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Abstract

Background: Ageing can be classified in two different ways, chronological ageing and biological ageing. While
chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic)
ageing is defined by how time and the environment affect an individual in comparison to other individuals of the
same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes,
and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an
individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider
how these changes in gene expression affect the metabolism of individuals and hence their observable cellular
phenotype.

Results: We propose a method based on poly-omic constraint-based models and machine learning in order to
further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral
blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then
combined with a transcriptomic age predictor and chronological age to provide new insights into the differences
between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor.

Conclusions: We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing
compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms
in human cells.

Keywords: Ageing, Biological age, Metabolic age, Metabolic modelling, Flux balance analysis, Poly-omics, Machine
learning, CD4 T-cells

Background
Ageing is a complex process characterised by pheno-
types such as greying hair and wrinkles, as well as
age-associated diseases such as cancer, osteoarthritis
and cardiovascular disease. Phenotypes of ageing and
age-associated diseases can be linked to age-associated
changes in metabolic subsystems [1–3]. Identifying these
metabolic links has recently led to the discovery of age-
associated biomarkers [4, 5].

There are many different theories of the underly-
ing mechanisms of ageing, including the mitochondrial
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theory of ageing, accumulation of metabolic by-products
and dysregulation of regulatory pathways. The mitochon-
drion is the primary organelle responsible for metabolic
cellular respiration; it takes in oxygen and nutrients and
converts them into energy in the form of adenosine
triphosphate (ATP). The mitochondrial theory of ageing
states that oxidative damage caused by reactive oxygen
species (ROS) produced by the mitochondria contributes
to ageing by causing damage to mitochondrial DNA, lipids
and proteins, which ultimately leads to cell death [6, 7].
Mitochondrial dysfunction and oxidative damage have
been linked to age-associated neurodegenerative disor-
ders such as Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease [8, 9], as well as to the pathogenesis
of cancer [10, 11].
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Metabolism is increasingly being considered as a driver,
rather than a marker, of the ageing process [12]. Three
examples of metabolic by-products linked with ageing
are amyloid proteins, advanced glycation end-products
(AGEs) and lipofuscin. Accumulation of amyloid proteins
in the central nervous system is associated with neu-
rodegenerative disease in ageing [13, 14]; for instance,
β-amyloid plaques in brain tissue are linked with the
pathogenesis of Alzheimer’s disease [15, 16]. AGEs can be
ingested in foods or formed in the body by non-enzymatic
glycation of lipids, nucleic acids and proteins, and their
accumulation is thought to contribute to the ageing pro-
cess [17, 18]. AGEs are formed when foods are processed
at high temperatures such as deep-frying, grilling and
roasting. They can increase oxidative stress, upregulate
inflammation, and form cross-links with proteins [19],
which cause impaired elasticity to blood vessels, there-
fore leading to poor heart health [20, 21]. Upregulation
of inflammation caused by AGEs has been also linked
to cancer [22–24]. Eating raw foods or foods cooked
at lower temperatures can help to reduce dietary intake
of AGEs [17]. Lipofuscin is a non-degradable metabolic
by-product that builds up in lysosomes with time, and
has been associated with age-related cellular degeneration
[25], particularly macular degeneration [26].

One important example of the dysregulation of regu-
latory pathways as we age is chronic inflammation. The
term ’inflammaging’ was proposed by Franceschi et al.
[27] to describe the imbalance between pro- and anti-
inflammatory networks, which contributes to the chronic
diseases of ageing. The function of the immune system
declines as we age, leading to increased susceptibility
to infectious diseases such as influenza [28], as well as
decreased response to vaccinations against them [29].
This decline in function has been reported in CD4 T-cells
[30, 31], which are used in this study, along with changes
in the ageing transcriptome [32].

Age can be defined as chronological or transcrip-
tomic/biological. Chronological age is a measure of the
time that has passed since our birth, whereas transcrip-
tomic age represents the difference in how time and the
environment have affected the cells and organs of our
body as compared to others of the same chronologi-
cal age. Our transcriptomic age can therefore be older
or younger than our chronological age. Until now, tran-
scriptomic age has been calculated for individuals using
transcriptomic-only data [33].

The limitation of this approach is that it does not take
into account how age-associated gene expression affects
the metabolism within cells and thus their observable cel-
lular phenotype. This paper aims to improve on the cur-
rent understanding of ageing (based on transcriptomics
data alone) by modelling how age-associated gene expres-
sion changes metabolic processes, therefore enabling the

identification of metabolic age predictors, selected using
machine learning techniques.

Metabolic models have proven to be valuable compu-
tational tools to study metabolism, as they allow predict-
ing phenotypes from genotypes. By modelling most of
the known biochemistry of a cell, they allow achieving
a mechanistic understanding of the genotype-phenotype
relationship. Coupled with tools for integration of omics
data, metabolic models have been successfully exploited in
a wide range of applications in health and disease, includ-
ing personalised, condition- and tissue-specific cancer
modelling [34–37].

Gene expression data and other types of omics-derived
data can be used to constrain metabolic models for phe-
notype prediction [38]. The process of linking metabolic
networks to phenotypes enables a better prediction of
cellular phenotype compared to predictions from gene
expression alone [39]. Exploiting this idea to generate a
poly-omic model of ageing, we first generate individual-
based genome-scale metabolic models and the associated
fluxomic profiles. Specifically, we use CD4 T-cell tran-
scriptomics data to modify a constraint-based metabolic
model and achieve the predicted flux distributions (flux-
omic profiles) for each individual in the cohort. Then, we
adapt machine learning techniques in order to investigate
metabolic changes linked to the chronological age of the
individuals. We compare transcriptomic- and fluxomic-
based clustering with chronological age and find that
metabolic models are a better predictor of chronological
age [40].

Our poly-omic pipeline also enables us to identify
metabolic biomarkers of ageing, which are validated by
recent literature, and to obtain metabolic age predictors.
As a result, we build a metabolic age predictor capable of
calculating the metabolic ages of individuals. Although a
small number of metabolomics biomarkers have been pro-
posed [41], to our knowledge this is the first time genome-
scale predictors have been identified. We conclude that
moving towards a poly-omic understanding of biological
ageing can help provide a more accurate prediction of bio-
logical age, therefore leading to more targeted therapies
for ageing individuals in a variety of environmental and
physiological conditions.

Methods
The poly-omic ageing pipeline
Our pipeline starts from a meta-analysis of CD4 T-cell
data containing the gene expression levels from human
peripheral blood mononuclear cells and the chronological
ages of 499 healthy individuals in the Boston area, com-
prised of 294 females and 205 males [42]. As the CD4
T-cell expression data was profiled on Affymetrix Human
Gene 1.0 ST microarrays, it was first normalised using
RMA (Robust Multi-array Average) [43]. In absence of
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a control profile, the gene expression values were then
divided by the mean value for their associated probe.
Using this normalised gene expression data, the tran-
scriptomic ages for all 499 individuals were calculated as
described in the next subsection (formulas (1) and (2)).

Having obtained the transcriptomic ages, we then used
individuals’ transcriptomic data to generate their person-
alised CD4 T-cell metabolic models. These were created
using constraint based modelling of the CD4 T-cell [44]
augmented with transcriptomics through GEMsplice [45],
by setting individual constraints on the CD4 model (see
the following subsections on constraint-based modelling
for details on how the mapping was achieved). On the
personalised models, we finally adapted a set of statistical
and machine learning methods based on clustering, PCA
analysis and elastic net regression to identify metabolic
predictors of ageing. Our pipeline thus enabled us to
progress to a poly-omic understanding of ageing in human
cells (Fig. 1; see also the following subsections for details
on the modelling approach adopted in this manuscript).

Transcriptomic age predictor
The transcriptomic age of an individual within a sam-
ple can be calculated by first obtaining their transcrip-
tomic predictor, Z, using the gene expression levels of
1497 age-associated genes (i.e. those found to be differen-
tially expressed with chronological age). This is achieved
through a linear combination of the expression levels,
where coefficients are their associated effect sizes [33]:

Z =
∑

i
bixi, (1)

where xi is the gene expression level of the ith probe, and
bi is the effect size for the ith probe. Effect sizes were
associated with individual genes, whereas the original data
contained gene expression data associated with probes.
Therefore, where a probe was mapped to more than one
age-associated gene, the effect sizes for those genes were
averaged to give an overall average effect size bi for that
probe.

The transcriptomic predictor for each individual is then
scaled using the mean and standard deviation of the
chronological ages, and the mean and standard deviation
of the transcriptomic predictors from all the individuals
in the sample [33]. This allows defining the transcriptomic
age of an individual:

SZ = μage + (Z − μZ)
σage

σZ
, (2)

where μage and σage are the mean and the standard devi-
ation of the chronological age across all the individuals
within the sample, while μZ and σZ are the mean and
the standard deviation of the predictor Z across all the
individuals in the sample.

Constraint-based modelling to generate individual-based
metabolic models
Metabolic models can be analysed using constraint-based
modelling and flux balance analysis (FBA), the most
widely-used technique to simulate metabolic models at
steady state [46]), to enable predictions of the distribu-
tion of reaction flux rates in the cell. Given the matrix S of
all known metabolic biochemical reactions and their sto-
ichiometry, and given the vector v of reaction flux rates
in a given growth or physiological condition, the steady-
state condition is set by the constraint Sv = 0. Additional
constraints are added on lower and upper bounds of v
(vmin and vmax). Constraints are included according to the
growth or physiological condition that is simulated; these
can also be set taking into account multiple omics data
(e.g. transcriptomics data as used in our pipeline) [47].
Further constraints can include codon usage [48], splice-
isoforms [45, 49], and can be analysed using pathway-
oriented approaches [50, 51]. The metabolic network is
then solved by maximising one or more cellular objectives
(usually the biomass and energy-related or application-
specific production of metabolites). For a comprehensive
introduction to constraint-based metabolic modelling and
its poly-omic extensions, the reader is referred to the
reviews by Palsson and Vijayakumar et al. [52, 53].

As omics data to constrain the model, here we use
transcriptomic data from each individual to generate per-
sonalised metabolic models. Through GEMsplice [45], we
modify the upper- and lower- limits of reactions as a func-
tion of the expression levels of the genes involved in the
reaction. More specifically, for each individual, to predict
the cellular flux distribution (fluxomic profile) when mul-
tiple objectives have to be taken into account, we use the
following bilevel linear program:

max gᵀv
such that max f ᵀv, Sv = 0,

vminϕ(�) ≤ v ≤ vmaxϕ(�).
(3)

The vectors f and g are weights to select (or combine) the
objectives to be maximised from the vector v. The vec-
tor � represents the expression of a biochemical reaction,
defined from the individual-based expression levels of its
genes with a rule involving the max and min operators,
depending on the type of enzyme (single gene, isozyme,
or enzymatic complex). The function ϕ, which acts on �,
converts the reaction expression values into coefficients
for the bounds of reactions activated by those genes [54].
Here we set the primary objective f as biomass and the
secondary objective g as ATP maintenance. Simulations
were performed in Matlab.
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Fig. 1 Poly-omic ageing pipeline. We start with the transcriptomic data and chronological ages from the CD4 T-cells of 499 individuals. We use
the chronological data and corresponding age-associated transcriptomic predictors to obtain the effect of both chronological and transcriptomic
ageing on the transcriptomic layer. We then combine with the functional biological network data determined by the metabolism and poly-omic
model to obtain individual-based metabolic models and their fluxomic profiles. Finally, we adapt machine learning techniques to show that
fluxomic data clusters better with chronological age than transcriptomic data, and to identify metabolic predictors of ageing (the poly-omic ageing
map). Definition of key terms. Transcriptomic – gene expression data represented by a measurement of the mRNA transcripts within a cell.
Fluxomic – fluxomic data refers to reaction flux rates, namely the value for the rate of metabolite conversion, measured in millimoles per hour per
grams of dry weight, for each reaction or collection of related reactions (subsystems) within a cell. Poly-omic – the integration of more than one
type of ’omic’ data e.g. transcriptomic and fluxomic data
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Cluster analysis
Cluster analysis was used in order to group individual
response according to both their transcriptomic and flux-
omic profiles, and visualise them with chronological age.
We compared both agglomerative hierarchical clustering
(AHC) and k-means clustering using a novel application of
the silhouette method. The silhouette method calculates
a value which is a measure of the similarity of the values
within a cluster (cohesion) and the dissimilarity of the val-
ues within that cluster to other clusters (separation). The
silhouette calculation gives a value between −1 and 1. Sil-
houette values close to 1 are desirable as they indicate a
cluster has high cohesion and high separation; if most val-
ues are close to 1 then the number of clusters is a good
representation of the data.

Here we use the silhouette value to measure the cohe-
sion and separation of the clustering of individuals by
chronological age [55]. We define the silhouette value of
an individual within a cluster as:

s(c) = l(c) − a(c)
max(a(c), l(c))

, (4)

where s is the silhouette value (−1 � s(c) � 1), c is the
chronological age of the individual, a is the average dis-
similarity of c to the other ages in the same cluster and l is
the lowest average dissimilarity of c to any other age in a
different cluster.

Our motivation for using the silhouette method was
twofold. Firstly, we wanted to statistically compare the sil-
houette values for AHC and k-means to see which method
performed better at clustering the data with chronolog-
ical age. Secondly, we wanted to statistically compare
whether transcriptomic-based or fluxomic-based clusters
of individuals were consistent with chronological age.

Principal component analysis
Multidimensional data such as fluxomic datasets can be
visualised using Principal Component Analysis (PCA).
PCA can reduce multidimensional datasets to as few
as two or three latent dimensions (components), which
allows inference of variables causing the largest varia-
tions in the data. Here we use PCA to identify the fluxes
accounting for the greatest variation between individuals
in different age groups according to chronological age. In
our PCA analysis, the fluxomic data was split according to
three chronological age groups: 21 and under (112 indi-
viduals: 64 female and 48 male), 22 to 49 (360 individuals:
219 female and 141 male), and 50 and over (27 individuals:
11 female and 16 male). The analysis was performed in R
and visualised using FactoMineR [56].

The CD4 T-cell model contains 4229 flux variables
(metabolic reactions). PCA analysis gives the contribu-
tion of each variable (reaction) to the variability of each
component. The proportion of variability accounted for

by a component is defined numerically by its eigenvalue.
The total contribution Tv of a given variable across the
components can be calculated by determining its overall
weighted sum as follows:

Tv =
n∑

i=1
EiVi, (5)

where Ei is the eigenvalue for the principal component i,
Vi is the variable (reaction) contribution to the principal
component i, and n is the number of components chosen
to represent the data.

Variables (reactions) can be mapped to a subsystem
(metabolic pathway), which contains a number of reac-
tions that are interlinked to perform a cellular metabolic
function. The CD4 T-cell model contains 95 pathways,
each of which corresponds to a number of reactions and
their flux values. A flux value for each pathway was cal-
culated as the mean of its reaction flux values, and PCA
was also performed on the pathway flux rates obtained for
each individual. Similarly, the total contribution Ts of a
given pathway across the components can be found using:

Ts =
n∑

i=1
EiSi, (6)

where Ei is the eigenvalue for the principal component i,
Si is the subsystem (pathway) contribution to the principal
component i, and n is the number of components.

Elastic net regression
We use elastic net regression to identify metabolic pre-
dictors of chronological age and their effect sizes. Elastic
net regression is a linear hybrid of the L2 penalty of ridge
regression [57] and the L1 penalty of lasso regression [58].
For α between 0 and 1, where 0 is ridge regression and 1 is
lasso regression, and a strictly non-negative λ, elastic net
is defined as [59]:

(
β̂ , β̂0

)
=argmin

β ,β0

(
1

2N

N∑

i=1

(
yi − β0 − xT

i β
)2+λPα(β)

)
,

(7)

where

Pα(β) = (1 − α)

2
‖β‖2

2 + α ‖β‖1

=
∑p

j=1

(
(1 − α)

2
β2

j + α
∣∣βj

∣∣
)

,
(8)

N is the number of individuals, yi is the chronological
age of individual i, xi is a p × 1 vector of p metabolic
pathway fluxes at individual i, α is set to 0.5 to achieve a
balance between L1 and L2 norms, λ is a positive regu-
larization parameter, β0 is a scalar parameter, and β is a
p×1 vector of effect sizes on chronological age (regression
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coefficients), where p is the number of metabolic path-
ways. We also performed an equivalent analysis directly
on reaction fluxes (Additional file 1).

Elastic net overcomes some of the limitations of using
the lasso method alone [59]. When analysing high dimen-
sional data, such as the individual by reaction data
(499 × 4229), where the number of predictors is greater
than the number of observations, the lasso method can
only select at most the same number of variables as obser-
vations. However, omic data tends by its nature to often be
highly correlated, which means there is high correlation
between regression predictors. Where there is a group of
highly correlated predictors, the lasso method will only
select one variable from the group. The advantage of the
elastic net method in our context is that while the L1 part
of the penalty generates a sparse model, the quadratic
part of the penalty (L2 regularisation ‖β‖2), taken from
ridge regression, allows the number of selected variables
to be greater than the number of observations, and allows
groups of strongly correlated variables to be selected.

Results and Discussion
Clustering shows best dataset for prediction of
chronological age
From the plot of average age-based silhouette values
(Fig. 2a), optimal cluster numbers were chosen from the
point closest to 1 at which there is an ’elbow bend’ in
the curve, indicating a drop in the amount of variance
explained by the clusters after this point [60]. For the
transcriptomic data seven clusters were chosen, while
for fluxomic data six clusters were chosen. The pairwise
distance of the chosen cluster numbers and the results
of clustering for both transcriptomic and fluxomic data
with chronological and transcriptomic age are shown in
Figs. 2e, 2c, 2d, and 2b respectively. We selected k-means
as a clustering algorithm because it performed consis-
tently better than hierarchical clustering both in the tran-
scriptomic (Kolmogorov-Smirnov test statistic = 0.66,
p-value = 2.91 · 10−6) and in the fluxomic-based
clustering (Kolmogorov-Smirnov test statistic = 0.8,
p-value = 5.59 · 10−9).

Remarkably, with both methods, and considering a vari-
able number of clusters between 2 and 30 (Fig. 2a and
Additional file 2), fluxomic-based clustering consistently
outperformed transcriptomic-based clustering in terms
of age-based average silhouette values (Kolmogorov-
Smirnov test statistic = 0.38, p-value = 0.022 for k-means;
Kolmogorov-Smirnov test statistic = 0.62, p-value = 1.15·
10−5 for hierarchical). We also analysed the pattern of
silhouette values based on deviations from linearity. In
general, we found that drops in silhouette values cor-
responded to smaller clusters being merged into much
larger, less distinct clusters, or cluster boundaries chang-
ing such that there was a loss of intra-cluster cohesion

and inter-cluster separation (more details can be found in
Additional file 3). Our results therefore suggest that, com-
pared to gene expression values, individual-based poly-
omic models and their predicted flux rates are a better
predictor of chronological age.

Principal component analysis identifies predictors of
ageing
The number of components to retain in the analysis was
determined by their eigenvalues and the total contribution
to variance explained by the components. Three criteria
were applied to the data: (i) according to Kaiser’s crite-
rion [61] only those components with eigenvalus greater
than 1 should be retained; (ii) the overall contribution to
variance of the retained components should be 50% or
greater; and (iii) for an n × m matrix, if the data were ran-
domly distributed the expected contribution to variance
of the eigenvalue for each axis would be 100/(n − 1) % in
terms of rows [62]. Therefore, any axis with a contribution
to variance larger than this proportion should be retained
as “significant”. The threshold percentage variable contri-
butions to variance for each group used in the analysis is
shown in Table 1. The resulting number of components
retained for analysis for each group is shown in Table 2.

Using only the significant components, the overall con-
tribution of each reaction to component variability was
calculated using (5) for each of the three age groups, 21-
(21 and under), 22-49 and 50+ (50 and over). The contri-
butions of each of the reactions to the different age groups
were then compared by calculating the difference between
them. The differences between the reaction contributions
for (i) 21- and 22-49, (ii) 21- and 50+, and (iii) 22-49 and
50+ were obtained in order to determine the reactions
that vary the most with age (see Additional file 4).

In the results of the analysis of the differences in
overall contribution of the 95 pathways, four pathways
appeared in the top 20 of all the age group compar-
isons: CoA synthesis, vitamin D metabolism, hyaluro-
nan metabolism and pyruvate metabolism. All four
of these pathways also decreased in their contribu-
tion with age. Pyruvate and CoA are both key com-
ponents of the citric acid cycle, which is essential in
energy production in the mitochondria. Reduced stamina
observed in the ageing population is thought to be
related to impairment of mitochondrial energy produc-
tion [63, 64]. Hypovitaminosis D in the ageing pop-
ulation is a major cause of impaired bone formation
and mineralisation (osteoporosis) [65, 66]. Hyaluronan
or Hyaluronic acid (HA) has a high capacity to bind and
retain water molecules and is found in high levels in the
extracellular matrix of skin where it regulates skin mois-
ture. Reduced levels of HA are associated with the loss
of moisture in ageing skin [67, 68]. Changes in HA size
contribute to age-related impairment of wound healing in
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Fig. 2 k-means clustering with age. We propose and investigate an average age-based silhouette value a. This is calculated using the chronological
age, and clustering data from both hierarchical and k-means clustering. The silhouette values are calculated by averaging all the individuals’
silhouette scores, for a number of clusters ranging from 2 to 30. k-means clustering performs consistently better than hierarchical clustering. In both
types of clustering, fluxomic data clusters better with chronological age than transcriptomic data. The pairwise distance of clusters with
chronological age is visualised in scatter plots for both transcriptomic e and fluxomic c data. Clusters are annotated with different shapes, while age
is shown with colour. Individual clusters are plotted against transcriptomic and chronological age for both transcriptomic d and fluxomic b data.
Note that since transcriptomic age was calculated from transcriptomic data, we would expect to see more distinction in transcriptomic age
between clusters for the transcriptomic data

skin [69, 70] and to the viscoelasticity of synovial fluid,
which can contribute to osteoarthritis, a common disease
of ageing [71–73].

In the 21- to 22-49 group, the overall difference in con-
tribution values for all but one of the top 20 pathways

increased from the 21- group to the 22-49 group. Inter-
estingly, CoA synthesis increased but CoA catabolism
decreased, suggesting higher CoA levels due to increased
synthesis and decreased degradation. Conversely, for the
21- group and 50+ group, the overall contribution values
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Table 1 Eigenvalue threshold % variance values for PCA

Group Individuals Average Threshold % Variance

All individuals 499 100/498 0.2

21- 112 100/111 0.9

22-49 360 100/359 0.28

50+ 27 100/26 3.85

Significant components had eigenvalues with an individual contribution to variance
greater than the threshold percentage variance value. The threshold percentage
variances for each of the different groups of data are shown along with the details
of how that value was obtained

for all but one of the top 20 pathways decreased. Only
Vitamin B2 metabolism increased. This is consistent with
recent studies showing that the activity of vitamin B2
metabolism does not decrease until after the age of
50 [74]. All of the top 20 pathways contribution val-
ues decreased for the 50+ group compared to the 22-49
group.

Squalene and cholesterol synthesis, vitamin A
metabolism and glycine, serine, alanine and threonine
metabolism overall contributions all decrease with age.
Sebum, produced by the sebaceous glands, contains both
cholesterol and squalene. Squalene is correlated with
α-tocopherol (vitamin E) levels on the surface of the skin.
α-tocopherol is the main antioxidant on the skin [75] and
its decrease with ageing may contribute towards the signs
of ageing skin [76, 77].

The reactions that make up the squalene and cholesterol
synthesis pathway are part of the mevalonate pathway,
which produces the precursors of all the steroid hor-
mones, heme cholesterol, coenzyme Q10, and vitamin K
[78]. The decrease in plasma levels of high density lipopro-
tein (HDL) cholesterol is correlated with a higher risk
of atherosclerosis [79]. Low vitamin K has been associ-
ated with osteoarthritis and impaired cognitive function
in older adults [80, 81]. The synthesis of mitochondrial
coenzyme Q10 can decrease with age [82]; this consti-
tutes an important factor for health, as coenzyme Q10 is
an antioxidant that protects against diseases that involve
oxidative stress, such as cardiovascular and neurogenera-
tive diseases [83–88]. Furthermore, the synthesis of heme,
the major functional form of iron in the body, decreases

Table 2 Number of components retained in PCA

Group Components Retained % Variance

All individuals 151 74.88

21- 39 63.42

22-49 112 71.79

50+ 10 55.14

For each group, the number of significant components are shown along with their
cumulative contribution to variance

with age [89, 90] and has been linked with neurodegen-
erative disorders such as Alzheimer’s disease [91]. Steroid
hormones are also known to decline with age [92, 93];
decreasing sex steroid hormone deficiency in oestrogens
and androgens contributes to ageing skin [94, 95] and
increased risk of cardiovascular disease in women [93, 96].

Glycine, serine, alanine and threonine are all non-
essential amino acids. Decreasing glycine levels have been
linked with age-associated oxidative stress [97], while age-
associated decrease in serine metabolism has been linked
with impaired memory function in the brain [98, 99]. Ala-
nine metabolism is associated with the liver, and alanine
transaminase has been suggested as a biomarker for age-
ing [100]. Vitamin A cannot be produced by the body and
is therefore obtained through diet; a decrease in the active
form of vitamin A in the body, retinol, is thought to be
linked with age-associated slowing in visual dark-adaption
[101, 102].

Figure 3a-c show the factor maps for the top 20 path-
ways contributing to variance for each age group. For the
21- group, the overall contribution of components 1 and
2 to variation is 15.2%. For the 22-49 group, it is 12.4%
and for the 50+ group it is 24%. If the variance was evenly
distributed across all pathways, then the expected average
variation would be 100/95 % = 1.05%. Interestingly, the
variance explained by the first two components in the 50+
group is higher compared to the other two groups, sug-
gesting that less latent pathways, but with an increasingly
strong role, characterise the ageing phenotype.

As a result, the biplot (Fig. 4d) of individuals grouped
by age and the top 10 pathways contributing to over-
all variance of components 1 and 2 shows differentiation
between the three age groups, with the biggest differenti-
ation shown in the axis of the 50+ group compared to the
other two. The 50+ age group appears to lie along the gly-
oxylate and dicarboxylate metabolism axis. To identify the
amount of intercorrelation in the pathway flux data, corre-
lation plots were created for the pathways with the top 20
overall difference in contribution in each group, 21- and
22-49, 21- and 50+, and 22-49 and 50+ (Fig. 4a-c). The
plots show the large amount of intercorrelation between
pathways.

Exchange/demand reaction and oxidative phosphory-
lation remain the high contributors to variance for all
three age groups. The most notable rise in contribution
to variation with age is vitamin C metabolism, which
moves from rank 18 in the 21- to rank 2 in the 50+
group. Changes in oxidative stress are known to affect
the levels of vitamin C in the body [103]. Furthermore,
oxidative damage to the genome caused by ROS (reac-
tive oxygen species) is thought to be one of the causes of
ageing [104]. Interestingly, ROS detoxification is one of
the top 10 contributors in the 21- and 22-49 groups but
does not appear in the top 20 contributors in the 50+
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B

C
Fig. 3 Principal component analysis factor maps. Factor maps of
the top 20 contributing pathways for components 1 and 2 in each
age group, 21-, 22-49 and 50+ (a, b, c). The quality of the
contribution of each pathway is shown by its colour

group, suggesting a possible link with ageing, oxidative
stress and the changing variation contributed by vitamin
C metabolism. Glyoxylate and dicarboxylate metabolism

also has a large rise in contribution to variance with age.
Glyoxylate and dicarboxylate metabolism is strictly linked
with glycine, serine and threonine metabolism, pyruvate
metabolism, ascorbate metabolism (a mineral salt of vita-
min C), all of which our results have identified as linked to
ageing.

Elastic net regression identifies metabolic-age predictors
The analysis was performed using tenfold cross validation
for both metabolic reactions and metabolic pathways. The
results of the metabolic pathways analysis are reported
here, while the results for the metabolic reactions can
be found in Additional file 1. Elastic net regression of
the 95 metabolic pathways returned 100 possible λ val-
ues with their associated effect sizes. The value λ = 1.57
was chosen as this had the lowest mean squared error
value. This gave metabolic effect sizes for three path-
ways: butanoate metabolism, pyrimidine synthesis and
beta-alanine metabolism (Table 3).

Both butanoate and beta-alanine metabolism have been
linked to sarcopenia, deterioration of skeletal muscle, with
age [105]. Butanoate and beta-alanine metabolism are
facilitated by the enzyme aldehyde dehydrogenase. One
of the substrates of this enzyme is nicotinamide adenine
dinucleotide (NAD). Reversal of NAD loss as we age is
currently undergoing human trials following successful
age reversal of mitochondrial function in the skeletal mus-
cle cells of mice [106]. Mitochondrial dysfunction, which
is linked to ageing, also leads to a reduction of pyrimidine
synthesis [107, 108].

In order to calculate the biological/metabolic ages of the
individuals, equations (1) and (2) were modified to use the
metabolic effect sizes. We therefore define the following
metabolic predictor:

M =
∑

i
bifi, (9)

where M is the metabolic predictor, fi is the flux value of
the ith pathway, and bi is the effect size for the ith pathway.
The metabolic age was then defined as:

SM = μage + (M − μM)
σage

σM
, (10)

where μage and σage are the mean and the standard devi-
ation of the chronological age, while μM and σM are
the mean and the standard deviation of the metabolic
predictor M.

The metabolic ages showed correlation (p-value= 4.7·10−4)
with chronological age. Both the metabolic ages and the
chronological ages of all 499 individuals can be found
in Additional file 1, which also includes the results of
the regression performed directly on reactions. This is
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Fig. 4 Principal component analysis applied to pathways. The correlation plots of fluxes are shown for the pathways with the top-20 overall
difference in each group, 21- and 22-49, 21- and 50+, and 22-49 and 50+ (a, b, c). The plots show the large amount of intercorrelation between
pathways. A biplot of individuals grouped by age and the top 10 pathways contributing to overall variance of components 1 and 2 is also shown d.
We note some differentiation between the three age groups, with the biggest differentiation shown in the axis of the 50+ group compared to the
other two. The 50+ group appears to lie along the glyoxylate and dicarboxylate metabolism axis

a promising starting point for a metabolic age predic-
tor, which can be further refined using more samples to
improve predictor accuracy.

Conclusion
While chronological age gives an accurate measurement
of the time since an individual’s birth, biological age – also
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Table 3 Metabolic effect sizes

Subsystem Effect size

Butanoate metabolism -0.004462535

Pyrimidine synthesis -2.18609E-05

beta-Alanine metabolism -0.002443117

The effect sizes on age of the three metabolic pathways selected by elastic net
regression

called transcriptomic age – gives a more accurate repre-
sentation of the relative health of an individual compared
to others of the same age. Where an individual has a bio-
logical age greater than their chronological age, they are
ageing more quickly than their peers, and therefore have
decreased life expectancy. Finding predictors of biologi-
cal ageing and measuring their presentation in individuals
can allow targeted and personalised interventions, both
medication and lifestyle-based, to improve health and life
expectancy.

A number of age-associated genes along with their effect
sizes have previously been identified in the literature and
used to calculate the biological age of individuals [33].
The limitation of this approach is that it does not take
into account the metabolic effects of those gene expres-
sion values on the cellular phenotype. For example, a gene
that has been found to be differentially expressed with
age may have little or no effect on cellular metabolism.
Here we have achieved the first steps towards a metabolic
age predictor to overcome the limitations of previous
transcriptomic-only approaches.

Using a genome-scale metabolic model of CD4 T-cells
combined with transcriptomic data, we were able to
obtain individual-specific metabolic models and generate
fluxomic data (Additional file 5). The subsequent stage
of our analysis used a novel application of the silhou-
ette method and clustering techniques, from which we
identified that fluxomic data clusters better with chrono-
logical age, therefore suggesting that metabolic models
are a better predictor of the chronological age of an indi-
vidual. Applying PCA analysis and elastic net regression
enabled us to identify potential metabolic predictors of
ageing. Many of these predictors have also been identified
in the literature as linked to the ageing process, validating
the reliability of the method. Finally, elastic net regres-
sion produced metabolic age predictors and their effect
sizes, from which we calculated the metabolic age of each
individual.

Our next step will be to further refine the metabolic
age predictors obtained from elastic net regression with
more data from individuals across the different age ranges.
Future studies could also use other age predictors, such as
epigenetic clocks [109] and telomere length [110] as vari-
ables to investigate how they correlate with our metabolic
age predictor. Furthermore, although proteomics data has

some limitations, including providing less coverage than
transcriptomic data [111, 112], it can be included as a
complementary method to improve the accuracy of the
results. We will also investigate whether there are dif-
ferences in the metabolic age predictors based on differ-
ent phenotypes/attributes of individuals such as gender.
This will allow further refinement of predictors based
on individual data, and will suggest more personalised
interventions to reduce metabolic age and improve life
expectancy.

Additional files

Additional file 1: Metabolic ages (XLSX 33 kb)

Additional file 2: Silhouette values raw data (XLSX 11 kb)

Additional file 3: Plots of k-means clusters (PDF 283 kb)

Additional file 4: Supplementary PCA analysis raw data (XLSX 412 kb)

Additional file 5: Fluxomic data (XLSX 9174 kb)

Funding
Publication of this article was funded by Teesside University.

Availability of data and materials
All flux data and results are available as additional files. Source code and
normalised transcriptomic data is available on request for academic use.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 14, 2018: Selected articles from the 5th International Work-Conference
on Bioinformatics and Biomedical Engineering: bioinformatics. The full contents
of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-19-supplement-14.

Authors’ contributions
CA conceived and coordinated the study. EY and CA developed the methods.
EY wrote the code and performed the analysis. EY and CA wrote the
manuscript. Both authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 20 November 2018

References
1. Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of

metabolic pathways in aging. Diabetes. 2012;61(6):1315–22.
2. Newgard CB, Pessin JE. J Gerontol A Biomed Sci Med Sci.

2014;69(Suppl_1):21–7.
3. Wallace DC. A mitochondrial paradigm of metabolic and degenerative

diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev
Genet. 2005;39:359–407.

4. Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using
activation status of signaling pathways as mechanism-based biomarkers
to predict drug sensitivity. Sci Rep. 2015;5:18494.

https://doi.org/10.1186/s12859-018-2383-z
https://doi.org/10.1186/s12859-018-2383-z
https://doi.org/10.1186/s12859-018-2383-z
https://doi.org/10.1186/s12859-018-2383-z
https://doi.org/10.1186/s12859-018-2383-z
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14


Yaneske and Angione BMC Bioinformatics 2018, 19(Suppl 14):415 Page 94 of 176

5. Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH,
Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The
metabolic footprint of aging in mice. Sci Rep. 2011;1:134.

6. Miquel J, Economos A, Fleming J, Johnson J. Mitochondrial role in cell
aging. Exp Gerontol. 1980;15(6):575–91.

7. Kauppila TE, Kauppila JH, Larsson N-G. Mammalian mitochondria and
aging: an update. Cell Metab. 2017;25(1):57–71.

8. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in
neurodegenerative diseases. Nature. 2006;443(7113):787.

9. Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza
T, Bennett B, Jin H, et al. Mito-apocynin prevents mitochondrial
dysfunction, microglial activation, oxidative damage, and progressive
neurodegeneration in mitopark transgenic mice. Antioxid Redox Signal.
2017;14:1048–1066.

10. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer
therapy. Nat Rev Drug Dis. 2010;9(6):447.

11. Green DR. Cancer and apoptosis: Who is built to last? Cancer Cell.
2017;31(1):2–4.

12. Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy
metabolism as a driver of aging. Oncotarget. 2016;7(13):15410.

13. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. In vitro aging of
ß-amyloid protein causes peptide aggregation and neurotoxicity. Brain
Res. 1991;563(1):311–4.

14. Jack CR, Wiste HJ, Weigand SD, Therneau TM, Knopman DS, Lowe V,
Vemuri P, Mielke MM, Roberts RO, Machulda MM, et al. Age-specific
and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and
neurodegeneration in cognitively unimpaired individuals aged 50–95
years: a cross-sectional study. Lancet Neurol. 2017;16(6):435–44.

15. Hardy J, Selkoe DJ. The amyloid hypothesis of alzheimer’s disease:
progress and problems on the road to therapeutics. Science.
2002;297(5580):353–6.

16. Vemuri P, Knopman DS, Lesnick TG, Przybelski SA, Mielke MM, Graff-
Radford J, Murray ME, Roberts RO, Vassilaki M, Lowe VJ, et al. Evaluation
of amyloid protective factors and alzheimer disease neurodegeneration
protective factors in elderly individuals. JAMA Neurol. 2017;6:718–726.

17. Semba RD, Nicklett EJ, Ferrucci L. J Gerontol A Biomed Sci Med Sci.
2010;65(9):963–75.

18. Yu T, Lin L. Advanced glycation end products accumulated with aging
inhibit colonic smooth muscle contraction by upregulation of bk
channel î’1-subunit. Gastroenterology. 2017;152(5):911.

19. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara
H. J Gerontol Ser A Biol Sci Med Sci. 2007;62(4):427–33.

20. Aronson D. Cross-linking of glycated collagen in the pathogenesis of
arterial and myocardial stiffening of aging and diabetes. J Hypertens.
2003;21(1):3–12.

21. Wannamethee SG, Welsh P, Papacosta O, Ellins EA, Halcox JP,
Whincup PH, Sattar N. Circulating soluble receptor for advanced
glycation end product: Cross-sectional associations with cardiac markers
and subclinical vascular disease in older men with and without diabetes.
Atherosclerosis. 2017;264:36–43.

22. Riehl A, Németh J, Angel P, Hess J. The receptor rage: Bridging
inflammation and cancer. Cell Commun Signal. 2009;7(1):12.

23. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. Hmgb1 and rage in
inflammation and cancer. Annu Rev Immunol. 2009;28:367–88.

24. Turner D. Chapter one-the role of advanced glycation end-products in
cancer disparity. Adv Cancer Res. 2017;133:1–22.

25. Brunk UT, Terman A. Lipofuscin: mechanisms of age-related
accumulation and influence on cell function. Free Radic Biol Med.
2002;33(5):611–9.

26. Hyttinen JM, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A,
Salminen A, Kaarniranta K. Dna damage response and autophagy in the
degeneration of retinal pigment epithelial cells–implications for
age-related macular degeneration (amd). Ageing Res Rev. 2017;36:64–77.

27. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia
MP, Invidia L, Celani L, Scurti M, et al. Inflammaging and anti-
inflammaging: a systemic perspective on aging and longevity emerged
from studies in humans. Mech Ageing Dev. 2007;128(1):92–105.

28. Blomberg BB, Frasca D. Quantity, not quality, of antibody response
decreased in the elderly. J Clin Investig. 2011;121(8):2981–3.

29. Targonski PV, Jacobson RM, Poland GA. Immunosenescence: role and
measurement in influenza vaccine response among the elderly. Vaccine.
2007;25(16):3066–9.

30. Marco M-G, Rebeca A-A. When aging reaches CD4+ T-Cells: Phenotypic
and functional changes. Front Immunol. 2013;4:107.

31. Lefebvre JS, Haynes L. Aging of the CD4 T cell compartment. Open
Longevity Sci. 2012;6:83.

32. Zhao M, Qin J, Yin H, Tan Y, Liao W, Liu Q, Luo S, He M, Liang G, Shi
Y, et al. Distinct epigenomes in CD4+ T cells of newborns, middle-ages
and centenarians. Sci Rep. 2016;6:38411.

33. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell
J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, et al. The
transcriptional landscape of age in human peripheral blood. Nat
Commun. 2015;6:8570.

34. Cook DJ, Nielsen J. Genome-scale metabolic models applied to human
health and disease. Wiley Interdiscip Rev Syst Biol Med. 2017;9(6):e1393.

35. Eyassu F, Angione C. Modelling pyruvate dehydrogenase under hypoxia
and its role in cancer metabolism. Royal Soc Open Sci. 2017;4(10):170360.

36. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G,
Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology atlas of the human
cancer transcriptome. Science. 2017;357(6352):2507.

37. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO.
Systems biology analysis of drivers underlying hallmarks of cancer cell
metabolism. Sci Rep. 2017;7:41241.

38. Angione C, Conway M, Lió P. Multiplex methods provide effective
integration of multi-omic data in genome-scale models. BMC
Bioinformatics. 2016;17(4):83.

39. Samal SS, Radulescu O, Weber A, Fröhlich H. Linking metabolic
network features to phenotypes using sparse group lasso.
Bioinformatics. 2017;33(21):3445–53.

40. Yaneske E, Angione C. A data-and model-driven analysis reveals the
multi-omic landscape of ageing. In: International Conference on
Bioinformatics and Biomedical Engineering. Berlin: Springer; 2017. p.
145–54.

41. Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine.
2017;21:29–36.

42. Raj T, Rothamel K, Mostafavi S, Ye C, Lee M, Replogle JM, Feng T, Lee
M, Asinovski N, Frohlich I, et al. Polarization of the effects of
autoimmune and neurodegenerative risk alleles in leukocytes. Science.
2014;344(6183):519–23.

43. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf
U, Speed TP. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

44. Han F, Li G, Dai S, Huang J. Genome-wide metabolic model to improve
understanding of CD4+ T cell metabolism, immunometabolism and
application in drug design. Mol BioSyst. 2016;12(2):431–43.

45. Angione C. Integrating splice-isoform expression into genome-scale
models characterizes breast cancer metabolism. Bioinformatics.
2017;34(3):562.

46. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat
Biotechnol. 2010;28(3):245–8.

47. Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, Lewis NE. A
systematic evaluation of methods for tailoring genome-scale metabolic
models. Cell Syst. 2017;4(3):318–29.

48. Kashaf SS, Angione C, Lió P. Making life difficult for clostridium difficile:
augmenting the pathogen’s metabolic model with transcriptomic and
codon usage data for better therapeutic target characterization. BMC
Syst Biol. 2017;11(1):25.

49. Ryu JY, Kim HU, Lee SY. Framework and resource for more than 11,000
gene-transcript-protein-reaction associations in human metabolism.
Proc Natl Acad Sci. 2017;114(45):201713050.

50. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to
predict biological capabilities. Cell. 2015;161(5):971–87.

51. Angione C, Pratanwanich N, Lió P. A hybrid of metabolic flux analysis
and bayesian factor modeling for multiomic temporal pathway
activation. ACS Synth Biol. 2015;4(8):880–9.

52. Palsson B. Systems Biology: Constraint-based Reconstruction and
Analysis. 2nd ed. Cambridge: Cambridge University Press; 2015.

53. Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the
trees: a forest of methods for optimization and omic-network
integration in metabolic modelling. Brief Bioinform. 2017;1–18.

54. Angione C, Lió P. Predictive analytics of environmental adaptability in
multi-omic network models. Sci Rep. 2015;5:15147.



Yaneske and Angione BMC Bioinformatics 2018, 19(Suppl 14):415 Page 95 of 176

55. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

56. Lê S, Josse J, Husson F, et al. FactoMineR: an R package for multivariate
analysis. J Stat Softw. 2008;25(1):1–18.

57. Hoerl A, Kennard R. Ridge regression, in ’Encyclopedia of Statistical
Sciences’. vol 8. 1988.

58. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B (Methodol). 1996;58(1):267–88.

59. Zou H, Hastie T. J R Stat Soc Ser B (Stat Method). 2005;67(2):301–20.
60. Omran MG, Engelbrecht AP, Salman A. An overview of clustering

methods. Intell Data Anal. 2007;11(6):583–605.
61. Kaiser HF. The application of electronic computers to factor analysis.

Educ Psychol Meas. 1960;20(1):141–51.
62. Bendixen MT. Compositional perceptual mapping using chi-squared

trees analysis and correspondence analysis. J Mark Manag. 1995;11(6):
571–81.

63. Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target
of aging in the citric acid cycle of kidney mitochondria from mice. Mech
Ageing Dev. 2006;127(1):79–84.

64. Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L,
Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial
function and in the efficiency of energy transfer pathways during
cardiomyocyte aging. Mol Cell Biochem. 2017;432(1–2):1–18.

65. Lanske B, Razzaque MS. Vitamin D and aging: old concepts and new
insights. J Nutr Biochem. 2007;18(12):771–7.

66. Hin H, Tomson J, Newman C, Kurien R, Lay M, Cox J, Sayer J, Hill M,
Emberson J, Armitage J, et al. Optimum dose of vitamin D for disease
prevention in older people: BEST-D trial of vitamin D in primary care.
Osteoporos Int. 2017;28(3):841–51.

67. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key
molecule in skin aging. Dermato-endocrinology. 2012;4(3):253–8.

68. Li W-H, Wong H-K, Serrano J, Randhawa M, Kaur S, Southall MD, Parsa
R. Topical stabilized retinol treatment induces the expression of HAS
genes and HA production in human skin in vitro and in vivo. Arch
Dermatol Res. 2017;309(4):275–83.

69. Reed MJ, Damodarasamy M, Chan CK, Johnson MN, Wight TN, Vernon
RB. Cleavage of hyaluronan is impaired in aged dermal wounds. Matrix
Biol. 2013;32(1):45–51.

70. Damodarasamy M, Johnson RS, Bentov I, MacCoss MJ, Vernon RB,
Reed MJ. Hyaluronan enhances wound repair and increases collagen iii
in aged dermal wounds. Wound Repair Regen. 2014;22(4):521–6.

71. Arrich J, Piribauer F, Mad P, Schmid D, Klaushofer K, Müllner M.
Intra-articular hyaluronic acid for the treatment of osteoarthritis of the
knee: systematic review and meta-analysis. Can Med Assoc J.
2005;172(8):1039–43.

72. Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for
the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther.
2003;5(2):54.

73. Martel-Pelletier J, Raynauld J-P, Mineau F, Abram F, Paiement P,
Delorme P, Pelletier J-P. Levels of serum biomarkers from a two-year
multicentre trial are associated with treatment response on knee
osteoarthritis cartilage loss as assessed by magnetic resonance imaging:
an exploratory study. Arthritis Res Ther. 2017;19(1):169.

74. Russell RM. The aging process as a modifier of metabolism. Am J Clin
Nutr. 2000;72(2):529–32.

75. Thiele J, Schroeter C, Hsieh S, Podda M, Packer L. The antioxidant
network of the stratum corneum. In: Oxidants and Antioxidants in
Cutaneous Biology. vol 29. Basel: Karger Publishers; 2001. p. 26–42.

76. Miettinen HE, Rönö K, Koivusalo S, Stach-Lempinen B, Pöyhönen-Alho
M, Eriksson JG, Hiltunen TP, Gylling H. Elevated serum squalene and
cholesterol synthesis markers in pregnant obese women with
gestational diabetes mellitus. J Lipid Res. 2014;55(12):2644–54.

77. Iizaka S, Nagata S, Sanada H. Nutritional status and habitual dietary
intake are associated with frail skin conditions in community-dwelling
older people. J Nutr Health Aging. 2017;21(2):137–46.

78. Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and
function. Lipids. 2004;39(4):293–309.

79. Steffen BT, Bielinski SJ, Decker PA, Berardi C, Larson NB, Pankow JS,
Michos ED, Hanson NQ, Herrington DM, Tsai MY. Low HDL cholesterol
and particle concentrations are associated with greater levels of
endothelial activation markers in multi-ethnic study of atherosclerosis
participants. J Clin Lipidol. 2017;11(4):995.

80. Shea MK, Kritchevsky SB, Hsu F-C, Nevitt M, Booth SL, Kwoh CK,
McAlindon TE, Vermeer C, Drummen N, Harris TB, et al. The association
between vitamin K status and knee osteoarthritis features in older
adults: The health, aging and body composition study. Osteoarthr Cartil.
2015;23(3):370–8.

81. Presse N, Belleville S, Gaudreau P, Greenwood CE, Kergoat M-J, Morais
JA, Payette H, Shatenstein B, Ferland G. Vitamin K status and cognitive
function in healthy older adults. Neurobiol Aging. 2013;34(12):2777–83.

82. Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and
clinical implications. Mitochondrion. 2007;7:168–74.

83. Rosenfeldt FL, Pepe S, Linnane A, Nagley P, Rowland M, Ou R,
Marasco S, Lyon W, Esmore D. Coenzyme Q10 protects the aging heart
against stress. Ann N Y Acad Sci. 2002;959(1):355–9.

84. Navas P, Villalba JM, de Cabo R. The importance of plasma membrane
coenzyme Q in aging and stress responses. Mitochondrion. 2007;7:34–40.

85. Ochoa JJ, Quiles JL, Huertas JR, Mataix J. J Gerontol A Biol Sci Med Sci.
2005;60(8):970–5.

86. Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G. Coenzyme Q10
in neuromuscular and neurodegenerative disorders. Curr Drug Targets.
2010;11(1):111–21.

87. Luo M, Yang X, Hu J, Ruan X, Mu F, Fu Y. The synthesis of coenzyme
Q10. Curr Org Chem. 2017;21(6):489–502.

88. Paroha S, Chandel AKS, Dubey RD. Nanosystems for drug delivery of
coenzyme Q10. Environ Chem Lett. 2017;16(1):1–7.

89. Atamna H, Liu J, Ames BN. Heme deficiency selectively interrupts
assembly of mitochondrial complex IV in human fibroblasts relevance to
aging. J Biol Chem. 2001;276(51):48410–6.

90. Pabis K, ScheiberMojdehkar B, Valencak T, Nowikovsky K. Altered iron
homeostasis in mouse models of aging. Exp Gerontol. 2017;94:118.

91. Sung HY, Choi B-O, Jeong JH, Kong KA, Hwang J, Ahn J-H. Amyloid
beta-mediated hypomethylation of heme oxygenase 1 correlates with
cognitive impairment in alzheimer’s disease. PloS ONE. 2016;11(4):
0153156.

92. Walther A, Philipp M, Lozza N, Ehlert U. The rate of change in declining
steroid hormones: a new parameter of healthy aging in men?.
Oncotarget. 2016;7(38):60844.

93. Knowlton A, Lee A. Estrogen and the cardiovascular system. Pharmacol
Ther. 2012;135(1):54–70.

94. Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing
and repair. Maturitas. 2017;103:60–64.

95. Luebberding S, Krueger N, Kerscher M. Age-related changes in male
skin: quantitative evaluation of one hundred and fifty male subjects. Skin
Pharmacol Physiol. 2014;27(1):9–17.

96. Sun C, Simon SI, Foster GA, Radecke CE, Hwang HV, Zhang X,
Hammock BD, Chiamvimonvat N, Knowlton AA. 11,
12-epoxyecosatrienoic acids mitigate endothelial dysfunction
associated with estrogen loss and aging: Role of membrane
depolarization. J Mol Cell Cardiol. 2016;94:180–8.

97. Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A,
Taffet GE, Jahoor F. Deficient synthesis of glutathione underlies
oxidative stress in aging and can be corrected by dietary cysteine and
glycine supplementation. Am J Clin Nutr. 2011;94(3):847–53.

98. Billard J-M. d-serine in the aging hippocampus. J Pharm Biomed Anal.
2015;116:18–24.

99. Mothet J, Rouaud E, Sinet P-M, Potier B, Jouvenceau A, Dutar P,
Videau C, Epelbaum J, Billard J-M. A critical role for the glial-derived
neuromodulator d-serine in the age-related deficits of cellular
mechanisms of learning and memory. Aging Cell. 2006;5(3):267–74.

100. Le Couteur DG, Blyth FM, Creasey HM, Handelsman DJ, Naganathan V,
Sambrook PN, Seibel MJ, Waite LM, Cumming RG. J Gerontol A Biomed
Sci Med Sci. 2010;65(7):712–7.

101. Cubizolle A, Guillou L, Mollereau B, Hamel CP, Brabet P. Fatty acid
transport protein 1 regulates retinoid metabolism and photoreceptor
development in mouse retina. PloS ONE. 2017;12(7):0180148.

102. Tahir HJ, Rodrigo-Diaz E, Parry NR, Kelly JM, Carden D, Murray IJ.
Slowed dark adaptation in older eyes; effect of location. Exp Eye Res.
2017;155:47–53.

103. Michels AJ, Hagen TM, Frei B. Human genetic variation influences
vitamin c homeostasis by altering vitamin C transport and antioxidant
enzyme function. Annu Rev Nutr. 2013;33:45–70.

104. Pinto M, Pickrell AM, Wang X, Bacman SR, Yu A, Hida A, Dillon LM,
Morton PD, Malek TR, Williams SL, et al. Transient mitochondrial dna



Yaneske and Angione BMC Bioinformatics 2018, 19(Suppl 14):415 Page 96 of 176

double strand breaks in mice cause accelerated aging phenotypes in a
ROS-dependent but p53/p21-independent manner. Cell Death Differ.
2017;24(2):288–99.
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