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Abstract

Background: The advances in high-throughput sequencing technologies are allowing more and more de novo
assembling of transcriptomes from many new organisms. Some degree of automation and evaluation is required to
warrant reproducibility, repetitivity and the selection of the best possible transcriptome. Workflows and pipelines are
becoming an absolute requirement for such a purpose, but the issue of assembling evaluation for de novo
transcriptomes in organisms lacking a sequenced genome remains unsolved. An automated, reproducible and
flexible framework called TransFlow to accomplish this task is described.

Results: TransFlow with its five independent modules was designed to build different workflows depending on the
nature of the original reads. This architecture enables different combinations of Illumina and Roche/454 sequencing
data, and can be extended to other sequencing platforms. Its capabilities are illustrated with the selection of reliable
plant reference transcriptomes and the assembling six transcriptomes (three case studies for grapevine leaves, olive
tree pollen, and chestnut stem, and other three for haustorium, epiphytic structures and their combination for the
phytopathogenic fungus Podosphaera xanthii). Arabidopsis and poplar transcriptomes revealed to be the best
references. A common result regarding de novo assemblies is that Illumina paired-end reads of 100 nt in length
assembled with OASES can provide reliable transcriptomes, while the contribution of longer reads is noticeable only
when they complement a set of short, single-reads.

Conclusions: TransFlow can handle up to 181 different assembling strategies. Evaluation based on principal
component analyses allows its self-adaptation to different sets of reads to provide a suitable transcriptome for each
combination of reads and assemblers. As a result, each case study has its own behaviour, prioritises evaluation
parameters, and gives an objective and automated way for detecting the best transcriptome within a pool of them.
Sequencing data type and quantity (preferably several hundred millions of 2 × 100 nt or longer), assemblers (OASES
for Illumina, MIRA4 and EULER-SR reconciled with CAP3 for Roche/454) and strategy (preferably scaffolding with
OASES, and probably merging with Roche/454 when available) arise as the most impacting factors.
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Background
The advances in high-throughput sequencing technolo-
gies allow the scientific community to resolve biological
issues that were not accessible until now. Assembling of
any genome using DNA-seq, or the quicker and cheaper
approach of comprehensive transcriptomes using RNA-
seq, are becoming feasible for most laboratories. In fact,
transcript identification and its expression quantifica-
tion is in the core of many molecular biology anal-
yses. RNA-seq approaches are clearly replacing even
the microarray technology for gene expression experi-
ments or the variant calling approaches based on exomes
[1, 2]. In fact, the power of RNA-seq is that, start-
ing from short (> 50 bp) reads, it is able to identify
and quantify already-known and new transcripts. Addi-
tionally, it is well adapted to produce tentative tran-
scriptomes from genomically-unknown organisms (called
“non-model organisms (NMOs)” in this work) using
libraries from different tissues and development stages.
Due to the high versatility and flexibility of RNA-seq,
it has overcome the genomics field and has become
a standard in the life sciences research (see [3] for a
review of RNA-seq best practices from the experimen-
tal design to the transcript discovery and quantifica-
tion, including differential expression). Therefore, having
an ad hoc tentative transcriptome is nowadays the first
step in most genomic studies regarding NMOs, that are
organisms where reference genome is not available or is
incomplete [3].

NMOs are usually very important from the economi-
cal or ecological point of view. For example, the European
chestnut (Castanea sativa) is a forest tree having an
important impact on producing countries due to the
nutritional qualities of its fruits (chestnut) [4, 5]. Chestnut
also has beneficial health effects related with the pres-
ence of bioactive compounds having antioxidant, anti-
carcinogenic and cardioprotective properties [6]. Another
example, olive tree (Olea europaea L.), is one of the most
important oil-producing plant species all over the world.
Although the genome of the ‘Farga’ cultivar has been
recently sequenced [7], it is still considered a NMO since
this genome corresponds to a 1000+ year-old tree that
presents many differences with other olive tree cultivars
(J.D. Alché and M.G. Claros, personal communication).
Many sequencing efforts have been performed regard-
ing the transcriptome of vegetative tissues, but many
questions involving olive reproductive biology, includ-
ing seeds, are still open [8]. A third plant species, Vitis
vinifera, is one of the world’s most important crop plants
due to the economic value of its fruit and wine production.
There is a useful draft of its genome [9], but it has been
demonstrated that there is an important inter-varietal
variation concerning SNPs (single nucleotide polymor-
phisms) and CNVs (copy-number variations) [10]. As a

result, the current state of grapevine transcriptome is far
from being complete [11], which suggests that grapevine
transcriptomes are still required. Finally, plant disease
agents are another important source of NMOs. A dis-
ease affecting many plant crops of economical significance
is the powdery mildew caused by Erysiphales [12], obli-
gate fungal pathogens whose hallmark is the formation of
a specialised structure of parasitism, called haustorium,
for the acquisition of nutrients from plant cells and the
delivery of virulence factors. Recently, the genomes of five
powdery mildew species were sequenced, revealing that
> 70 % of their genomes are repetitive sequences, which
challenges genome annotation and assembling. Cucurbits
are the most severely affected group by powdery mildew,
but little is known of its causing agent Podosphaera xan-
thii, even though its epiphytic transcriptome (disregarding
the haustorium) was recently elucidated [13].

Experimentally defining the complete transcriptome
has traditionally been a slow, costly and challenging task,
including the construction of full-length cDNA libraries.
Thus, even if many genomes have been sequenced, only
few transcriptomes have been extensively characterised
[14]. But RNA-seq has transformed this in a straightfor-
ward task. For a reliable de novo transcriptome, it is always
desirable to have many libraries to sequence from different
experimental conditions, development stages, tissues or
organs. A large amount of reads should then be processed
to assemble any tentative transcriptome. This arises a
new problem, since the computational time and mem-
ory requirements increase rapidly as the number of reads
increases, while computational resources are often lim-
ited in laboratories. Moreover, different transcriptomes
can be obtained depending on sequencing strategies and
the assembler selection, resulting in different tentative
transcript sets [15]. For example Trinity [16] or OASES
[17] aim to draw as much information as possible, so that
they are memory-intensive. Others, such as Trans-ABySS
[18] and SOAPdenovo-Trans [19] are effective provided
that the computer has enough memory. There are also
assemblers giving a final result very close to the true
transcriptome with few assembly errors, such as CAP3
[20] or Minimus [21] that are not ready for the high-
throughput sequencing. The idea that mixing assemblers
in a combined strategy would provide better transcrip-
tomes also yields several tentative transcript sets that
require further evaluation. Their suitability can be eas-
ily assessed when the genome is known, but NMOs do
not have any reference sequence to compare with. That is
why, in some cases, evaluation is performed empirically
[22, 23]; in other cases, several parameters such as accu-
racy, completeness, contiguity, chimerism, etc., have been
implemented to assess de novo transcriptome quality
[15, 24–26]. However, a true objective and comprehensive
method of evaluation is still absent.
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In the quest of repetitivity and reproducibility, bioin-
formatic analyses should be designed as workflows or
pipelines that can be easily reused or recycled [27], and
this is becoming a normal practice nowadays [25]. Hence,
the input of several libraries from different conditions
passing through several combinations of assemblers can
only be reliably approached using workflow managers
[28]. Consequently, the objective of the present study is
to obtain an automated, reproducible and flexible frame-
work that allows generating a workflow able to produce
accurate de novo transcriptomes, especially for NMOs.
The proposed framework, TransFlow, contemplates the
combination of several assemblers and several kinds of
reads (disregarding for their origin) into several sets of
tentative transcriptomes that we called ‘assemblies’. A
series of evaluation parameters are then calculated to
infer which one among them resembles as much as pos-
sible the same parameters measured in well-characterised
transcriptomes of model organisms. Results for transcrip-
tomes of tree plants (olive tree, chestnut and grapevine)
and one powdery mildew causing agent are presented to
illustrate TransFlow capabilities.

Methods
Raw read sources
Plant transcriptomes were obtained from Phytozome 12.1
(https://phytozome.jgi.doe.gov/pz/portal.html). Table 1
lists RNA-seq datasets used for reference transcriptome
evaluation, all of them corresponding to raw 2 × 100 nt
reads from different HiSeq machines.

Case study 1 was performed with total RNA from
leaves of Vitis vinifera cultivars Escursach, Shyraz, Merlot,
Garnacha and Callet and sequenced by Sistemas Genómi-
cos (Valencia, Spain) providing 397 625 017 raw 2×100 nt
reads. These data are available, but protected, at BioPro-
ject 392999.

Total RNA for case study 2 was obtained from mature
pollen grains of the Olea europaea cultivar Picual as
described in [8], providing a total of 216 497 raw
Roche/454 paired-end reads (BioProject PRJNA287107).
These data were complemented with 40 488 002 raw
2 × 75 nt paired-end reads from pollen, sequenced with

the NextSeq 550 at the Sequencing Unit of the University
of Malaga, and available, but protected, at the BioProject
392587.

For the case study 3, Castanea sativa total RNA from
stem tissues was extracted and sequenced at Beijing
Genomics Institute in a Illumina High-Seq 2000 to obtain
90 549 382 single-end reads of 50 bp, available at BioPro-
ject PRJNA392589. Additionally, a total of 263 165 raw
Roche/454 reads were downloaded from NCBI with the
accession SRR954861 and incorporated in the workflow.

For P. xanthii, 975 070 raw Roche/454 single-end reads
were used from the epiphytic structures as described in
[13]. This was complemented with total RNA isolated
from haustoria obtained from infected zucchini cotyle-
dons and sequenced with the NextSeq 550 at the Sequenc-
ing Unit of the University of Malaga, yielding a total of
531 447 575 raw 2 × 150 nt reads. All reads are avail-
able, but protected, at BioProject 393391. For this organ-
ism, two fungal transcriptome references were down-
loaded from Ensembl release 31. One was Neurospora
crassa transcriptome comprising 9 866 protein-coding
transcripts; library SRR100067, with 31 301 048 raw 2 ×
75 nt reads from purified isolate, was used for evalua-
tion in Module 4. The other reference transcriptome was
from Candida albicans, comprising 14 217 protein-coding
transcripts. The library SRR2005826, with 7 676 629 raw
2 × 100 nt reads from purified isolate, was used for
evaluation in Module 4.

Workflow description
TransFlow is a framework developed with our workflow
manager AutoFlow [28], based on Ruby scripting lan-
guage. In this work, it has been executed on a SUSE Linux
Enterprise Server 11SP2 with Slurm queue system and
Infiniband FDR/QDR network (54/40 Gbps) consisting of
216 nodes with Intel E5-2670 2.6 GHz cores for a total of
3456 cores and 8.4 TB of RAM. TransFlow can be down-
loaded from https://github.com/seoanezonjic/TransFlow.
It also requires the installation of AutoFlow and the
bioinformatic tools included in TransFlow modules, such
as SeqTrimNext [29] for pre-processing; the assemblers
MIRA4 [30], EULER-SR [31], CAP3 [20], OASES [17],

Table 1 Comprehensive information about Phytozome’s transcriptomes (version and number of protein coding sequences) and
RNA-seq datasets (library ID and number of raw reads) downloaded to evaluate the best plant reference transcriptomes in Module 4

Source Transcriptome version Protein-coding transcripts Library ID Raw reads

Arabidopsis thaliana seedligs TAIR 10 35 386 SRR4897845 78 742 616

Populus trichocarpa leaves 3.1 63 498 SRR1030352 65 442 430

Vitis vinifera leaves 12X 26 346 SRR1282039 21 171 177

Oryza sativa grain 7.0 52 424 SRR2072478 55 814 494

Triticum aestivum roots 2.2 293 053 DRR003148 7 703 831

Zea mays roots 5b+ 88 760 SRR1282039 17 003 984

https://phytozome.jgi.doe.gov/pz/portal.html
https://github.com/seoanezonjic/TransFlow
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SOAPdenovo-Trans [19], RAY [32] and Minimus2 from
the suite AMOS [33]; CD-HIT EST [34] to remove
sequence redundancy; and FullLengtherNext (our func-
tional and structural annotation tool already used in many
de novo transcriptome assembling reports [to cite a few,
[8, 13, 22, 23, 25]]) and BUSCO [35] for evaluation param-
eters. Statistical analyses are processed with the R package
FactoMineR [36].

TransFlow comes with up to five independent mod-
ules (Fig. 1) for assembling Illumina and Roche/454 reads
(Modules 1 and 2, respectively), optional combination of
both technologies (Module 3), assembly characterisation
and ranking (Modules 4 and 5). Modules are independent
and their presence depends on the nature of the reads. A
detailed description of modules is below. Estimates exe-
cution times are quite variable, since they depend on the
class and number or reads, the number of modules and
the number of cores used; our longer executions take 4–5
days using up to 200 (or more) cores. Concerning the disk
space, it will also depend on analysed data, but in some
cases up to 4 TB of disk were temporarily allocated.

Module 1: Illumina assembling and scaffolding
Illumina raw reads are the input for this module, where
reads are pre-processed with SeqTrimNext using the Illu-
mina built-in profile. Three different assemblers (OASES,
SOAPdenovo-Trans and RAY) are then executed with

k-mer 25 and 35 for contig assembling to obtain the
corresponding “primary assemblies” (‘ct’ tag, k-mer and
the assembler name are added to the assembly name).
The subsequent scaffolding step of assemblers is then
allowed (‘sc’ tag is added to the assembly name) to give
the so called “scaffolded assemblies” (Fig. 1). A new non-
redundant assembly is obtained using CD-HIT with a
identity threshold of 100% (‘cd’ tag is added to its name).
Non-redundant assemblies are reconciled using Min-
imus2 with default parameters to provide a set of longer
contigs for each pair of k-mers (‘rc’ tag is added to the
assembly name).

Module 2: Roche/454 assembling and reconciliation
Again, this module starts cleaning the raw reads
using SeqTrimNext with the specific built-in profile for
Roche/454 reads. Two different assemblers were used
with the pre-processed reads: MIRA4 (an overlap-layout-
consensus assembler) executed using RNAseq settings,
and EULER-SR (a de Bruijn graph assembler) executed
using a k-mer 29, producing “primary assemblies” (‘ct’
tag and the assembler name are added to the assem-
bly name). The resulting contigs of both assemblers are
reconciled with CAP3 to generate a “reconciled assem-
bly” (‘rc’ tag is added to the assembly name), that is
expected to improve the primary assemblies, as previously
described [8, 23].

Fig. 1 Overview and dependencies of TransFlow modules. Raw reads from sequencing platforms are used as input whether any de novo assembling
is desired. Each module is independent, except for Module 5, which requires internal or external transcriptomes. Merging module (Module 3) is also
optional since it is only required when combination of reads from different platforms is desired. Solid arrows, independently of their colour, indicate
compulsory dependencies when the parent module is present; dashed arrows indicate optional dependencies even if the parent module is present
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Module 3: merging
The aim of this module is to merge data from Roche/454
and Illumina platforms to produce a set of “combined
assemblies” (Fig. 1) that should be better than each non-
merged assembling itself. This is why it can only be
enabled when both Module 1 and Module 2 are also
enabled. Three different and simultaneous approaches
are contemplated for merging: 1) assembling-assembling
(aa), 2) Illumina assembling-Roche/454 reads (ar), and 3)
reads-reads (rr). Hence, ‘aa’, ‘ar’ or ‘rr’ tag, respectively, is
added to the assembly name.

Assembly-assembly. This approach serves to merge
each Illumina primary and scaffolded assembly of Mod-
ule 1 with primary and reconciled assemblies of Module 2.
Two combinations are produced, one using Minimus2
with default parameters, and another using RAY with
k-mers 25 and 35. Another combined assembly is
obtained after redundancy removal of all Illumina pri-
mary assemblies using CD-HIT EST, and merging with
the Roche/454 reconciled assembly using Minimus2. The
last combined assembly is performed as stated above, but
using scaffolded assemblies instead of primary assemblies.

Illumina assembly-Roche/454 reads. Every Illumina
primary and scaffolded assembly of Module 1 are merged
with the Roche/454 pre-processed reads of Module 2
using MIRA4 (considering the contigs as if they were
Sanger sequences), as well as using RAY with k-mers 25
and 35. Consequently, one combined assembly is obtained
for each Illumina primary and scaffolded assembly.

Reads-reads. In this case, pre-processed reads from both
Module 1 and Module 2 are directly assembled together
using the RAY assembler with k-mers 25 and 35, since it is
the only assembler among those described above that can
successfully handle this huge amount of reads.

Module 4: reference transcriptomes
This module was intended to configure well-characterised
reference transcriptomes from public databases for the
comparative evaluation of the last module. Reference
transcriptomes, besides belonging to closely related
species with respect to the testing assemblies, should
derive from well known genomes, although any other
draft transcriptome can also be used. RNA-seq raw
reads for each reference transcriptome are also required.
Every reference transcriptome is analysed using Full-
LengtherNext to obtain the corresponding “evaluation
parameters” described in Table 2.

Module 5: characterisation and ranking
This module is executed for every primary, scaffolded,
reconciled or combined assembly loaded from any of the

previous modules to provide the evaluation parameters
listed in Table 2. The first set of parameters is obtained
using Full-LengtherNext with full-length proteins from a
specific organism division from SwissProt for assembly
integrity characterisation. Note that it is not executed on
reference transcriptomes as it was already done on Mod-
ule 4. The last evaluation parameters of Table 2 were
calculated using BUSCO for the measurement of assem-
bly completeness by searching near-universal single-copy
orthologues selected from OrthoDB [37] for a specific
lineage.

For subsequent statistic analysis about factor impact
on the assembling, every de novo assembly is further
featured with qualitative factors referred to: 1) the ‘pro-
gram’ used in the last step of assembling, 2) the ‘task’
performed, that is, the aim pursued with the program
execution, 3) the ‘k-mer’ used in the assembling step,
and 4) the ‘platform’ to reflect the way the nucleic acids
were sequenced. A summary Table gathering features and
evaluation parameters for every assembly is constructed,
where every factor specifies the particular ‘category’ used.
This table is investigated with a principal component
analysis (PCA) using FactoMineR [36], an R package ded-
icated to multivariate data analysis. This package allows
to perform a PCA automatically onto the data and can
use supplementary data for individuals to facilitate the
PCA interpretation. It also includes the ability of explor-
ing similarities between individuals through hierarchical
clustering on principal components (HCPC), offering the
optimal number of clusters on the basis of the variance
difference between clusters [38]. Every assembly on the
summary Table is considered one individual, and the ref-
erence transcriptomes from Module 4 are supplementary
individuals, which provide a reference for assembly evalu-
ation. Those supplementary individuals do not affect the
PCA structure since their evaluation parameters are intro-
duced in the PCA function after being calculated for a
particular set of assemblies, avoiding an increased vari-
ance due to differences between testing assemblies and
reference transcriptomes. The PCA and subsequent anal-
ysis were performed keeping the first three components
as they can explain until the 85% of the observed variance
between individuals. One more capability of FactoMineR
is the correlation analysis [38] using all coordinates of the
test assemblies in the PCA space. This correlation anal-
ysis is executed between each evaluation parameter and
the coordinates of the individuals for each one of the PCA
components, giving the correlation coefficient (R) and sig-
nificance (P) for each pair of evaluation parameter-PCA
component. By default, all pairs with P > 0.05 are dis-
carded. Finally, the PCA results are subjected to HCPC to
cluster assembling approaches. The HCPC was performed
with default FactoMineR values: Euclidean distance, Ward
linkage, and the optimal number of clusters computed
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Table 2 Evaluation parameters used in TransFlow, described by their name, the software that calculates the parameter (FLN:
Full-LengtherNext), a brief description of its meaning and the expected trend for such a parameter

Parameter name Software Description Trenda

AllTransSize FLN The sum of every transcript length in nucleotides ↓
N50 FLN The shortest contig(or scaffold) length (in nucleotides) in

the set needed to cover 50% of AllTransSize
↑

N90 FLN The shortest contig (or scaffold) length (in nucleotides) in
the set needed to cover 90% of AllTransSize

↑

Contigs FLN Number of contigs mapping at least one pair of reads ↓
Contigs500 FLN Same as previous, but taking into account only contigs >

500 nt
↑

MeanContigLen FLN Mean sequence length (in nucleotides) across all useful
contigs or scaffolds

↑

Ns FLN Number of Ns (indeterminations) in the contigs or scaf-
folds

↓

MeanGapLen FLN Mean indetermination length in nucleotides, where 1 indi-
cates that gaps are randomly distributed, and greater
values indicate real gaps

↓

DiffProts FLN Number of unique, different proteins ↑
DiffComplProts FLN Same as previous, but onlyconsidering those proteins that

seem to be complete
↑

MissAssembl FLN Percentage of contigs where the annotating protein finds
similarity in both plus and minus
strands

↓

MeanContigCov FLN Fraction of the contig lengths (expressed as percentage)
covered by mapped reads. This fraction is calculated per
contig an then averaged for the full assembly

↑

ComplOrtho BUSCO Percentage of OrthoDB orthologues from a lineage fully
identified in one single contig

↑

FragOrtho BUSCO Percentage of OrthoDB orthologues from a lineage that
are fragmented across several contigs

↑

DuplOrtho BUSCO Percentage of OrthoDB orthologues from a lineage that
are repeated in several contigs

↓

All parameters are calculated for every assembly
a↑ indicates that the higher the value, the better the transcriptome; ↓ indicates that this value should be maintained in good transcriptomes as low as possible

by the HCPC function. The resulting dissimilarity matrix
serves for objective assembly ranking based on averaged
distances to reference transcriptomes. This matrix allows
to compute the Euclidean distance from each assembly to
each reference transcriptome. The Mean Distance (MD)
is then calculated along the transcriptome references for
each test assembly. It is assumed that the closer the assem-
bly parameters to the references are, the better the quality
of the assembly and the MD will be close to 0.

TransFlow customisation before execution
Customisation mainly refers to modules to be executed
by TransFlow, execution parameters for assemblers
(and others), as well as the files with reads. For conve-
nience, all customisable variables are included within
the file called launch_TransFlow.sh. Commonly editable
variables are: 1) TEMPLATES (to indicate the mod-
ules that will be used), 2) reference (path to folder

containing the fasta file(s) for one or more reference
transcriptomes), 3) reads (path to folder containing the
fastq files that will be mapped against the reference
transcriptomes, 4) read_454 (file path to the 454/Roche
reads), 5) ill_type (type of Illumina reads: paired or sin-
gle), 6) read_illumina_pair_1 - read_illumina_pair_2 /
single_illumina: path to Illumina paired/single files,
respectively, 7) BUSCO_DB (specific lineage for BUSCO),
8) FLN_DB (database name for Full-LengtherNext),
9) kmers, and 10) key_organisms (identifiers from the
assembly summary Table used as reference transcrip-
tomes). Regarding k-mers, from one single value to a set
of values can be indicated. An example of this file is
downloaded with the TransFlow scripts (https://github.
com/seoanezonjic/TransFlow/blob/master/launch_Trans
Flow.sh). Once customised, launch_TransFlow.sh is
launched, and it executes AutoFlow to manage TransFlow
modules.

https://github.com/seoanezonjic/TransFlow/blob/master/launch_TransFlow.sh
https://github.com/seoanezonjic/TransFlow/blob/master/launch_TransFlow.sh
https://github.com/seoanezonjic/TransFlow/blob/master/launch_TransFlow.sh
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TransFlow output
All results are packed in an interactive HTML report
that can be conveniently inspected to choose the most
suitable assembly; reports for the three case studies
and for Podosphaera xanthii transcriptomes are given is
Additional files 1, 2, 3 and 4, respectively. The first image
correspond to a heatmap of the evaluation parameters as
a percent of the maximum value for all assemblies, includ-
ing reference transcriptomes. Influencing parameters of
Table 2 for each assembly can be inspected graphically,
and the clusters of assemblies arises at the first sight. On
the right of the heatmap, all PCA results and the HCPC
grouping are embebed as a PDF document; some of these
figures have been used for the main text of this document.
Then, a series of tables are given, the first with the assem-
bly ranking, another with the content of every assembly
cluster, and the others correspond to evaluation parame-
ters and factors, together with their weights, of the first
two dimensions of the PCA. Finally, the values of each
evaluation parameter for all assemblies are represented
as interactive histograms, allowing users to obtain the
original data, images, or change the default plot design.

Results and discussion
Plant transcriptome references
High-quality reference transcriptomes are required for
accurate ranking of assemblies. Model transcriptomes for
plants were chosen among well charaterised plant species,
such as Arabidopsis (Arabidopsis thaliana), grapevine
(Vitis vinifera), wheat (Triticum aestivum), rice (Oryza
sativa), poplar (Populus trichocarpa) and maize (Zea

mays). Transcriptome sequences and raw reads were
loaded into TransFlow enabling modules 4 and 5. The
results shown in Fig. 2a suggest that grapevine transcrip-
tome is not a good reference due to the high values
of Ns and MeanGapLen (Table 2). Wheat transcriptome
provides high values for FragOrtho, DuplOrtho, Con-
tigs and AllTransSize, indicating that it is highly frag-
mented and highly redundant. The low values of N50, N90
and MeanContigLen for the maize transcriptome, com-
bined with the high values of AllTransSize (the second
highest) and FragOrtho indicate that it is a fragmented
and redundant transcriptome. In the case of rice tran-
scriptome, low values of Contigs500, DiffComplProts and
ComplOrtho, together with the highest value of MissAs-
sembl, drive to conclude that it is poor and incomplete. In
contrast, Arabidopsis and poplar seem to be high-quality
transcriptomes: Arabidopsis presents the highest values
of ComplOrtho, DiffProts and DiffComplProts, whereas
poplar transcriptome has the best values for N50, N90,
MeanContigLen and MeanContigCov. In fact, the cluster-
coloured PCA plot in Fig. 2b shows that both transcrip-
tomes are grouped together and clearly distinct from the
other four transcriptomes. In conclusion, transcriptomes
of Arabidopsis and poplar were chosen as reference for the
following case studies with plants.
Case study 1: assembling 2 × 100 short paired-end reads
The de novo assembling is based on one single class of
reads, requiring only the addition of Module 1 to Mod-
ules 4 and 5 (as above). Grapevine leaves transcriptome
was assembled from a huge amount (397 625 017) of Illu-
mina paired-end reads. Reads were loaded into TransFlow

Fig. 2 Classification of candidates to plant reference transcriptomes based on the evaluation parameters of Table 2. a Radar plot of evaluation
parameters for the six plant transcriptomes analysed in this work: Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), grapevine (Vitis
vinifera), wheat (Triticum aestivum), rice (Oryza sativa) and maize (Zea mays). b Dendrogram on the two first dimensions of the PCA, coloured by cluster
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to be first pre-processed with SeqTrimNext using a min-
imum read length of 95 nt. This yielded 299 905 026
pre-processed reads that, after assembling (with 250 GB
of RAM required), produced a total of 30 assemblies,
most of them clearly apart from those of Arabidopsis and
poplar (Fig. 3; the complete report is in Additional file 1).
Only scaffolded assemblies using OASES are really close
to the reference transcriptomes, being the scOasesK35
assembly the closest one. In general, most scaffolded
assemblies (tagged with ‘sc’) seem to be improved with
respect to primary assemblies (tagged with ‘ct’), but this
increase of quality is much more remarkable concern-
ing OASES, for example when scOasesK35 position is
compared to ctOasesK35 (boxed in blue in Fig. 3a). In con-
clusion, OASES seems to provide the best performance
of all assemblers used in Module 1 (Fig. 3b and Table 3,
grapevine rows), while RAY offers the poorest results.

Case study 2: merging 2 × 75 short paired-end reads and
long single reads
In this case, the transcriptome will be constructed using
reads from two different technologies (Illumina short
reads and Roche/454 long reads) from pollen of olive tree
cultivar ‘Picual’. This requires the execution of TransFlow
with its five modules enabled, and about 150 GB of
RAM were required. The de novo assembly started with

40 488 002 Illumina paired-end and 216 497 Roche/454
single raw reads. Pre-processing of Illumina reads setting
a minimum length of 65 nt provided 32 529 229 use-
ful paired-end reads. Pre-processing of Roche/454 with
default settings provided 111 242 reads. As a result of
Modules 1, 2 and 3, 181 different assemblies were gener-
ated. These assemblies were grouped into three clusters
(Fig. 4; the complete report is in Additional file 2). Clus-
ter 4.1 contains the transcriptome references, scaffolded
assemblies of Illumina reads merged with Roche/454
reads, and only reconciled assemblies of Roche/454 reads.
This suggests that Roche/454 reads play a role in the
assembling, but are not the main players. As in the
case study 1, most assembling strategies including RAY
appeared in the farthest cluster 4.3 (Fig. 4), indicating
again that this assembler does not yield appropriate tran-
scriptomes.

Based on the mean distances to reference transcrip-
tomes, the top-five assemblies (Table 3, olive tree rows)
present minor differences, ranging from 0.298 to 0.368.
Four of them include scaffolded assemblies using OASES,
being the assembly with the lowest MD that corre-
sponds only to Illumina reads, while the others contain
a combination of both Illumina and Roche/454 reads
with different approaches. Interestingly, the best assem-
bly comes from the same approach than in case study 1,
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Fig. 3 Evaluation of case study 1 (grapevine leaves) set of assemblies using PCA plots coloured by clusters. a PCA plot of the first two dimensions
with the three significant clusters found by HCPC analysis marked as green (3.1), red (3.2) and black (3.3). The primary assembly ctOasesK35 and the
scaffolded assembly scOasesK35 are boxed in blue to highlight the improvement of OASES when contigs are scaffolded. b Tree of assemblies where
clusters are boxed in the same colours as a. Cluster 3.1 (green box): the 2 plant reference transcriptomes and the 3 OASES scaffolded assemblies.
Cluster 3.2 (red box): 13 assemblies, 9 of them being scaffolded assemblies. Cluster 3.3 (black box): 14 assemblies, 11 of them being primary
assemblies
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Table 3 Top-five assemblies for each case study shown in this work with their respective mean distances from references (MD)

Assembly ID Module 1 Module 2 Module 3 MD

Case study 1: Grapevine

scOasesK35
OASES-scaffolded assembly with k-mer 35 0.383

scOasesK25
OASES-scaffolded assembly with k-mer 25 0.890

scSoap_cat_cd_rcMin2
Concatenation of the two SOAP-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2
reconciliation

1.179

scOases_cat
Concatenation of the two SOAP-scaffolded
assemblies with different kmers

1.249

scRay_cat_cd_rcMin2
Concatenation of the two RAY-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2
reconciliation

1.311

Case study 2: Olive tree

scOases_cat_cd
Concatenation of the two OASES-scaffolded
assemblies with different kmers
and sequence redundancy removal

0.297

aaMin2/scALL/454Cap3
All scafolded assemblies CAP3-reconciled

assembly
Minimus2-combined
assembly
of assemblies

0.323

scOases_cat
Concatenation of the two SOAP-scaffolded
assemblies with different kmers

0.324

arMIRA/scOases_cat_cd
Concatenation of the two OASES-scaffolded
assemblies with different kmers
and sequence redundancy removal

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.352

aaMin2/scOases_cat_cd_rcMin2/454Cap3
Concatenation of the two OASES-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2
reconciliation

CAP3-reconciled
assembly

Minimus2-combined
assembly
of assemblies

0.367

Case study 3: Chestnut

arMIRA/scOases_cat_cd_rcMin2
Concatenation of the two OASES-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2
reconciliation

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.189

arMIRA/scOases_cat_cd
Concatenation of the two OASES-scaffolded
assemblies with different kmers
and sequence redundancy removal

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.205

arMIRA/scOasesK25
OASES-scaffolded assembly with k-mer 25 Pre-processed reads Assembly-reads com-

bination using MIRA4
0.225

aaMin2/scOases_cat_cd_rcMin2/454Cap3
Concatenation of the two OASES-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2
reconciliation

CAP3-reconciled
assembly

Minimus2-combined
assembly
of assemblies

0.269

aaMin2/scALL/454Cap3
All scafolded assemblies CAP3-reconciled

assembly
Minimus2-combined
assembly
of assemblies

0.270
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Fig. 4 Evaluation of case study 2 (olive tree pollen) set of assemblies. PCA plot of the first two dimensions with the three significant clusters found
by HCPC analysis is shown. Cluster 4.1 (red dots): the 2 plant reference transcriptomes, all Illumina assemblies combined with Roche/454 reads using
MIRA4, and 2 Roche/454 assemblies (one using only MIRA4 and the other is the CAP3 reconciled assembly). Cluster 4.2 (green dots): all (primary and
scaffolded) Illumina assemblies, except using RAY, executed with k-mer 35, the 2 Roche/454 and Illumina reads-reads merging using RAY with
k-mers 25 and 35, all the assembly-assembly combinations using Minimus2 and the 2 all-to-all reconciliations using Minimus2. Cluster 4.3 (black
dots): EULER-SR primary assembly, Illumina RAY assembly with k-mer 35, all the Illumina assemblies merged with Roche/454 reads using RAY, and all
the assembly-assembly combinations performed with RAY

while the first assembly only containing Roche/454 reads
appeared at position 64 with MD = 0.708 (MIRA4 and
EULER-SR primary assemblies merged with CAP3; see
Additional file 2). Therefore, Illumina reads were enough
to provide the best assembling, while Roche/454 reads
seems to be complementary. Since these Roche/454 were
the only reads used for the first pollen transcriptome
[8], it is expected that the current version of the
olive tree pollen has improved it. On the other hand,
combining all reads with RAY does not seem again to
provide successful results, since they are mainly placed
in cluster 4.3.

Case study 3: merging single, very short (50 bp) and long
(Roche/454) reads
Another interesting case to study is the de novo assem-
bling of a transcriptome using Roche/454 long reads

merged with very short and single-end Illumina reads.
Again, the five modules of TransFlow are necessary,
but different parametrisation for Illumina assemblers is
required to deal with these single, short reads. The RAM
requirements were similar to case study 2 (about 150 GB).
A total of 263 165 raw Roche/454 single-end reads and
90 549 382 raw Illumina single-end reads of chestnut stem
were pre-processed with default parameters, providing
147 705 Roche/454 and 88 377 297 Illumina useful reads.
As in the case study 2, a total of 181 different assemblies
were generated and analysed. Although poplar reference
is always more distant from testing assemblies in Figs. 3
and 4 (probably due to the high number of tran-
scripts compared to Arabidopsis), the distance to chestnut
assemblies in Fig. 5a is dramatically higher and distorts
statistical distances. For this reason, only Arabidopsis ref-
erence transcriptome was used for ranking in this case
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(Fig. 5b; the complete report is in Additional file 3), pro-
viding comparable results to case studies 1 and 2.

Four clusters can be observed in Fig. 5b. The con-
tent of cluster 5.1 suggests that Roche/454 reads are
more informative for chestnut assemblies than were for
olive tree (case study 2), probably due to the shorter
read length and the absence of paired-reads. Moreover,
most Illumina assemblies are relegated to cluster 5.3,
while they appeared within cluster 4.2 in case study 2,
reinforcing the idea that Illumina reads are less infor-
mative in this case. A detailed inspection of the top-five
assemblies based on their distance to references (Table 3,
chestnut rows) clearly shows that all of them, with MDs
ranging from 0.180 to 0.230, correspond to combina-
tions of Illumina assemblies with Roche/454 reads or
assemblies. However, Roche/454 reads alone are relegated
to the 44th position with MD = 0.401 (see Additional
file 3), which contrasts with the 64th position with a
MD = 0.708 in the case of olive tree (see above). Taken
together, it can be concluded that Roche/454 reads con-
tribution in chestnut is clearly more significant than in
the case of olive tree transcriptome. As expected, 2 × 75

nt reads reconstructed better transcriptomes than single-
end 50 nt reads, which seems to be the threshold for
the requirement of longer reads (such as Roche/454) for
improved transcriptomes. Finally, it also demonstrates
that different raw data may require different assembling
approaches.

Fungal transcriptomes selected on biological structures
The versatility of TransFlow can be illustrated with the
construction of several de novo transcriptomes for the
fungus P. xanthii with different types of reads and biolog-
ical structures. The aim was to obtain an accurate tran-
scriptome for the haustorium, another for the epiphytic
structures, and a comprehensive transcriptome covering
both biological structures. The change of filum also
required new external reference transcriptomes based on
fungal species. The model organism Candida albicans
and Neurospora crassa were chosen based on public read
availability and transcriptome completeness. A total of
975 070 raw Roche/454 single reads were used from the
epiphytic structures [13], and 531 447 575 raw Illumina
2 × 150 nt reads from low quality RNA extractions from
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Fig. 5 Evaluation of case study 3 (chestnut stem) set of assemblies. a PCA plot of the first two dimensions coloured by clusters using the two plant
reference transcriptomes. Only three clusters are observed, marked as green (containing only the poplar reference transcriptome), red (containing
the Arabidopsis reference transcriptome and most Illumina and Roche/454 combinations), and black. b PCA plot of the same data as in a, but using
only the Arabidopsis reference transcriptome in the plot and for clustering. Four significant clusters can be now distinguished. Cluster 5.1 (blue dots)
contains the Arabidopsis reference transcriptome, three assembly-assembly combinations of OASES scaffolding that includes the k-mer 25 with the
Roche/454 reconciled assembly using Minimus2, the Minimus 2 merging of all Illumina scaffolded assemblies with the Roche/454 reconciled
assembly, and four Illumina OASES-scaffolded assemblies with k-mer 25. Cluster 5.2 (red dots): two (MIRA4 and reconciled) Roche/454 assemblies,
the all Illumina assemblies combined with Roche/454 reads using MIRA4, and the RAY assemblies with k-mer 35 merged with the Roche/454
reconciled assembly using Minimus2. Cluster 5.3 (green dots): all assembly-assembly combinations performed with Minimus2, except for the RAY
merging using k-mer 25, the reads-reads combined assembly using RAY with k-mer 35, and the all Illumina assemblies, excepting RAY assemblies
with k-mer 35. Cluster 5.4 (black dots): all RAY assembly-assembly combinations, Roche/454 primary assembly with EULER-SR, Illumina assemblies
using RAY with k-mer 35 and reads-reads combination assembly using RAY with k-mer 35
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isolated hautoria (A. Polonio and A. Pérez-García, per-
sonal communication). As in case studies 2 and 3, this
required the execution of TransFlow with its 5 modules.
Pre-processing tasks were done with default parameters,
providing 687 517 Roche/454 and 140 862 905 Illumina
pre-processed reads. The fact that only a 26.5% of Illu-
mina reads were useful confirmed the RNA purification
difficulties from haustoria. The 181 assemblies obtained
were closer to reference transcriptomes than in previous
case studies (compare axis ranges in Fig. 6 compared
to previous figures). This indicated that the quality of
reconstructed transcriptomes for P. xanthii is appropriate.

Five clusters were defined (Fig. 6; the complete report
is in Additional file 4), where cluster 6.1, containing
the transcriptome references, was similar to cluster 4.1.
In contrast to case studies 2 and 3, the last two clus-
ters (6.4 and 6.5) comprise most Illumina assemblies,

while Roche/454 reads are more prominent in clus-
ters 6.1 to 6.4. Moreover, in the top-five assemblies of
the complete organism (Table 4, comprehensive tran-
scriptome rows), the combined assemblies produced from
Module 3 are the nearest to the reference transcrip-
tomes, being the only-Illumina assemblies the most dis-
tant. Taken together, these results suggest that Illumina
reads in this experiment yielded a poor transcriptome,
while Roche/454 reads make the main contribution. This
apparently contradictory behaviour may be related to the
original quality of RNA used for sequencing, or alterna-
tively to the putative low contribution of haustorium to
the comprehensive transcriptome. Finally, data presented
in Table 4 also serve to decide that the best haustorium
transcriptome (where only Illumina reads are available) is
again a scaffolded assembly using OASES, and that the
best epiphytic transcriptome (made only from Roche/454

Fig. 6 Evaluation of P. xanthii set of assemblies. PCA plot of the first two dimensions with the five significant clusters found by HCPC analysis is
shown. Cluster 6.1 (light blue dots): fungus references, two (MIRA4-primary and reconciled) Roche/454 assemblies and all the Illumina assemblies
combined with Roche/454 reads using MIRA4. Cluster 6.2 (dark blue dots): all assembly-assembly combinations using Minimus2. Cluster 6.3 (green
dots): all Illumina assemblies merged with Roche/454 reads using RAY and the Roche/454 EULER-primary assembly. Cluster 6.4 (red dots):
reads-reads, RAY-combined assemblies and all the Illumina assemblies, excepting the OASES-primary assemblies. Cluster 6.5 (black dots): all
assembly-assembly combinations performed with RAY and OASES-primary assemblies
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Table 4 Top-five assemblies by biological structure for P. xanthii with their respective mean distances from references

Assembly ID Module 1 Module 2 Module 3 MD

Haustorium
scOases_cat_cd_rcMin2

Concatenation of the two OASES-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2 reconcil-
iation

0.3848

scOases_cat
Concatenation of the two OASES-scaffolded
assemblies with different kmers

0.3850

scOases_cat_cd
Concatenation of the two OASES-scaffolded
assemblies with different kmers and
sequence redundancy removal

0.3861

scSoap_cat_cd
Concatenation of the two SOAP-scaffolded
assemblies with different kmers and
sequence redundancy removal

0.3887

scOasesK35
OASES-scaffolded assembly with k-mer 35 0.3915

Epiphytic
structures

ctMIRA_ctEulK29_rcCAP3
CAP3-reconciled
assembly

0.0558

ctMIRA
MIRA4-primary
assembly

0.0688

ctEulK29
EULER-SR primary
assembly with k-mer
29

0.1435

Comprehensive
transcriptome

arMIRA/scSoap_cat_cd_rcMin2
Concatenation of the two SOAP-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2 reconcil-
iation

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.0470

arMIRA/ctSoapK25
SOAP-primary assembly with k-mer 25 Pre-processed reads Assembly-reads com-

bination using MIRA4
0.0473

arMIRA/scRay_cat_cd_rcMin2

Concatenation of the two RAY-scaffolded
assemblies with different kmers, sequence
redundancy removal and Minimus2 reconcil-
iation

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.0476

arMIRA/ctRayK35

RAY-primary assembly with k-mer 35 Pre-processed reads Assembly-reads com-
bination using MIRA4

0.0479

arMIRA/ctSoap_cat_cd_rcMin2

Concatenation of the two SOAP-primary
assembling kmers, sequence redundancy
removal and Minimus2 reconciliation

Pre-processed reads Assembly-reads com-
bination using MIRA4

0.0479
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reads) was obtained after the reconciliation of MIRA4
and EULER-SR primary assemblies using CAP3, as was
empirically performed in the original study [13].

Is there any ‘best assembly’?
All case study assemblies, that means, all plant assem-
blies, were analysed together and then compared to the
Arabidopsis and poplar plant references (Fig. 7). Four
clusters were obtained, with assemblies from the three
plants distributed across all clusters. The best assembly
of all is the grapevine scaffolded assembly using OASES
and k-mer 35 (mean distance to references: 0.04); it is fol-
lowed by assemblies of the other plant species (including
another grapevine assembly) with distances ranging from
0.07 to 0.09 (results not shown). Even though cluster 7.1
is comprised only of grapevine assemblies, the nature

of reads (long, short, paired, single...) or the number of
reads to be assembled, seem to be more significant, since
grapevine assemblies (the one with more Illumina “long”
paired-reads) are located in the closest clusters (7.1 and
7.2), while the Roche/454 reads apear in the farthest clus-
ters (7.3 and 7.4). The assembler is also important, since,
once again, most strategies including RAY appear in the
farthest cluster.

Significant evaluation parameters
Assembling strategies based on OASES have produced
suitable transcriptomes, from illumina reads alone or
merged with Roche/454 long reads, depending on the
nature of the original reads. Contribution of each eval-
uation parameter of Table 2 to the final decision was
inspected based on the top-three parameters in the first

Fig. 7 Evaluation of all plant assemblies. PCA plot of the first two dimensions with the four significant clusters found by HCPC analysis is shown.
Cluster 7.1 (blue dots): plant references and most of the grapevine scaffolding assemblies. Cluster 7.2 (green dots): most of the grapevine primary
assemblies, all chestnut and most of olive Minimus2 combinations, olive SOAP and OASES primary/scaffolding assemblies, most of the chestnut
primary/scaffolding assemblies and the two chestnut RAY read-assembly combinations. Cluster 7.3: (red dots): all assembly-read MIRA4
combinations, all MIRA primary assemblies (and reconciliations with EULER-SR assemblies), chestnut Minimus2 combinations of RAY k-mer 35
primary/scaffolding assemblies, olive scaffolding assemblies that contains the k-mer 25 and Minimus2 combinations of them. Cluster 7.4 (black
dots): all RAY assembly-assembly combinations, all EULER-SR primary assemblies, chestnut RAY primary/scaffolding assemblies, six olive Minimus2
assembly-assembly combinations and all olive Illumina primary assemblies and RAY scaffolding assemblies
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two dimensions of PCA (Table 5), where FactoMineR set-
tings give significance when P < 0.05. Regarding plant
references, the most significant parameters were only in
the first dimension: Contigs, Contigs500, AllTransSize
and FragOrtho, all of them being the main signs of tran-
scriptome completeness, and absence of redundancy. This
indirectly supports that the evaluation parameters were
highly suitable when optimal assemblies are evaluated.
Contigs500 deserves a mention, since it is also important
for the first dimension when Roche/454 reads are avail-
able, and it appears in the second dimension when only
Illumina reads are available. On the contrary, Contigs and
AllTransSize are relegated to the second dimension, when
present, for de novo assemblies. The evaluation parame-
ters that emerge for de novo assemblies are N50 (twice in
the first dimension and once in the second dimension),
ComplOrth and DiffComplProts (twice in the first dimen-
sion), and N90 and MeanContigLen (once in the first
dimension and twice in the second dimension). In conclu-
sion, each case study has its own behaviour and weights
differently the evaluation parameters, with a self-adapted
strategy that gives an objective and automatised way for
detecting suitable assemblies (transcriptomes) within a
pool of them. Gene expression studies are ongoing with
these suitable transcripts.

Conclusions
It has been shown that TransFlow can objectively assess
the quality of up to 181 different assembling strategies to

extract which one reconstruct a transcriptome of similar
quality to an external reference. Since it is based on PCA,
it is self-adapted to every set of experimental reads. It has
been revealed that 2 × 100 nt reads (or maybe longer)
and OASES assembler can provide very good transcrip-
tomes, and that the contribution of Roche/454 reads is
noticeable only when short, single-reads were used. More-
over, it seems that OASES is a good Illumina assembler
and RAY is a bad transcriptome assembler. The evalu-
ation parameters of Table 2 were accurate for reference
transcriptomes, as inferred from Table 5, indicating that
all assemblies analysed in this manuscript are suboptimal
(assembling parameters have not been optimised for each
dataset in the seek of comparison), suggesting that new
assemblers or new combination strategies can improve the
final transcriptome.

For convenience, most case studies have been per-
formed with plants with the same reference transcrip-
tome. The inclusion of a fungal study with Neurospora
crassa and Candida albicans as reference transcriptomes
illustrates that TransFlow depends only on the nature of
reads and not the source, provided that a relatively close
species can be used as transcriptome references. In fact,
we are currently using TransFlow in our laboratories to
assemble genomes from sole (a flatfish).

Although TransFlow has been tested here only with
a limited number of assemblers, it can be customised
or extended with more assemblers and more strategies.
In future versions of TransFlow we plan to add a new

Table 5 Top significant assembly evaluation parameters of the first two PCA dimensions for each case study. The R coefficient
measures the variable correlation with each PCA dimension

PCA Dimension 1 PCA Dimension 2

Case study Name R Coef Name R Coef

Plant references Contigs 0.955 Non-significant

Contigs500 0.953

AllTransSize 0.947

FragOrtho 0.887

Case study 1 N50 0.957 Contigs 0.907

(Vitis vinifera) MeanContigLen 0.943 AllTransSize 0.650

MeanContigCov 0.940 Contigs500 0.545

Case study 2 ComplOrth 0.959 N90 0.923

(Olea europaea) Contigs500 0.940 MeanContigLen 0.869

DiffComplProts 0.940 MeanContigCov 0.811

Case study 3 Contigs500 0.981 N90 0.949

(Castanea sativa) ComplOrth 0.955 MeanContigLen 0.917

DiffProts 0.937 N50 0.809

All Podosphaera DiffComplProts 0.966 Contigs 0.912

xanthii transcriptomes Contigs500 0.959 AllTransSize 0.801

N50 0.936 Ns 0.780
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modules capable of handle SMRT or Nanopore reads,
since these technologies will become more and more
present in high-throughput studies than the deprecated,
although useful, Roche/454 reads. Additionally, Trans-
Flow can be used as a benchmarking platform for
assembler evaluation as follows: the combination of
Modules 4 and 5, without further modification, can
evaluate not only reference transcriptomes, but also
several de novo transcriptomes assembled with other
strategies.

The framework cannot only increase in complexity, but
also in simplicity. For example, since (i) Illumina primary
assemblies were always improved by scaffolded assem-
blies, (ii) Roche/454 primary assemblies are improved
by reconciled assemblies, and (iii) approaches based on
RAY are on the farthest positions, primary assemblies
of Modules 1 and 2 and RAY assembler should be
removed in future versions of TransFlow, while other
assemblers would be included depending on literature
comparisons.

The complete HTML report also offers the scientist the
possibility of monitoring the evolution of assemblies, that
is, if the strategy is approaching the initial assembly to the
reference or not. Also, one can see if there is any factor
that is clearly influencing on the strategies or the quality
of reads.

Additional files

Additional file 1: HTML report of TransFlow for Study Case 1 (grapevine).
The zip file contains the elements of the report: the HTML file called
assembly_report.html that can be open in any browser (javascript must be
enabled) and inspected thoroughly; the folder js must be side-by-side to
the HTML file for the right function. (ZIP 674 kb)

Additional file 2: HTML report of TransFlow for Study Case 2 (olive tree).
The zip file contains the elements of the report: the HTML file called
assembly_report.html that can be open in any browser (javascript must be
enabled) and inspected thoroughly; the folder js must be side-by-side to
the HTML file for the right function. (ZIP 903 kb)

Additional file 3: HTML report of TransFlow for Study Case 3 (chestnut)
using only Arabidopsis as reference transcriptome. The zip file contains the
elements of the report: the HTML file called assembly_report.html that can
be open in any browser (javascript must be enabled) and inspected
thoroughly; the folder js must be side-by-side to the HTML file for the right
function. (ZIP 890 kb)

Additional file 4: HTML report of TransFlow for P. xanthii. The zip file
contains the elements of the report: the HTML file called
assembly_report.html that can be open in any browser (javascript must be
enabled) and inspected thoroughly; the folder js must be side-by-side to
the HTML file for the right function. (ZIP 889 kb)

Acknowledgements
This work would not have been possible without the computer resources and
the technical support provided by the Plataforma Andaluza de Bioinformática
of the University of Málaga.

Funding
This work was supported by co-funding by the European Union through the
European Regional Development Fund (ERDF) 2014-2020 “Programa
Operativo de Crecimiento Inteligente” together with Spanish AEI “Agencia

Estatal de Investigación” (BFU2016-77243-P, RTC-2015-4181-2,
RTC-2016-4824-2, AGL2013-41939-R and AGL2016-76216-C2-1-R), AEI-INIA
(RTA2013-00023-C02 and RTA2013-00068-C03), and Junta de Andalucía
(P2011-CVI-7487), as well as CSIC grant 201540E065. PS received a post-
doctoral fellowship from Junta de Andalucía linked to grant P10-CVI-6075.
Publication costs were funded by the mentioned RTA2013-00068-C03 grant.

Availability of data and materials
Plant transcriptomes are available from Phytozome 12.1 (https://phytozome.
jgi.doe.gov/pz/portal.html). RNA-seq datasets with accession numbers
SRR4897845, SRR1030352, SRR1282039, SRR2072478, DRR003148, SRR954861,
SRR1282039, SRR100067, SRR2005826 as well as the BioProjects 392999,
PRJNA287107, 392587 and PRJNA392589, are available at Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra). TransFlow can be downloaded
from https://github.com/seoanezonjic/TransFlow.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 14, 2018: Selected articles from the 5th International Work-Conference
on Bioinformatics and Biomedical Engineering: bioinformatics. The full contents
of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-19-supplement-14.

Authors’ contributions
PS and ME defined the assembling approaches. PS, ME and RC programmed
the workflows. ME, RC, AP, EC, JQ, and JB collected and prepared the reads.
APG, JDA, LG and MGC analysed and compared the results. PS and MGC
prepared the manuscript. All authors have read, contributed and approved
the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Departmento de Biología Molecular y Bioquímica, Universidad de Málaga,
Campus de Teatinos s/n, 29071 Malaga, Spain. 2Plant Reproductive Biology
Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants.
Estación Experimental del Zaidín. CSIC, Prof. Albareda, 1, 18160 Granada, Spain.
3Departamento de Microbiología, and Instituto de Hortofruticultura
Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo
Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos
s/n, 29071 Malaga, Spain. 4Department of Chemistry and Biochemistry,
Worcester Polytechnic Institute, 100 Institute Road, 01609-2280 Worcester,
MA, USA. 5Instituto Andaluz de Investigación y Formación Agraria (IFAPA),
Centro de Churriana, Cortijo de la Cruz s/n, 29140 Churriana, Spain. 6Grup de
Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament
de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5,
07122 Palma de Mallorca, Spain. 7Departamento de Sistemas y Recursos
Naturales, ETSI Forestal, de Montes y del Medio Natural, Universidad
Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain. 8CBGP,
INIA-Universidad Politécnica de Madrid, Campus de Montegancedo, 28223
Pozuelo de Alarcón, Spain.

Published: 20 November 2018

References
1. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW.

Translating rna sequencing into clinical diagnostics: opportunities and
challenges. Nat Rev Genet. 2016;17(5):257–71. https://doi.org/10.1038/
nrg.2016.10.

2. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR,
Bolduc V, Waddell LB, Sandaradura SA, O’Grady GL, Estrella E, Reddy HM,
Zhao F, Weisburd B, Karczewski KJ, O’Donnell-Luria AH, Birnbaum D,
Sarkozy A, Hu Y, Gonorazky H, Claeys K, Joshi H, Bournazos A, Oates EC,

https://doi.org/10.1186/s12859-018-2384-y
https://doi.org/10.1186/s12859-018-2384-y
https://doi.org/10.1186/s12859-018-2384-y
https://doi.org/10.1186/s12859-018-2384-y
https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://www.ncbi.nlm.nih.gov/sra
https://github.com/seoanezonjic/TransFlow
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.1038/nrg.2016.10


Seoane et al. BMC Bioinformatics 2018, 19(Suppl 14):416 Page 113 of 176

Ghaoui R, Davis MR, Laing NG, Topf A, Genotype-Tissue Expression
Consortium, Kang PB, Beggs AH, North KN, Straub V, Dowling JJ,
Muntoni F, Clarke NF, Cooper ST, Bönnemann CG, MacArthur DG.
Improving genetic diagnosis in mendelian disease with transcriptome
sequencing. Sci Transl Med. 2017;9(386):. https://doi.org/10.1126/
scitranslmed.aal5209.

3. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A,
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