSort). It comprises of the following layers:
two convolutional layers each followed by max-pooling
and local-response-normalization layers, two densely
connected layers and an output layer. We first describe
each of these components briefly.

We start with description of the convolutional layer. For-
mally, let the input to a convolutional layer be represented
by the tensor X ∈ R

N×M×C . Let a convolutional layer be

Fig. 2 Schematic architecture of DeepSort Convolution network “Arch-1” used for classifying maize seeds. Input maize images are convolved with
16 filter kernels in the first convolutional layer followed by pooling and normalization layers. Outputs of these operations are again convolved with
16 kernels in the second convolutional followed by pooling, normalization and two fully connected layers



Veeramani et al. BMC Bioinformatics 2018, 19(Suppl 9):289 Page 4 of 121

comprised of D kernels. Each kernel (or weight) is a tensor,
W(l) ∈ R

d×d×C , {l = 1 . . . D} that applies a 2-dimensional
convolution operation on d × d patches in each of the X··k
plane (of dimension N × M) of the input tensor X, and
with stride s. For example, if X represent the input image
tensor, X··k ∈ R

N×M, {k = 1 . . . C} represents a N × M
pixel image across a color channel k, with C = 3 such
color channels (RGB). The convolution is followed by a
non-linear activation function f (z) = max(0, z) (Rectifier
Linear Unit or ReLU). This results in neuronal activations
of the form f

(∑C
k=1

(
W (l) ◦ Xi:i+d−1,j:j+d−1,k

) + b
)

∈ R.
Here “◦” denotes the Hadamard product, b ∈ R is a
bias term; Xi:i+d−1,j:j+d−1,k represents the d × d subre-
gion on 2-dimensional matrix X··k ; and W (l) = W(l)

··k , a
d × d slice of the tensor. Convolutions over the entire
input tensor X using stride size s and padding p pro-

duces activation matrix Al ∈ R

(
N−d+2·p

s +1
)
×

(
M−d+2·p

s +1
)
,

which represents the activations of all the neurons in a
slice l, {l = 1 . . . D} that share the weight tensor W(l).
Each neuron in a convolutional layer is connected only
to a local region (defined by the convolution window) of
the input spatial volume, but to the full depth C of the
input tensor. Repeating this pattern for l = 1 . . . D, all
the neurons located on the similar region of a plane but
along the depth D look at the same region of the input
tensor through different kernels W(l). A convolutional
layer is followed by max-pooling and local-response-
normalization layers. The max-pooling layer downsam-
ples the input tensor by partitioning it into a set of non-
overlapping sub-regions and outputs the maximum value
of each such sub-region. The normalization layer mimics
lateral inhibition in real neurons and performs damp-
ing of neuronal responses that are uniformly large in a
local neighborhood, while boosting neuron responses that
are moderately strong in a local neighborhood of weaker
responses [13].

In our primary design (called “Arch-1”, see Fig. 2), we
have D=16 kernels in the first convolutional layer looking
at RGB images (i.e tensor X ∈ R

N×M×3). This is followed
by max pooling and normalization layers. The first set of
layers is followed by the second convolution, normaliza-
tion and max pooling layers, in that order. The second
convolutional layer also has D=16 kernels and processes
as input, a tensor that is the output from the preced-
ing normalization layer. For both our convolutional layers,
d = 5, s = 1 and p = 2, other kernel receptive field
patch sizes (d = 3, 7) provided similar results. These
layers are followed by 2 fully connected layers (with 192
and 96 neurons respectively) that are connected to all the
neurons from the preceding layer, which is followed by
an output layer having 2 neurons that represent the hap-
loid and diploid classes. Our initial design is motivated
by the network used for classifying cifar10 data of natural

images (https://code.google.com/p/cuda-convnet/). The
choice of the number of kernels for classifying haploids
from diploids were four times smaller than the cifar10 net-
work that classifies images into 10 categories (roughly 5
times more classes than our problem).

We further experimented with different architectures
where the number of kernels in the convolutional lay-
ers and neurons in fully connected layers were reduced
by half for every subsequent architecture. We considered
two such architectures, followed by an architecture that
reduced the number the layers. Briefly the architectures
are : (1) “Arch-2” : 8 kernels in each of the two convolu-
tional layers, 96 and 48 neurons in first and second fully
connected layers respectively; (2) “Arch-3” : 4 kernels in
each of the convolutional layers, 48 and 24 neurons in first
and second fully connected layers respectively; and (3)
“Arch-4” : a single convolutional layer with 4 kernels and a
fully connected layer with 24 neurons. In all architectures,
each convolutional layer is followed by max-pooling and
local-response-normalization layers similar to “Arch-1”.

Convolutional networks were implemented with the
library tensorflow version 0.8.0 (https://www.tensorflow.
org/) and K80 Nvidia GPUs. During training, parameter
values (such initial learning rate (0.1), learning rate decay
factor (0.1), number of epochs per decay(350), moving
average decay (0.999)), images transformations (approxi-
mate whitening), and data augmentation distortions (ran-
dom flip, image brightness and contrast distortions) were
used. Furthermore, we used the strategies that have been
reported to reduce model overfitting during training and
improve performances of convolutional networks [13],
such as data augmentation by introducing transforma-
tions to the training data, and moving average weight
decay. We used a batch size of 64 samples, and training
was carried out for 400,000 iterations ensuring the algo-
rithm was not trapped in local optima with unfavorable
classification accuracy.

Results and discussion
Classification performance of deep convolutional network
We use 4021 randomly chosen images of corn seeds (809
haploids and 3212 diploids) for training and 710 images
(143 haploids and 567 diploids) for testing. The training
and test datasets contained 20% haploids. The training
dataset was further split in 5-folds to assess the perfor-
mance of different network architectures (discussed in
“Architectures of deep convolutional networks” section).

We also compared the performance of the convolutional
network with an image analysis pipeline that uses feature
extraction followed by classification, an approach similar
to one used by [21] to classify pepper seed images. We
extracted Haralick texture features [22], local binary pat-
terns, zernike moments, and shape features using MAT-
LAB ‘regionprops’ (total 84 features).

https://code.google.com/p/cuda-convnet/
https://www.tensorflow.org/
https://www.tensorflow.org/
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Using these features we experimented with several
classifiers: Support Vector Machine (SVM), Random
Forest (RF), and Logistic Regression (LR) [23]. In our
experiments, Haralick texture features were found to
better discriminate haploids from diploids as compared
to morphology, color and shape features. Therefore we
also report the performances of the classifiers using only
13 Haralick features in addition to using all the features
(see Table 1). Image handling and feature extraction
were performed using the Mahotas 1.4 library package
[24] and MATLAB, and the classifiers was imple-
mented using scikit-learn library [25]. For each classifier,
the respective parameters in scikit-learn terminology
(gamma and C for SVM with a radial basis kernel;
n_estimators, min_samples_split, min_samples_leaf for
RF; regularization parameter C for LR), were chosen
using a grid search with 5-fold cross-validation (CV).

The performance results are summarized in Table 1 . We
observe DeepSort is able to classify the training images
perfectly which shows enough flexibility in its architec-
ture to learn the heterogeneity of the samples in training
dataset. In our experiments using the test dataset, we
observe DeepSort outperforms all other machine learning
classifiers, and attained a classification accuracy of 0.968.
Among the other methods compared, SVM achieved the
highest classification accuracy (0.876) using Haralick fea-
tures; 9.2% lesser than DeepSort. We discuss only this
comparitive method in the next sections. We observe the
test and cross-validation accuracies of compared meth-
ods to be lacking even though their training accuracies
were high (RF Haralick, all features; SVM all features),
demonstrating their inability to generalize. Further, we
also observed the SVM classifier to have a large num-
ber of support vectors (1390 with full training dataset and
Haralick features).

We examined the confusion matrix of DeepSort and
the best performing machine learning classifier (SVM
with Haralick features) to understand the performance
of these methods on each category individually using
the test data set (See Table 2). Diagonal values of the
confusion matrix represent the correct classification of
haploids and diploids into their appropriate categories,
and off-diagonals represent mis-classifications. DeepSort

Table 1 Comparison of classification accuracies of DeepSort and
other classifiers. Other classifiers were tested with all features
described in text (values within brackets), and using only Haralick
texture features (values outside brackets). CV indicates 5-fold
cross-validation

DeepSort Random Forest SVM Logistic Reg

CV 0.961 0.840 (0.823) 0.857 (0.836) 0.749 (0.777)

Train 1.000 1.000 (0.997) 0.911 (0.994) 0.751 (0.786)

Test 0.968 0.845 (0.824) 0.876 (0.839) 0.775 (0.772)

Table 2 Confusion Matrix for DeepSort and SVM

DeepSort SVM

Pred-Diploid Pred-Haploid Pred-Diploid Pred-Haploid

True-Diploid 556 11 545 22

True-Haploid 12 131 66 77

Pred: Predicted label; True: Actual label; Using test data (143 haploids, 567 diploids)

misclassified 11 diploid images as haploids, and 12 haploid
images as diploids, while SVM misclassified 22 diploid
images as haploids and 66 haploid images as diploids. We
observe SVM is biased towards classifying haploid images
as diploids, possibly representing the distribution of the
diploid images in the dataset. Our attempts to compen-
sate for this class bias in the SVM (using ‘balanced’ setting
for class_weight parameter in Scikit-learn) decreased the
training error but led to a larger cross-validation error
(results not shown).

Visualizing the convolutional network neurons
We conducted visualizations of the kernels and neuronal
activations of the two convolutional layers in order to
understand the features learnt by the network in achieving
superior classification performance. Understanding the
features learned by deep neural networks, and how these
features are effectively combined towards superior classi-
fication is complex (as these networks often have several
hundreds of thousands of parameters), and is an active
field of ongoing research [26, 27]. Visualization of the neu-
ronal activations in a convolution layer, weight tensors and
bias parameters; image regions/features that lead to maxi-
mal neuronal activations; and receptive fields of individual
neurons are some of the current techniques employed
towards this goal [27]. In our work, we chose to focus on
visualizations of the neuronal activations of the first two
convolutional layers, as the structure of the input images
are somewhat preserved in these two layers. We show that
these visualizations help to gain key insights into the func-
tions performed by the convolutional layers in extracting
discriminatory seed features.

Figure 3 shows the activations of the neurons in the first
two convolutional layers to an input of 30 randomly cho-
sen haploid and diploid seeds from our test dataset (i.e.
15 of each category, and denoted by columns numbered
1-15). The activations of first convolutional layer neurons
to diploid and haploid seeds are shown in Figs. 3a and 3b,
respectively. An image(i, j) in the grid of each subfigure a-d
of Fig. 3 denotes activations of all neurons that share a ker-
nel i on an input from the seed image in column j shown
at the top. Visually comparing the images in haploid and
diploid categories across a row of Fig. 3 (a & b or c & d)
allows one to identify kernels that are discriminatory and
the operations performed by them. The 16 kernels in the
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Fig. 3 Figure (a, b) shows the activations of all neurons in the convolutional layer 1 (each row corresponds to the activations that share a kernel)
across images of 15 random diploid (a) and haploid (b) seeds (each column for a seed shown at the top row) from the test data set. Similar to figures
(a, b), figures (c, d) shows the activations of neurons in the convolutional layer 2 across the same set of seeds. Kernels in the convolutional layers 1
and 2 perform various feature extractions and their complex compositions. For example, kernels 3 of first layer segments the seed from the
background, and kernel 5 of the second layer provides discriminatory features (for other examples see text). Figure (e) shows visualizations of 16
kernels from the convolutional layer 1

first convolutional layer each looking at 5 × 5 × 3 segment
of an input RGB image are shown in Fig. 3e. Kernels in the
second layer, looking at an input tensor 5 × 5 × 16 with a
depth larger than three, are not shown.

We observe several interesting patterns. The neurons
in the first layer perform image pre-processing opera-
tions, while those in the second layer synthesize higher
level features. Looking at the activations of neurons in the

first convolution layer in Figs. 3a and 3b, we observe ker-
nels 2, 3, 8, 11, 12, 14, 15 to broadly segment the seed
from the background, however with differences near the
seed boundaries and output intensity. We also looked at
the corresponding kernel tensors of these neurons, and
observe them to be different in terms of their magnitudes,
patterns within a given channel, and across the differ-
ent RGB channels (see Fig. 3e), possibly contributing to
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the robustness of performance across the heterogeneous
seeds. Although some kernels are seen as dark patches
in Fig. 3e, they are not uniformly zero as seen from the
raw values. Several other kernels in the first convolution
layer (kernels 4-7,9-10) extract features related to seed tex-
ture, while kernel 1 extracts texture in endosperm region
but not in the embryo. Kernel 13 serves to perform an
intensity based segmentation, while kernel 10 accentuates
embryo regions is diploid seeds (and in some haploids).

The second convolutional layer kernels extract complex
features that do not reflect the exact shape of the seeds
or embryo features. Rather these features encode more
abstract input concepts combining features extracted
from the max-pooled and normalized output of the first
convolutional layer. We notice that fewer neurons in the
second convolutional layer are active as observed by fewer
white pixels in Figs. 3c and 3d. Strikingly, activations from
the kernels 5 and 9 are already discriminatory of most
diploid and haploid seeds, roughly highlighting the pur-
ple dark regions in diploid seeds. Kernels 12 and to some
extent 15 marks the brighter regions of the embryo in the
diploid seeds with two vertical patches. Information from
these activations are further nonlinearly combined by the
fully connected layers to achieve robust performance.

Architectures of deep convolutional networks
We explored the effect of the architecture on the perfor-
mance of the convolutional network in classifying haploid
seeds from diploids by changing the number of kernels
in the convolutional layer, neurons in the fully connected
layer, and depth (i.e, number of layers) of the network
(see Table 3). We considered two different architectures
(“Arch-2” and “Arch-3”) with the same number of lay-
ers as “Arch-1”, but with reduced number of kernels and
neurons in the fully connected layer. “Arch-2” had eight
kernels in the first and second convolutional layers, and
“Arch-3” had four kernels in the convolutional layers (see
“Convolutional network” section for the number of ker-
nels/neurons, and Table 3 for the number of parameters in
each layer). Going from “Arch-1” to “Arch-3”, the number
of parameters decreases roughly four fold for each step.
We also considered a shallower architecture (“Arch-4”)
with a single convolutional and fully connected layer.

We observe that the performance of the “Arch-2” (0.968
on test set) is similar to that of “Arch-1”, whereas in
“Arch-3” the accuracy is reduced by 0.027 (or roughly 15
more test images were misclassified). We also observe
that the training accuracy goes down by 0.008 (roughly
32 more training images were wrongly classified). We
further reduced a convolutional and a fully connected
layer and obtained “Arch-4” to assess the impact of hav-
ing a shallower network. The performance on test data
dropped to 0.935 in “Arch-4” (a slight reduction as com-
pared to “Arch-3”, but lesser than “Arch-2” by 0.033),
even though the total number of parameters is more than
“Arch-3” (since “Conv1” of “Arch-4” has more neurons
than “Conv2” of “Arch-3”). Although “Arch-1” displayed
similar classification accuracy as “Arch-2” (with four times
more parameters than “Arch-2”), future experiments have
to be performed to study if more trainable parameters
enable “Arch-1” to be more robust to unseen variations
and more heterogeneity.

Conclusion
Our experiments provide evidence to the usefulness of
DeepSort in discriminating haploids from diploid seeds in
the double haploid induction process, and to its robust-
ness amidst variations arising from biological factors and
image acquisition. We establish such robustness using
thousands of seed images obtained in an industrial sce-
nario from different genetic backgrounds. Our visualiza-
tions indicate that embryo’s features are being extracted
by the network, which may be used further to classify
the seeds, as are carried out manually by agricultural
field workers. We further observe that deeper architec-
tures provide better classification accuracies as compared
to shallower architectures. In the future, we intend to
develop more general deep networks, which can classify
haploids from diploids using two un-identified images
with one showing the embryo and other not showing it,
and with minimal pre-processing.

Convolutional networks and other deep learning meth-
ods, though popular in several commercial applications
(e-commerce, social networking, retail, automotive, etc.),
have only began to find applications within agriculture
recently. The approach we use to classify corn seed images

Table 3 Effect of CNN architecture on classification accuracy (cols. 2,3) and number of parameters per layer (cols. 4-9) in each
architecture

Method Train Test Conv1 Conv2 Full1 Full2 Output Total

Arch-1 1.000 0.968 1216 6416 786,624 18,528 194 812,978

Arch-2 1.000 0.968 608 1608 196,704 4656 98 203,674

Arch-3 0.992 0.941 304 404 49,200 1176 50 51,134

Arch-4 0.989 0.935 304 - 98,328 - 50 98,682

Conv[1/2]: [first/second] convolution layers, Full[1/2] : [first/second] fully connected layers, output: final softmax layer
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into haploid or diploid categories, could be extended to
other agricultural applications. A few of these include
sorting seed images of crops such as soybean, canola,
etc. into various categories (e.g. high oil vs low oil, high-
moisture vs low-moisture, deformed vs non-deformed,
etc.), detecting pest infestations using remote sensing
images, estimating plant vigor using field images from
drones, assigning diseased status to plants from leaf
images, insect mortality rate estimation from bioassay
images, etc. The combination of different deep network
architectures with a variety of sensors (such as multispec-
tral, infra-red, MRI, etc.) offers enormous possibilities,
and will contribute to next generation agricultural phe-
notyping. In addition, modern high-throughput technolo-
gies has enabled agricultural industries to collect large
scale molecular datasets. Deep networks can be applied
to several such agricultural biotech predictive applications
using biological sequences (DNA, RNA, proteins etc.),
genetic (SNPs other genetic variations etc.), chemical,
environmental and phenotypic data.
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