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Abstract

Background: A significant number of adverse drug reactions is caused by unexpected Drug-drug interactions
(DDIs). The identification of DDIs becomes crucial before the co-prescription of multiple drugs is made. Such a task
in clinics or in drug discovery usually requires high costs and numerous limitations, while computational approaches
are able to predict potential DDIs effectively by utilizing diverse drug attributes (e.g. side effects). Nevertheless, they’re
incapable when required to predict enhancive and degressive DDIs, which change increasingly and decreasingly the
pharmacological behavior of interacting drugs respectively. The pharmacological change of DDIs is one of the most
important factors when making a multi-drug prescription.

Results: In this work, we design a Triple Matrix Factorization-based Unified Framework (TMFUF) to address the above
issue. By leveraging a group of side effect entries of drugs, TMFUF achieves the inspiring result (AUC = 0.842 and AUPR
= 0.526) in the case of conventional DDI prediction under the traditional screening task. In the comparison with two
state-of-the-art approaches, TMFUF demonstrates it superiority by ~ 7% and ~ 20% improvement in terms of AUC and
AUPR respectively. More importantly, TMFUF shows its ability in the comprehensive DDI prediction under different
screening tasks. Finally, a utilization TMFUF reveals the significant pairs of side effects, which contribute to form
enhancive and degressive DDIs, for further clinical validation.

Conclusions: The proposed TMFUF is first capable to predict both conventional binary DDIs and comprehensive
DDIs such that it captures the pharmacological changes caused by DDIs. Furthermore, it provides a unified
solution of DDI prediction for two screening scenarios, which involves newly given drugs having no prior
interaction. Another advantage is its ability to indicate how significantly the pairs of drug features contribute
to form DDIs.
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Background
Two or more drugs in a joint prescription would influ-
ence each other in terms of pharmacological behavior
[1]. This kind of influence, termed as Drug-Drug Inter-
action (DDI), could reduce efficacy, induce unexpected
toxicities or other adverse drug reactions. Unidentified
DDIs would generate unsafe treatments and even medi-
cation errors for those patients under the treatment with
multi-drug medications [2–5].
Since the number of unidentified DDIs is nearly pro-

portional to the number of newly approved drugs to the
power of 2, the broadcasting of DDI-induced adverse ef-
fects across medications cannot be negligible. Therefore,
DDI identification becomes an urgent need before clin-
ical medications are administered. However, traditionally
based on cytochrome P450 testing [6] or transporter-as-
sociated interactions [7], the approaches in clinical trials
have usually a burden of high cost, long duration and
even animal welfare considerations [8], and also face un-
avoidable challenges, such as inadequate participants
and numerous drug pairs to be screened. Consequently,
a few DDIs can be identified during drug discovery and
development, while most of them are reported in clinics
after the corresponding drugs enter the market.
Computational approaches have been developing as a

promising assistant of biological/chemical experiments.
Both pharmacological research and pharmacy companies
pay more attention to them recently [9, 10], because
they can rapidly infer potential DDIs among a large
number of drug pairs. Current computational ap-
proaches can be roughly grouped as text mining-based
and machine learning-based approaches. The former de-
tects approved DDIs from diverse text sources [8], such
as scientific literature [11, 12], the Adverse Event
Reporting System of FDA (http://www.fda.gov) and elec-
tronic medical records [13]. However, these approaches
largely depend on the post-market evidence, such that
they cannot alert potential DDIs before multi-drug pre-
scriptions are made. In contrast, the latter can provide
such an alert by leveraging the techniques of machine
learning (e.g. network recommendation-based [8], Naïve
similarity-based approach [14], classification-based [15]).
These approaches extract drug features or similarities
based on diverse pre-marketed drug properties, such as
chemical structures [14], hierarchical classification codes
[15], targets [16] and side effects [8]. To the best of our
knowledge, the great majority of existing machine
learning-based approaches are only able to predict how
likely two drugs interact with each other (named as con-
ventional binary prediction). However, two interacting
drugs definitely influence each other in terms of
pharmacological response in vivo.
It is more significant to identify whether DDIs in-

crease or decrease the behaviors of the interacting

drugs in many cases, such as optimizing patient care,
establishing drug dosages and finding drug resistance in
multi-drug treatments [17]. For two drugs interacting
with each other, the occurrence of their interaction
would increase or decrease their serum concentration,
which is the pharmacological index of measuring the
amount of a drug in the pharmacokinetic circulation
[18]. For example, when Cyclosporine (who’s DrugBank
Id is DB00091) is taken with Ticagrelor (DB08816) to-
gether, their interaction would increase their serum
concentration. While taken with Vincristine (DB00541),
the interaction would decrease their serum concentra-
tion. Briefly, the first case of DDI is named as an
enhancive DDI and the second one is termed as a de-
gressive DDI in the following texts.
In summary, the existing machine learning-based ap-

proaches were developed for conventional binary DDIs
only, but not for enhancive and degressive DDIs. More-
over, although these approaches can predict the interac-
tions between the drugs having known DDIs and the
new drugs having none of existing DDI, they cannot
predict the interactions among new drugs. This predic-
tion task is important and helpful to reveal the under-
lying mechanism of forming DDIs [19].
To address abovementioned issues, this work proposes

a Unified Framework of DDI Prediction based on Triple
Matrix Factorization (TMFUF). The remaining texts are
organized as follows. Section Materials and Method in-
troduces the collection of comprehensive DDIs, the
problems of both conventional and comprehensive DDI
prediction, the design of our TMFUF, and appropriate
cross-validation schemes with respect to different
screening scenarios. Section Experiment describes the
preparation of DDI prediction, comparison with former
approaches in the conventional DDI prediction, and pre-
dicting performance of TMFUF under different screen-
ing scenarios for both binary and comprehensive
prediction. Finally, the last section draws our conclusion.

Methods
Dataset
After searching DrugBank [20], we first acquired 2329
approved small-molecular drugs. Among them, we then
removed a set of drugs, which have no DDI entry in
DrugBank or have no off-label side effect record in OFF-
SIDES [21]. Last, we obtained a set of 603 drugs, of
which each drug has at least one DDI and at least one
off-label side effect record. Totally, the DDIs among
those 603 drugs contains 24,114 DDIs, including 18,710
enhancive DDIs (EnI) and 5404 degressive DDIs (DeI).
Moreover, the set of side effects with regard to those 603
drugs finally contains 9149 unique side effect entries,
such that each drug can be encoded into a 9149-
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dimensional feature vector. See also the next section for
technical details.
Moreover, we represent these DDIs as a network, of

which nodes are drugs and edges are DDI and then
summarize the fundamental properties of the DDI net-
work (Table 1).

Problem formulation of DDI prediction
Denote D = {di}, i = 1, 2, …, m as a set of m approved
drugs which have known DDIs, and Du = {dj}, j = 1, 2, …,
n as n newly-given drugs, which have no prior DDIs.
The interactions among m approved drugs are organized
into an m ×m symmetric interaction matrix Am ×m

= {aij}. From the point of view of graph theory, it is the
adjacent matrix of a DDI network. In a network of con-
ventional binary DDIs, aij ∈ {0, 1}, where aij = 1 if di in-
teracts with dj, and aij = 0 otherwise. For the
comprehensive DDI, aij ∈ {−1, 0, +1}, where aij = + 1 in-
dicates an enhancive DDI, aij = − 1 indicates a degressive
DDI, and aij = 0 indicates no interaction between di and
dj respectively. The conventional binary DDI matrix Ab

is just a special case of the comprehensive DDI matrix A
since it can be generated by Ab = Binary(A).
Side effects are selected to characterize these drugs,

including the approved drugs and the newly-given
drugs. According to the clinical occurrence of side
effects, each drug di is characterized by a high-dimen-
sional feature vector fi = [f1, f2,…, fk,…, fp], where fk =
1 or 0 indicates whether the k-th specific entry of
side effect is observed or not. The feature vectors of
the drugs in D and Du are sequentially stacked as an

m × p feature matrix Fm × p and an n × p feature
matrix Fn × p respectively.
For short, a known/approved drug is referred to as

the drug in D and a new drug is referred to as the
drug, which has no known interaction. This paper
considers on two screening scenarios involving new
drugs (Fig. 1). Their corresponding predicting tasks
are defined as follows. The first task (T1) infers the
potential interactions between known drugs and new
drugs (e.g. d4 and dx in Fig. 1) while the second one
(T2) infers the potential interactions among new
drugs (e.g. dx and dy in Fig. 1). Both of them are re-
quired to predict how likely the potential interactions
involving new drugs are enhancive or degressive.

Triple matrix factorization and unified predicting model
Since new drugs are isolated nodes in the DDI network
(Fig. 1), we cannot deduce their potential interactions
by only their topological information. Thus, their add-
itional information (e.g. side effects) is needed. We first
extract features based on it and then train a supervised
model of DDI prediction.
The underlying idea of the proposed model is to con-

nect the features of known drugs in D with their DDI
network topology in a certain way. We model such a
connection as a bi-linear regression, which can be rep-
resented as a triple matrix factorization (TMF),

A ¼ FΘF0; ð1Þ

where A is the adjacent matrix of a DDI network, F

Table 1 Statistics of comprehensive DDI dataset

Property Entries Value

Global Number of Drugs 603

Number of Interactions 24,114

Number of EnI 18,710

Number of DeI 5404

Drug Degree Average Degree of Drug 79.98

Median Degree of Drug 65

Max. Degree of Drug 310

Min. Degree of Drug 1

Drug EnI Degree Average EnI Degree 62.06

Median EnI Degree 47

Max. EnI Degree 242

Min. EnI Degree 0

Drug DeI Degree Average DeI Degree 17.92

Median DeI Degree 9

Max DeI Degree 219

Min DeI Degree 0

Fig. 1 Illustration of predicting tasks. Drugs in DDI network are
represented as capsule-like nodes. Known drugs are numbered from
d1 to d7 and their interactions are denoted by the solid lines.
Enhancive interactions and degressive interactions are highlighted
by red lines and blue lines respectively. Two newly given drugs are
the isolated nodes, which are labeled by dx and dy, and are filled by
yellow and green respectively. Two types of predicting tasks, tagged
by ‘T1’ and ‘T2’, are indicated by dotted lines. T1 predicts how likely
dx interacts with those known drugs, while T2 predicts how likely dx
interacts with dy. Both of them predict whether these potential
interactions increase or decrease the pharmacological behaviors of
these interacting drugs
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denotes the feature matrix of the drugs, and the symmet-
ric projection matrix Θ plays a role of connecting the fea-
tures of drugs to the interactions between drugs. Each
entry θrs in Θ indicates how well the drug feature pair (fr,
fs) contributes to form an enhancive or a degressive inter-
action. To simplify mathematical symbols in formulas, the
apostrophe on “F” in Formula (1) indicates the transpose
operator on it. The subsequent formulas in this paper
adopt the same notation.
Nevertheless, Formula (1) cannot be solved by Θ

= (F)−1A(F′)−1 directly because of three aspects. First,
the inverse matrix of F doesn’t exist when p≫m. Sec-
ondly, there exists the multi-collinearity between the
columns in F because the feature entries may not be in-
dependent to each other. Thirdly, it is rare to meet an A

of full-rank. Moreover, we may solve it directly by Θ�

¼ arg min kA−FdΘF0dk2. However, it is very difficult to
estimate p × p entries in Θ when p is large (here p =
9149). Thus, we propose a new approach to solve Θ.
We suppose that there exists a low-dimensional latent

feature space (interaction space), in which each drug is
represented by a latent feature vector and the inner prod-
ucts between drugs are positively correlated with their
interactivity. In other words, two drugs possibly form an
interaction if they are near to each other and vice versa.
Moreover, we also assume that the latent features of the
drugs are related to their observed features of drugs.
Therefore, the solution of Θ can be achieved as follows

A�
d ¼ arg min A−AdA0

d

�
�

�
�2

B� ¼ arg min A�
d−FB

�
�

�
�
2 ;

Θ� ¼ B� B�ð Þ0
ð2Þ

where the first item in the formula reflects the latent
space by matrix factorization, the second one builds the
bridge between the observed feature space and the latent
feature space of drugs. In detail, Ad is the m × r latent
interaction matrix, of which each row represents the fea-
ture vector of a drug in the latent space. Considering the
symmetry of A, we obtain Ad by singular value decom-
position (SVD) as follows,

A ¼ UΣU0 ¼ U
ffiffiffiffi

Σ
p ffiffiffiffiffi

Σ0p
U0 ¼ AdA0

d: ð3Þ

The p × r regression coefficient matrix,B, accounts for
the regression between Ad and F. The parameter r de-
notes A's rank, which satisfies r <m and reflects the
topological complexity of DDI network. So far, we only
need to estimate p × r entries in B but not p × p entries
in Θ. Partial Least Square Regression is adopted to solve
B, because of m≪ p and the multi-collinearity between
feature columns (see also the next section).

After solving Θ∗, we derive the predicting model for
both T1 and T2 from TMF in a Unified Framework
(TMFUF) as follows.

Ax;D ¼ FxΘ
�F0;Ax;y ¼ FxΘ

�F0y; ð4Þ

where F is the m × p matrix feature matrix of known
drugs, Fx and Fy are the u × p feature matrix of u new
drugs {dx} and the v × p feature matrix of v new drugs {dy}
respectively. In addition, Ax,D is the u ×m confidence
matrix, of which each entry ax, i indicates how possibly a
new drug dx interacts with a known drug di ∈D. Ax,y is
the u × v confidence matrix, of which each entry ax, y indi-
cates how possibly dx interacts with another new drug dy.
The signs of the entries in both of two confidence matri-
ces indicate types of comprehensive DDIs, enhancive or
degressive respectively. Their absolute values are just con-
fidences scores. The larger they are, the more likely they
are interactions. Both the training phase and the predict-
ing model are illustrated in Fig. 2.

Partial Least Square regression
Linear regression can detect the linear relations between
two groups of variables (the predictor Xm × p and the re-
sponse Ym × r) with respect to m observations. In this
context, we regard drugs as observations, F as their pre-
dictor matrix and Ad as their response matrix to solve
Ad ≈ FB. See also the second item in Formula 2.
Nevertheless, the standard linear regression fails to

solve the linear regression model between F and Ad

due to the following factors. First, the number of pre-
dictors p is significantly greater than that of observa-
tions m. Specifically, our dataset contains 603 drugs, of
which each is represented as a 9149-dimensional Bool-
ean vector of side effect occurrence (9149>> 603). Sec-
ondly, there is multicollinearity among p columns in F
because some of side effects are highly correlated in
terms of the occurrence of side effects (e.g. ‘anaemic
hypoxia’ and ‘placental dysplasia’; ‘salivary gland fis-
tula’ and ‘alveolitis necrotising’).
Multivariate Partial Least-Squares Regression (PLSR)

is able to overcome this obstacle by mapping both
the predictor and the response to a new latent space.
Its way to find a linear regression model can be
analogue to principal components analysis. Thus, we
leverage PLSR to solve the second item in Formula 2.
We adopt SIMPLS algorithm to obtain the general
underlying model of PLSR since it has only one par-
ameter (i.e. the number of latent factors) to be tuned.

Cross validation
K-fold Cross-validation (K-CV) is one of standard ap-
proaches to evaluate the performance of algorithms in
machine learning. As former approaches mentioned [19,
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22–25], K-CV should be elaborated to avoid over-opti-
mistic results in the case of predicting potential DDIs
for new drugs(having no known interaction). Thus, we
design two K-CV schemes, CV1 and CV2, when asses-
sing DDI prediction tasks, which are denoted as T1 and
T2 respectively (see also Fig. 1).
CV1 assesses the prediction that new drugs interact with

known drugs (T1), while CV2 assesses the prediction that
some new drugs interact with other new drugs (T2). Both
CV1 and CV2 have several same steps as those in the
regular K-CV. The whole dataset of drugs is randomly
partitioned into K subsets, of which each contains an ap-
proximately equal number of drugs. The drugs in one of K
subsets are chosen as the testing drugs and all the drugs in
the remaining K-1 subsets are taken as the training drugs.
Remarkably, both CV1 and CV2 regard drug pairs

but not drugs as samples. They have in common is
that the drug pairs consisting of only the training
drugs are selected as the training samples, while their
difference is the selection of the testing samples.

� In each round of CV1, the testing samples are the
drug pairs between the testing drugs and the training
drugs, because their labels should be blind to the
training phase. Such a selection of the testing samples
reflects that the testing drugs (imitating new drugs)
have no prior interaction with any of the training
drugs. CV1 repeats the training and the testing K
times by taking the drugs in each subset as the testing
drugs in turn, and it averages the predicting
performances in K rounds as its final performance.

� In each round of CV2, the testing samples are only
the drug pairs among the testing drugs and their

labels are blind to the training phase as well.
Especially, the drug pairs between the testing
drugs and the training drugs are rejected in the
training phase, because they contain the information
about the testing samples in CV2 and also discarded
in the testing phase because they are the testing
samples in CV1. Each round of CV2 take two subsets
of drugs to label the testing drug pairs at one time.
When these two subsets are same, these are K cases,
which are complementary to those of CV1.When
they are different to each other, there are K× (K-1)/2
cases. Totally, CV2 contains K + K× (K-1)/2 = K×(K +
1)/2 rounds and its final performance is also the
average of the predicting performance of these
rounds.

To illustrate both CV1 and CV2, we show a toy case
containing nine drugs (Fig. 3). To perform the cross val-
idation, they’re first randomly shuffled and renumbered
in ascending order. Then we perform the sampling for
3-fold cross validation sequentially.
In CV1 (Fig. 3a), we split the drugs into three exclusive

groups, of which each is sampled as the testing drugs and
the remaining two groups are sampled as the training
drugs in turn. Consequently, CV1 performs C1

K ¼ K ¼ 3
rounds of CV. For example, in the second round of CV1,
there are six training drugs (labeled as d1, d2, d3, d7, d8
and d9) and three testing drugs (labeled as d4, d5 and d6).
A similar separation of training and testing drugs can be
found in two other rounds of CV1. In Fig. 3a, the training
interactions among the training drugs are denoted by
white cells and used to build the predicting model, while

Fig. 2 Supervised model of TMFUF. In the training phase, both A and F are used to calculate the symmetric projection matrix Θ. In the predicting
model, the feature vectors and the projection matrix Θ are used to deduce potential DDIs for T1 and T2
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the testing interactions between the set of the testing
drugs and the set of the training drugs are denoted by yel-
low cells in DDI adjacent matrix. Black cells are blind to
both training and testing in CV1. Totally, CV1 contains
three rounds of testing.
Being stricter than CV1, CV2 contains two kinds of

drug sampling, named within-group and between-group
samplings. In the within-group sampling of CV2 (Fig.
3b), we also split the drugs into three groups, of which
each is sampled as the testing drugs and the other two
groups are sampled as the training drugs in turn. Like-
wise, the within-group sampling performs C1

K ¼ K ¼ 3
rounds of CV. Until here, the procedure is exactly same
as that of CV1. However, their difference is what the
testing interactions are, because this sampling simulates
the scenario of predicting DDI among a set of newly
given drugs. Thus, the within-group sampling takes the
interactions within the testing group of drugs as the

testing interactions (green cells in Fig. 3b), and the inter-
actions among the training drugs as the training interac-
tions (white cells in Fig. 3b). Meanwhile, the interactions
between the set of the training drugs and the set of the
testing drugs (black cells in Fig. 3b) are blind to both
training and testing in the within-group sampling. Obvi-
ously, the within-group sampling of CV2 can be
regarded as the complement of the sampling of CV1.
The between-group sampling provides a stricter way

that the within-group sampling. It simulates the scenario
of predicting DDI between two different sets of newly
given drugs, of which any has no known interactions. In
each round of the between-group sampling, two differ-
ent groups are selected as the testing set and the other
group of drugs is selected as the training set. Conse-
quently, because of the symmetry of DDI adjacent
matrix, the between-group sampling performs C2

K ¼ Kð
K−1Þ=2 ¼ 3 rounds of CV. In the round, the testing

Fig. 3 Illustration of K-CV schemes. The 9 × 9 DDI adjacent matrix is represented by a table with 9 × 9 cells. It is split into different blocks, which
account for training, testing and discard parts, and are filled with different colors accordingly. All the entries in the white block are used to train
the TMFUF, the entries in the yellow and the green block denote the testing entries in T1 and T2 respectively, and the entries in the black region
are blind to the training and testing. Three subfigures show different 3-CV schemes: a the sampling in CV1, b the within-group sampling in CV2,
and c the between-group sampling in CV2
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interactions are only those between two testing
groups of drugs (green cells in Fig. 3c) and the train-
ing interactions are only those among the training
drugs (white cells in Fig. 3c). Remarkably, the interac-
tions between the drugs in any of the testing groups
and the training drugs (black cells in Fig. 3c) and the
interactions among the drugs in any of the testing
groups (black cells in Fig. 3c) are blind to both train-
ing and testing in the between-group sampling of
CV2. Therefore, CV2 contains K×(K + 1)/2 = 6 rounds
of testing in total.
To sum up, CV1 accounts for the screening scenario

that we’re asked to infer how possibly a newly given
drug interacts with one or more known drugs. It is par-
ticularly useful before we enlarge existing multi-drug
prescriptions by appending new drugs.
While CV2 accounts for another screening scenario

that we are required to determine how possibly a
newly-given drug interacts with another new one. It is
definitely helpful when the need to make novel multi-
drug prescriptions arises. In addition, it is one of the
most crucial steps towards understanding and revealing
how DDIs form.
Receiver operating characteristic (ROC) curve and

precision-recall (PR) curve are two of popular ap-
proaches to illustrate the performance of computa-
tional approaches in binary classification [26]. In
addition, both the area under ROC curve (AUC) and
the area under PR curve (AUPR) are usually adopted
to measure the performance of binary classification or
prediction [26].
The prediction of conventional DDIs is a typical binary

prediction, in which interactions and non-interaction are
labeled as positive and negative samples respectively.
Thus, we can direct draw AUC and PR curves for the
prediction and measure its performance with both AUC
and AUPR by comparing the predicted scores of positive
samples with those of negative samples.
To draw ROC and PR curves for the prediction of

comprehensive DDIs, we reverse the labels of degres-
sive DDIs and their predicting scores. Degressive
DDIs are first labeled as positive samples. Then, their
new scores are generated by the minus of their ori-
ginal predicted scores. After that, united with enhan-
cive DDIs, they are treated as positive samples. Last,
the same procedure as that of conventional DDIs is
adopted to measure the prediction performance of
comprehensive DDIs.

Results and discussion
Preparation and parameter tuning
When performing when performing CV1 for T1 or CV2
for T2, we set K = 10 such that CV1 and CV2 contain 10
and 55 rounds of the training-testing phases respectively.

To achieve a statistical significance, we generated the
partition of the training of the testing drugs under 50
different random seeds, and repeated CV1 and CV2 50
times accordingly. We reported the average performance
over 50 repetitions of CV as the final evaluation of the
prediction.
The number of latent factors (denoted as L in

PLSR) is the only one tunable parameter in TMFUF.
To obtain its best value, we adopted a simple way
that performs a series of binary DDI predictions
under 10CV in task T1 along with different values of
L and measured their performance by AUC. A fixed
list {1,5,10,20,30,40,50,60,70,80,90,100,150} was given
for tuning L. Different values of L give different pre-
dicting results. The value (L = 60) corresponding to
the maximum AUC was selected out as the best value
of L (Fig. 4) and further applied in the subsequent
experiments.

Comparison with state-of-the-art
In order to validate the effectiveness of our TMFUF, we
first compared it with two recent works, Naïve
similarity-based approach [14] and label propagation-
based approach [8], in the scenario of T1 with respect
to conventional binary DDIs. The former approach in-
fers how likely a newly given drug interacts with one
known drug of interest by the summation of its similar-
ities to those drugs interacting with the same drug of
interest as well. The latter approach directly leverages
Label Propagation (a semi-supervised classifier) to infer
potential DDIs by regarding the binary DDI network as
a binary label network.
In the binary prediction of DDIs, we generated the ad-

jacent matrix of binary DDIs by simply turning “-1”s
into “+ 1” in that of comprehensive DDIs. The results
demonstrate that TMFUF exceeds these two state-of-th-
e-art approaches significantly with ~ 7% and ~ 20% im-
provements of AUC and AUPR respectively (Table 2).
Furthermore, we noted that these approaches were

only designed for the conventional prediction of binary
DDIs in the scenario of T1. Therefore, we also demon-
strated the ability of TMFUF over four predicting sce-
narios with respect to two pharmacological changes
caused by DDI and two screening needs for multi-drug
treatments. The results are listed in Table 3 and the cor-
responding ROC curves are shown in Fig. 5. It can be
observed that the performance of comprehensive predic-
tion is worse than that of conventional binary prediction.
For example, in task T1, the comprehensive prediction
shows 73.3% AUC and 48.3% AUPR, while the conven-
tional prediction shows 84.2% and 52.6% respectively. In
addition, it is found that T2 is a more difficult task than
T1. Compared with T1, T2 generally exhibits ~ 15% and
~ 22% degradation in terms of both AUC and AUPR.
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Significant feature pairs
According to Formula (1), we achieved the symmetric
projection matrix Θ, which bridges drugs’ features and
their interactions with the trivial reconstructed error
29.65 in terms of Frobenius Norm among 181,503 drug
pairs. Especially, Θ is able to provide the indication of
significant pairs of side effect entries. Because the num-
ber of feature entries is large, the values of the entries
in Θ would be very small. To avoid the computational
errors, we multiplied A by 1000 before solving Θ. The
histogram of the entry values shows that very most of
them are near to ZERO (Fig. 6). Therefore, we defined
the entries, whose absolute values are greater than 1, as
Significant Entries.
The subscripts of those significant entries corres-

pond to the indices of features. Positive and negative
significant entries indicate enhancive DDIs and de-
gressive DDIs respectively. After sorting the entries
by their absolute values, we obtained a set of signifi-
cant pairs of side effects. Top 10 significant pairs for
enhancive DDIs and degressive DDIs are listed in Ta-
bles 4 and 5 respectively.

There are several observations about these signifi-
cant side effects. According to the frequency of their
occurrences, the dose-related side effects and the car-
diovascular system-related side effects are two types
of the most significant factors in overall DDIs. The
former includes ‘overdose’, ‘multiple drug overdose’
and ‘dependence’. The latter includes ‘accelerated
hypertension’, ‘blood sodium’, and ‘bradycardia’. Espe-
cially, ‘overdose’ is dominant in enhancive DDIs while
‘accelerated hypertension’ is dominant in degressive
DDIs. Thus, we believe that both the control of safe
dosage and the adverse effects on the cardiovascular
system are two important factors, which should be
considered when screening DDIs in the clinic.

Conclusions
There is a need to screen DDIs before multi-drugs
prescriptions are made. Current computational ap-
proaches can rapidly deduce potential DDI candi-
dates among a large number of drug pairs with a
low cost. Nevertheless, they have two weak points.
First, they are just appropriate for predicting binary

Fig. 4 Illustration of Parameter Tuning. The number of the latent factors is tuned by a fixed list {1,5,10,20,30,40,50,60,70,80,90,100,150}. The final
number is determined by the value corresponding to the maximum AUC

Table 2 Comparison with state-of-the-art methods in the
scenario of T1 with respect to binary DDIs

Method AUC AUPR

Naïve Similarity [14] 0.759 ± 0.001 0.302 ± 0.002

Label Propagation [8] 0.774 ± 0.001 0.326 ± 0.002

TMFUF 0.842 ± 0.002 0.526 ± 0.006

The best results are highlighted in boldface

Table 3 Predicting Performance of TMFUF under Different
Scenarioes

Task AUC AUPR

Conventional Comprehensive Conventional Comprehensive

T1 0.842 ± 0.002 0.733 ± 0.004 0.526 ± 0.006 0.483 ± 0.007

T2 0.702 ± 0.004 0.577 ± 0.005 0.303 ± 0.005 0.246 ± 0.005
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DDIs, but incapable for predicting comprehensive
DDIs, which increase or decrease the pharmaco-
logical behaviors of the interacting drugs in vivo.
Secondly, although they are able to predict whether
a new drug (having no approved interactions) inter-
act with known drugs (have approved interactions),
but cannot predict whether or not a new drug inter-
acts with another.

To address the issues about DDIs types and screening
scenarios, we have proposed a novel approaches
(TMFUF) for predicting DDIs. TMFUF presents a
unified solution for the prediction of both conven-
tional binary DDIs and comprehensive DDIs under
different screening scenarios. It is not only useful be-
fore we enlarge existing multi-drug prescriptions by
appending new drugs, but also helpful when we need
to make novel multi-drug prescriptions consisting of
only new drugs. The superiority of TMFUF is demon-
strated in the prediction of conventional binary and
comprehensive DDIs under two screening scenarios
respectively. What’s more, TMFUF is able to uncover

Fig. 5 ROC and PR curves in four different scenarios with respect to conventional and comprehensive DDI prediction over two prediction tasks
involving new drugs (T1 and T2)

Fig. 6 Distribution of the values of the entries in the symmetric
projection matrix

Table 4 Top 10 Significant Pairs for Enhancive DDIs

Rank Side Effect 1 Side Effect 2

1 ‘multiple drug overdose’ ‘overdose’

2 ‘blood sodium’ ‘bradycardia’

3 ‘blood sodium’ ‘overdose’

4 ‘accelerated hypertension’ ‘diarrhea’

5 ‘glucose intolerance’ ‘overdose’

6 ‘diabetic neuropathy’ ‘overdose’

7 ‘dependence’ ‘overdose’

8 ‘blood sodium’ ‘multiple drug overdose’

9 ‘bradycardia’ ‘overdose’

10 ‘blood sodium’ ‘drug interaction’
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significant feature pairs, which contribute to enhan-
cive and degressive DDIs. In the future, we will inte-
grate other features, (e.g. chemical structures, drug-
binding proteins) into the framework of TMFUF to
achieve better DDI prediction, such that it is hopeful
to reveal the underlying mechanism of how DDIs
form.
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