
Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418
https://doi.org/10.1186/s12859-018-2386-9

RESEARCH Open Access

Deep learning architectures for prediction
of nucleosome positioning from sequences
data
Mattia Di Gangi1,2, Giosuè Lo Bosco3,4* and Riccardo Rizzo5

From 5th International Work-Conference on Bioinformatics and Biomedical Engineering
Granada, Spain. 26-28 April 2017

Abstract

Background: Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA.
Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of
the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation
of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity
concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA
substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully
performed by computational methods using a sequence features representation.

Results: In this work, we propose a deep learning model for nucleosome identification. Our model stacks
convolutional layers and Long Short-term Memories to automatically extract features from short- and long-range
dependencies in a sequence. Using this model we are able to avoid the feature extraction and selection steps while
improving the classification performances.

Conclusions: Results computed on eleven data sets of five different organisms, from Yeast to Human, show the
superiority of the proposed method with respect to the state of the art recently presented in the literature.

Keywords: Nucleosome classification, Epigenetic, Deep learning networks, Recurrent neural networks

Background
The genome of eukaryote species is embedded into the
nuclei of their cells. This is due to the presence of nucleo-
somes, which are histone octamers where 150 bp of DNA
are wrapped in about 1.7 turns, separated by stretches
of DNA referred as linker sequences. Starting from this
low-level organization, the nucleosomes arrange them-
selves through successively higher-order structures to
finally form the chromosomes. Apart from this packing
property, the genome-wide location of the nucleosomes

*Correspondence: giosue.lobosco@unipa.it
3Dipartimento di Matematica e Informatica, Università degli studi di Palermo,
Via Archirafi, 34, 90123 Palermo, Italy
4Dipartimento di Scienze per l’Innovazione tecnologica, Istituto
Euro-Mediterraneo di Scienza e Tecnologia, Via Michele Miraglia, 20, 90139
Palermo, Italy
Full list of author information is available at the end of the article

is fundamental for many biological processes. Gene reg-
ulation is maybe the most relevant of these processes,
established by the nucleosome property of influencing
DNA protein binding. For example, several studies have
shown evidence that the transcription activity in pro-
moter regions is inversely proportional to the nucleosome
lacking [1]. Other important biological problems directly
related to nucleosome positioning are co-transcriptional
splicing, DNA replication and DNA repair [2–5].

A more detailed characterization of the eukaryotic DNA
machinery is that nucleosome positioning and high-order
chromatin structures together constitute a sort of con-
trol logic of this machinery. Moreover there is special
evidence that distinct DNA sequence features are associ-
ated to nucleosome presence [6, 7]. Unfortunately, this is
not the unique cause that determines the phenomenon,

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2386-9&domain=pdf
mailto: giosue.lobosco@unipa.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 128 of 176

as demonstrated by the influence that special proteins
can operate to nucleosomes [8]. Nonetheless, there is
a special interest in understanding to which extent the
DNA sequence specificity is responsible for nucleosome
positioning. This is demonstrated by the number of com-
putational models that have been proposed so far [9].
Some of them are based on statistical models that use as
a priori information the estimated distributions of din-
ucleotides from in vitro and in vivo sequences [10–13].
Also biophysical inspired models have been proposed
[14, 15]. Others use machine learning methodologies such
as logistic regression [16], Hidden Markov Models [17]
and support vector machines [18]. The main character-
istic shared by all the above-mentioned methodologies is
the use of manually-extracted features to represent the
input sequences. Establishing such details is crucial for the
effectiveness of the computational solution, and this task
is usually performed by supervision of the experts and a
preliminary step of feature representation.

For example, in the case of the machine learning
methodology for nucleosome identification, an effec-
tive way of representing the sequences is by the so
called k-mers representation as demonstrated by several
methodologies [19–25]. This representation maps a DNA
sequence into a numerical space by means of a fixed-
length vectors whose components are the count of each of
the substrings belonging to a finite set of words.

Among the possible machine learning methods, the
recent adoption of the so called deep learning neural
networks (DLNN) [26] has produced as result very impor-
tant advancements in several arduous artificial intelli-
gence tasks [27]. We can affirm that nowadays, DLNN
represents the state of the art for most of the machine
learning problems. Moreover, another special property of
the DLNN models that contributes to further improve
their potentiality is the so called representation learning
property i.e. the ability of such methods to automatically
extract and consider useful features from the input pat-
terns without using any a priori knowledge about the
problem domain.

The two most effective kinds of DLNN successfully
adopted so far for sequential input data belong to the
classes of Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). CNNs have a feed-
forward scheme, and are mainly composed of an initial
layer of convolutional filters whose output is processed by
nonlinear activation functions followed by a sub-sampling
layer. The final classification is decided by a fully con-
nected layer [28]. Collobert et al. [29] firstly shown that
CNNs can be used effectively also for sequence analysis,
in the general case of text classification.

RNNs have been proposed for processing sequential
data. They are characterized by an hidden state that acts
like an internal memory. The memory about the past is

implemented by feedback connections directed through
the hidden state so that it can be updated taking into
consideration what happened in the previous time steps.
Due to this memory property, RNNs are able to handle
sequence information over time, and this could represent
a prominent property for sequence classification.

Some DLNN for sequence classification have been pro-
posed so far, both for generic sequences [30–32] and for
the case of nucleosome related ones [33, 34]. In particu-
lar, a CNN architecture that adopts the k-mers as feature
representation and extraction step has been proposed for
nucleosome classification[33]. Moreover, a more effective
version of a DLNN which uses a convolutional layer for
automatically extract the sequence features, and a recur-
rent layer to deal with the longer-range positional depen-
dency between part of the sequence has been recently
proposed [34].

In this work, we extend this latter contribution by
slightly modifying the network architecture and enlarg-
ing the experimental part with new datasets and more
evaluation setups. The extended evaluation allows a com-
parison of the proposed methodology for nucleosome
identification against many previously proposed method-
ologies. The main advantage of the proposed method is
that it does not need any feature extraction or selection
process, a step that seems to be fundamental for all the
most successful computational methods for nucleosome
identification.

Methods
DLNNs represent now the state of the art approach for
many machine learning applications: they are character-
ized by the presence of several stacked layers, each pro-
ducing a higher-level representation of the data coming
from the previous layer. For a classification task, the last
layer is able to predict the probabilities for each class rely-
ing on a high-level representation of the data that has
been learnt automatically by the network. One interesting
aspect of deep learning is its capability to learn to extract
features starting from input in a raw form, i.e. one-hot
encoding for genome sequences, even though it’s possible
to add external knowledge from which the network can
benefit. In this work, we do not take in consideration the
latter option. In the deep learning literature, we can find
various kinds of layers that can be applicable to different
types of data and can be chosen according to the type of
features we expect can be useful for the task. For instance,
convolutional layers can learn local relations in a sequence
or an image, recurrent layers can learn features useful
for sequences of data and the more classical feed-forward
layers can learn global features from the samples.

A network architecture is given by the number, the
kind and the sequence of the layers, together with the
parameter values.

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 129 of 176

In the following subsections we will introduce the basic
layers used to build our neural model and will discuss the
architecture used for the network, finally, we will describe
the datasets used for the experiments.

Convolutional layer
In general, a 1-D convolutional layer processes an input x
in the form of numerical matrix of size m × R, giving as
output a matrix h of size L × R, where L is the number
of output feature maps. A feature map h is the result of
the convolution of the data and a kernel wl of length k, to
which a nonlinear function g is applied:

ql
i =

k∑

u=0
wl(u)x(i − u) (1)

hl
i = g

(
ql

i + bl
)

(2)
In the formulas above, k is a parameter of the con-

volution and represents the number of adjacent string
positions taken into account during the convolution. The
choice of k determines the kind of features that can be
learned by the network, as well as the computational
speed. A higher value of k means that a larger area is
covered each time, but requires more computations to be
performed. Common values of k range from 1 to 7. We
choose to use filters of size not greater than 5 because the
output of the convolutional layer can be seen as continu-
ous vectors for k-mers, and from the previous study seems
that k-mers longer than 5 do not help in this classification
task.

In many cases, a convolutional layer is followed by a
pooling layer that is used to subsample and regularize the
input, in order to speed up the computation process and to
prevent overfitting. The max-pooling acts as a nonlinear
down-sampling by partitioning the input vector into a set
of non-overlapping regions and, for each sub-region, their
maximum value is chosen as output. This processing layer
reduces the complexity of the following layers and oper-
ates a sort of translational invariance. This characteristic
can be useful in the case of DNA sequences, in particu-
lar when the presence of certain DNA substring is more
relevant than their positioning.

Long short-term memory layer
A recurrent neural network (RNN) is a processing unit
capable to process sequences of data. It stores a so-called
hidden state that is updated after the computation of every
time step. The new hidden state is a function of the old
hidden state and the input at the current time step:

ht = g (Whxt + Uhht−1 + bh)

where Wh and Uh are respectively the weight matrices for
the input and the hidden state, bh is a bias vector, and g is
a nonlinear activation.

For each time step t, the hidden state ht contains a
summary of the sequence seen until time step t, thus the
last hidden state hT should contain a summary of the
sentence. Unfortunately, as Wh and Uh are fixed during
the processing of a sequence, the importance of each
input decays exponentially with the distance from the
end. Another problem that limits the learning capability
of this kind of layer is the vanishing gradient problem
[35], which greatly reduces the number of time steps that
are actually involved in the learning. A Long Short-Term
Memory (LSTM) layer [36] is a variant of a recurrent layer
explicitly designed to alleviate the vanishing gradient
problem , and selecting the inputs that are relevant for
updating the hidden state. The LSTM can be described
by the following equations

ft = σ (Wfxt + Ufht−1 + bf)

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

ct = tanh (Wcxt + Ucht−1 + bc)

st = ft � st−1 + it � ct

ht = tanh (st) � ot

where it, ft, ot are respectively, the input, forget and output
gates, and � represents the element-wise multiplication.
The function sigma and tanh indicate sigmoid and hyper-
bolic tangent functions respectively. The gates are vectors
that assume values in the range [0, 1] and decide, com-
ponent by component, which part of the input, of the
previous hidden state and of the candidate output should
flow through the network.

The LSTMs are used nowadays for several applications
ranging from automatic speech recognition [37], machine
translation [38], image captioning [39], and all the tasks
requiring sequence processing or generation.

Fully connected layer
The fully connected layer is constituted by arrays of non-
linear units where each unit calculates a weighted sum
of all the outputs from the preceding layer and gener-
ates an output signal by using a nonlinear function. The
nonlinearity can be a smooth curve as the sigmoid or a
piecewise linear function as the so-called rectified linear
units (ReLU).

Dropout
The dropout [40, 41] is a layer that acts as a regulariza-
tion to prevent the overfitting. It can be added after any
layer of the network and it randomly sets to zero units
from the preceding layer with a fixed probability p dur-
ing the training. Without the dropout, each computing
unit is pushed to learn to detect one single feature from
the preceding layer, which is a clear sign of overfitting.

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 130 of 176

By shutting down the units randomly, the network can-
not rely on the outcome of specific units and the learning
is spread among the features. The regularization obtained
with this method can be considered as an efficient model
averaging. In fact, as during each round of training the
network architecture is different, it is equivalent to train a
high number of networks with shared parameters. When
p = 0.5, it is equivalent to training 2W networks with
shared parameters, where W is the number of neurons
subject to dropout.

The proposed deep architecture
Finding the most suitable architecture for a DLNN is an
open problem. Zeng et al. [42] analyze the design of the
convolutional neural networks for sequence classification.
The authors studied the structure of the convolutional
neural network by varying the number of kernels and the
number of layers. Among the conclusions of the work, the
authors find that increasing the number of convolutional
layers gives only a small improvement in the network per-
formances, and a more complex architecture needs more
training time and more training data to obtain a little gain
in the classification results. Starting from these obser-
vations, the authors conclude that CNN performances
do not scale easily with the complexity of the network.
Following these results, in this work we experiment a
different approach by adding an LSTM layer after the
convolution and the sub-sampling. The idea is to let the
convolutional layer to extract the most relevant local fea-
tures, and in the following step use the LSTM to find the
relations of these features along the sequence.

The proposed architecture is composed of different lay-
ers, as it is shown in Fig. 1: a convolutional layer, a max
pooling layer, a dropout layer, a LSTM layer, and two fully
connected layers. The first layer from left to right is a con-
volutional layer whose main role is the feature extraction
from the input data x of 4 × R binary values, where R is
the length of the sequence. This layer is composed by a
bank of n = 50 1D convolutions [28] between the ker-
nel vectors wl l = 1, 2, . . . n and the input sequence x.
The subsequent Max Pooling layer with width and stride
2 helps to capture the most salient features extracted by
the convolution and reduces the output size of the input
vectors. Then, the Dropout operation with probability
p = 0.5 is used to prevent overfitting during the train-
ing phase. The LSTM layer scans the sequential features

output of the previous layer and outputs its hidden state at
each time step, it has 50 hidden memory units. The pur-
pose is to find long-range relations between the time steps
along all the sequence. The convolutional and LSTM lay-
ers have a regularizer L2 with λ = 0.001. The outputs
from all the LSTM time steps are then concatenated in a
single vector. This vector is then fed to 2 subsequent fully-
connected layers that reduce its length to 150 and then to
1. The first fully connected layer has a ReLU nonlinear-
ity, and the output of the network is a real value in the
interval [0, 1] calculated by using a sigmoid function. We
recall that the model we propose does not need any prior
information about feature representation by means of any
feature engineering process. For this reason, the input of
our model is in the form character-level one-hot encoding.
This representation takes into account each character i of
the alphabet {A, C, G, T} by a vector of length equal to the
alphabet size, having all zero entries except for a single one
in position i. This method leads to a sparse representation
of the input.

The network has been implemented using the Keras
[43] environment on different hardwares running both
Tensorflow [44] and Theano [45] libraries deep learning
framework, and it has been trained by stochastic gradient
descent using the Adam optimizer [46]. The loss function
is the binary cross entropy, which makes the training of
the last layer equivalent to a logistic regression, but with
the back-propagating gradient that affects also the feature
learning.

Dataset descriptions
In this work we have used two groups of datasets, which
are related to two recent papers about nucleosome posi-
tioning identification methods [18, 47]. We have chosen
these datasets because they have been used to evaluate
at least one state-of-the-art methodology for nucleosome
positioning identification. As a consequence, we can eas-
ily put our results in comparison with several recently
proposed methods.

The first group of datasets is composed of three
sets of DNA sequences underlying nucleosomes from
Homo sapiens(HM) , Caenorhabditis elegans (CE) and
Drosophila melanogaster(DM). The details about all the
steps that have been adopted in order to extract and fil-
ter such data can be found in the paper by Guo et al. [18]
and in the references therein. Each dataset is composed of

Fig. 1 The deep neural network architecture of the classifier

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 131 of 176

Table 1 The distribution of samples in the first group of dataset

First group

HM DM CE

N 2273 2900 2567

L 2300 2850 2608

T 4573 5750 5175

HM indicates the group of Human sequences; DM indicates the group of
Drosophyla sequences; CE indicates the group of C. Elegans sequences. The row
label N indicates the nucleosome sequences; the row label L indicates the linker
sequences and T inidicates the total number of sequences

data sequences of length 147 base pairs (bp) grouped in
two classes of samples: the nucleosome-forming sequence
samples (positive data) and the linkers, or nucleosome-
inhibiting sequence samples (negative data). The distri-
bution of the classes for this group of datasets is shown
in Table 1. The second group of datasets is related to the
paper by Liu et al. [47] and is composed of eight sets
of DNA sequences related to three species: Homo sapi-
ens (HM), Drosophila melanogaster (DM) and Yeast (YS).
Unlike the first group of datasets, in this second case, dif-
ferent categories of sequences are present from each of
the species. In particular, we find whole genome (WG)
and promoter (PM) sequences of YS, and the largest chro-
mosome (LC), promoter (PM) and 5’UTR exon region
(5U) sequences from DM and HM. The authors of the
related paper have provided only the bed files of the
datasets, thus we had to retrieve the sequences of each
set with the following procedure. We have first extracted
the coordinates of the midpoints of each nucleosomal and
linker sequence from the bed files and got the sequence
range coordinates by extending 75 bp left and 75 right
of the midpoint. We have then fetched the 151 bp sized
nucleosomal and linker sequences using the genome files
downloaded from UCSC Table Browser. The distribu-
tion of the classes for this group of datasets is shown in
Table 2.

Results an discussion
We have performed experiments in two different settings,
one for each group of datasets, in order to be comparable
with the state of the art.

In the first setting, a 10-fold schema is used to evaluate
the first dataset group. For each iteration, 1 fold is used for
testing and the other 9 for training. A 10% of the dataset
is selected among the training set as a validation step
for early stopping. The predicted labels are obtained by
thresholding the output value of the DLNN, that ranges in
the interval [0, 1], with the value 0.5. Output values below
0.5 are classified as linkers otherwise as nucleosomes. In
the second experimental setting, we have computed the
receiver operating characteristic (ROC) curves and the
Area under the ROC curves (AUC) for all the datasets of
the second group. Liu et al. [47] have proposed an evalu-
ation protocol for these datasets that consists in sampling
100 test samples (with replacement) of 100 sequences each
from the whole dataset, computing the ROC curve for
every sample and finally the average of the sensitivity and
specificity over the 100 samples. Unlike the methods used
in that work, our method requires a training set; hence we
have split each dataset a priori in a training, validation and
test set. The split between training and test set is made in a
way that there are enough data for training a strong model
while having a large pool from which to select test data,
and not to bias the comparison. After the training/test
split, we select a number of samples equivalent to the 10%
of the dataset size from the training set as a validation set
used for early stopping. If the validation size would exceed
1000, we clip it to this number. The numbers used for
the splits are listed in Table 3. The training phase is con-
stituted by 100 epochs, with a learning rate of 3 ∗ 10−4.
The inputs are divided in min batches with a batch size
of 64. For each dataset we train one only model using the
selected training set and then compute the ROC curve
and the AUC, as well as the specificity and sensitivity over
the 100 tests. Specificity and sensitivity are computed by
setting a score threshold, i.e. a sequence is classified as
a nucleosomal sequence if the corresponding output of
the network is greater than the predefined threshold or
otherwise it is classified as a linker sequence. For all the
experiments we have used two different networks, named
DLNN-3 and DLNN-5. The two networks differ in the size
of the convolution kernels that compose the first layer of
the network, which is 3 for the first network and 5 for the
second.

Table 2 The distribution of samples in the second group of dataset

Second group

HM DM YS

LC PM 5U LC PM 5U WG PM

N 97209 56404 11769 46054 48251 4669 39661 27373

L 65563 44639 4880 30458 28763 2704 4824 4463

T 162772 101043 16649 76512 77014 7373 44485 31836

The meaning of the row labels is the same of the Table 1; The label YS indicates the Yeast group of sequences; WC indicates the whole genome, LC indicates the largest
chromosome, PM indicates the Propoter sequences; 5U indicates the sequences from the 5UTR exon region

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 132 of 176

Table 3 Training/Validation/Test split for the second group of
datasets

Dataset Total samples #Training #Validation #Test

HM-LC 162772 81298 1000 80474

HM-PM 101043 51321 1000 48722

HM-5U 16649 10654 1000 4995

DM-LC 76512 55512 1000 20000

DM-PM 77014 68312 1000 7702

DM-5U 7373 3687 737 2949

YS-WG 44485 39485 1000 4000

YS-PM 31836 27836 1000 3000

Results on first group of dataset
The results obtained by the DLNN we propose are shown
in Table 4. We have reported mean values of accuracy, sen-
sitivity and specificity of the three datasets computed by
the two versions of the DLNN. We also report the results
of the iNuc-PseKNC method computed on the same
dataset as shown in the results of the related paper [18].
In the table, the best values are shown in bold. It is clearly
observable that the models we are proposing outperform
the iNuc-PseKNC on each dataset in terms of Sensitiv-
ity. This means that our models are more able to predict
nucleosome class than iNuc-PseKNC. The improvements
in the sensitivity of our methods are always considerable
and can be up to +9% for the case of DM. The method
iNuc-PseKNC continues to be better than our model in
accuracy and specificity only on the HM dataset.

Results on second group of dataset
On these group of datasets, we know the results of eight
state of the art methodologies for nucleosome position-
ing identification [10–17] as reported in the reference
paper [47]. Table 5 summarize the AUCs computed by

other methods in the first eight column of the table. Note
that in most of the cases the paper by Liu [47] does not
report precise values of the AUC, thus we have reported
approximate values in terms of open interval (minimum
and maximum values of the interval in brackets) or very
close to (symbol ’∼’). Such approximate values have been
extracted looking at the plot bars shown in the paper.
The last two column summarizes the experiments of the
two version of the networks (DLNN-3 and DLNN-5). We
point out that the networks share the same architecture,
but use different training set opportunely extracted from
the species, and complementary to the test set used for
computing the ROC. Also in the case of this kind of
experiments, the bold values indicate the best AUC per-
formances. In the case of DLNN-3, its AUC values are
better than any other method on HM-LC, YS-WG, HM-
PM datasets, and equal to the best on DM-LC, DM-PM,
DM-5U. Only in the case of YS-PM and HM-5U the AUC
values are worst but very close to the best ones. The AUC
values are further improved by the DLNN-5, showing the
best values on HM-LC, YS-WG, HM-PM, YS-PM, and
performing equally to the best in DM-PM, DM-LC, letting
HM-5U the only dataset where it performs worst.

Conclusions
In this study, a deep neural network model for the auto-
matic classification of nucleosome forming sequences has
been proposed. The proposed network is able to exploit
the information about nucleotides position in a sequence,
by using a mix of convolutional and recurrent layers. The
effectiveness of the proposed method is proved in terms
of Sensitivity, specificity, accuracy and AUC values, for
which it pushes forward the state of the art in almost
all the considered datasets. Anyway, we think that the
major advantage of what we are proposing, is that it does
not make any use of any a priori information, or feature
extraction or selection step, about the features that are

Table 4 10-fold cross validation performances on the first group of dataset

Method(Species) Accuracy Sensitivity Specificity

μ σ μ σ μ σ

iNuc-PseKNC(CE) 86.90 x 90.30 x 83.55 x

iNuc-PseKNC(DM) 79.97 x 78,31 x 81.65 x

iNuc-PseKNC(HM) 86,27 x 87,86 x 84,70 x

DLNN-3(CE) 89.60 0.8 93.36 1.27 85.93 2,13

DLNN-3(DM) 85.54 1.13 87.60 2.55 83.42 2.65

DLNN-3(HM) 84.65 2.16 89.67 2.83 79.64 4.29

DLNN-5(CE) 89.62 2.45 93.04 3.68 86.34 5.54

DLNN-5(DM) 85.60 0.75 87.81 2.79 83.33 2.74

LNN-5(HM) 85.37 1.91 88.34 1,82 82.29 4.86

iNuc-PseKNC refers to the method introduced in [18]; CE, DM, HM refers to the datasets descried in Table 1; DLNN refers to the DLNN proposed in this paper and -3 or -5
refers to the kernel dimension in the first convolutional layer of the net. Best values are in bold

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 133 of 176

Ta
b

le
5

A
re

a
un

de
rt

he
RO

C
cu

rv
e

pe
rfo

rm
an

ce
s

on
th

e
fir

st
gr

ou
p

of
da

ta
se

t

N
_s

co
re

[1
6]

N
uP

op
[1

7]
N

uc
En

er
gE

N
[1

4]
Se

ga
l[

10
]

Fi
el

d
[1

1]
Ka

pl
an

[1
2]

H
ei

jd
en

[1
3]

Fi
ne

st
r[

15
]

D
LN

N
-3

D
LN

N
-5

H
M

-L
C

∼0
.6

5
(0

.6
,0

.6
5)

(0
.6

,0
.6

5)
(0

.3
5,

0.
4)

∼0
.6

5
∼0

.6
5

∼0
.6

(0
.6

,0
.6

5)
0.

79
0.

81

D
M

-L
C

0.
59

(0
.6

5,
0.

70
)

∼0
.7

0.
33

(0
.7

0,
0.

75
)

(0
.7

0,
0.

75
)

(0
.6

5,
0.

70
)

0.
57

0.
71

0.
71

YS
-W

G
0.

77
0.

74
(0

.6
5,

0.
70

)
0.

49
0.

77
∼0

.7
∼0

.6
5

∼0
.7

0.
79

0.
83

H
M

-P
M

(0
.6

,0
.6

5)
0.

67
(0

.6
,0

.6
5)

(0
.4

,0
.4

5)
(0

.6
,0

.6
5)

∼0
.6

∼0
.5

5
∼0

.5
5

0.
77

0.
77

D
M

-P
M

0.
62

∼0
.7

(0
.7

0,
0.

75
)

0.
32

(0
.7

0,
0.

75
)

(0
.7

0,
0.

75
)

(0
.5

5,
0.

6)
(0

.5
,0

.5
5)

0.
72

0.
73

YS
-P

M
0.

70
0.

74
(0

.7
,0

.7
5)

0.
52

0.
79

(0
.7

,0
.7

5)
∼0

.6
5

∼0
.7

0.
73

0.
83

H
M

-5
U

(0
.5

5,
0.

6)
∼0

.6
5

∼0
.7

0.
37

∼0
.6

5
∼0

.6
5

∼0
.6

(0
.5

5,
0.

6)
0.

67
0.

68

D
M

-5
U

0.
54

(0
.6

,0
.6

5)
(0

.6
5,

0.
70

)
0.

38
(0

.6
5,

0.
70

)
(0

.6
5,

0.
70

)
(0

.5
5,

0.
6)

∼0
.5

0.
66

0.
67

Ea
ch

co
lu

m
n

re
fe

rs
to

a
co

m
pu

ta
tio

na
lm

et
ho

d
fo

rn
uc

le
os

om
e

po
si

tio
ni

ng
.T

he
rs

te
ig

ht
co

lu
m

n
sh

ow
th

e
va

lu
es

re
po

rt
ed

in
th

e
pa

pe
rb

y
Li

u
et

al
.[

47
],

so
m

et
im

es
w

ith
ap

pr
ox

im
at

e
va

lu
es

(in
te

rv
al

ra
ng

e
or

cl
os

e
to

sy
m

bo
l”)

.L
as

t
tw

o
co

lu
m

ns
re

ga
rd

ou
rp

ro
po

se
d

m
et

ho
d.

Be
st

va
lu

es
ar

e
in

bo
ld

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 134 of 176

relevant for the classification of nucleosomes. It automat-
ically learns the task by using the training set of labelled
sequences, using the character-level one-hot encoding as
input representation. Actually, at least 300 of experimental
datasets of genome-wide nucleosome occupancy profiles
determined in the different cell type of about ten species
are currently available [48]. Taking into consideration this
actual scenario, we think that the method we propose, due
to this precision, could be very useful in the study of the
difference in nucleosome organization between different
species.

Abbreviations
AUC: Area under the ROC curve; CE: Caenorhabditis elegans; CNNs:
Convolutional neural networks; DLNN: Deep learning neural networks; DM:
Drosophila melanogaster; HM: Homo sapiens; LC: Largest chromosome; LSTM:
Long short-term memory; PM: Promoter; ReLU: rectified linear units; RNNs:
Recurrent neural networks; ROC: Receiver operating characteristic; WG: Whole
genome; YS: Yeast; 5U: 5’UTR exon region

Funding
Publication of this manuscript was sponsored by annual funding for basic
research (FFABR) of the Italian Ministry for Education.

Availability of data and materials
The Keras source code of the networks used in this work are freely available at
https://github.com/mattiadg/Nucleosome-predict. The data used for the
experiments are downloadable as supplementary data of the two related
papers [18, 47].

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 14, 2018: Selected articles from the 5th International Work-Conference
on Bioinformatics and Biomedical Engineering: bioinformatics. The full contents
of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-19-supplement-14.

Authors’ contributions
GLB and RR conceived the study. GLB, RR, MDG designed the methodology.
MDG implemented the methodology. GLB prepared the data. RR and MDG
ran the experiments. GLB and RR analyzed and interpreted the data. The
authors read and approved the final manuscript.

Authors’ information
Mattia A. Di Gangi is currently a PhD Student at the University of Trento,
Italy. He received his “cum laude” M.Sc. in Computer Science from the
University of Palermo, Italy. His research interests focus on deep learning and
machine translation, and his research is undertaken in collaboration with
Fondazione Bruno Kessler (FBK) of Trento, Italy. Giosué Lo Bosco received his
degree in Mathematics and the Ph.D. degree in computer science from the
University of Palermo, Italy, in 2000 and 2004, respectively. He is currently
Associate Professor of Computer Science at the Department of Mathematics
and Computer Science, University of Palermo. His research is focused on the
design of Pattern Recognition and Machine learning methodologies, with
applications to biomedical data. Riccardo Rizzo received his degree in
Electronic Engineering on 1990. He is currently staff researcher at Institute for
high performance computing and networking, Italian National Research
Council. His research is focused mainly on machine learning methods for
sequence analysis, biomedical data and on neural networks applications.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Trento, Italy. 2ICT
International Doctoral School, Via Sommarive, 9, 38123 Trento, Italy.
3Dipartimento di Matematica e Informatica, Università degli studi di Palermo,
Via Archirafi, 34, 90123 Palermo, Italy. 4Dipartimento di Scienze per
l’Innovazione tecnologica, Istituto Euro-Mediterraneo di Scienza e Tecnologia,
Via Michele Miraglia, 20, 90139 Palermo, Italy. 5CNR-ICAR, National Research
Council of Italy, Via Ugo La Malfa, 153, 90146 Palermo, Italy.

Published: 20 November 2018

References
1. Svaren J, Horz W. Transcription factors vs. nucleosomes: Regulation of the

pho5 promoter in yeast. Trends Biochem Sci. 1997;22:93–7.
2. Kornberg R, Lorch Y. Twenty-five years of the nucleosome, fundamental

particle of the eukaryote chromosome. Cell. 1999;98(3):285–94.
3. Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C.

Nucleosomal fluctuations govern the transcription dynamics of rna
polymerase ii. Science. 2009;325(5940):626–8.

4. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J,
Guigó R. Nucleosome positioning as a determinant of exon recognition.
Nat Struct Mol Biol. 2009;16(9):996–1002.

5. Choi JK, Kim YJ. Intrinsic variability of gene expression encoded in
nucleosome positioning sequences. Nat Genet. 2009;41(4):498–503.

6. Struhl K, Segal E. Determinants of nucleosome positioning. Nat StructMol
Biol. 2013;20(3):267–73.

7. Yuan G-C. Linking genome to epigenome. Wiley Interdiscip Rev Syst Biol
Med. 2012;4(3):297–309.

8. Sala A, Toto M, Pinello L, Gabriele A, Di Benedetto V, Ingrassia AMR,
Lo Bosco G, Di Gesù V, Giancarlo R, Corona DFV. Genome-wide
characterization of chromatin binding and nucleosome spacing activity
of the nucleosome remodelling atpase iswi. EMBO J. 2011;30(9):1766–77.

9. Pinello L, Lo Bosco G, Yuan G-C. Applications of alignment-free methods
in epigenomics. Brief Bioinform. 2014;15(3):419–30.

10. Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore I,
Wang J, Widom J. A genomic code for nucleosome positioning. Nature.
2006;442(5):772–8.

11. Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y,
Widom J, Segal E. Distinct modes of regulation by chromatin encoded
through nucleosome positioning signals. PLoS Comput Biol. 2008;4(11).

12. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y,
LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E. The dna-encoded
nucleosome organization of a eukaryotic genome. Nature.
2009;458(7236):362–6.

13. van der Heijden T, van Vugt JJ, Logie C, van Noort J. Sequence-based
prediction of single nucleosome positioning and genome-wide
nucleosome occupancy. Proc Natl Acad Sci USA. 2010;109(38):2514–22.

14. Locke G, Tolkunov D, Moqtaderi Z, Struhl K, Morozov AV.
High-throughput sequencing reveals a simple model of nucleosome
energetics. Proc Natl Acad Sci USA. 2010;107(49):20998–1003.

15. Gabdank I, Barash D, Trifonov EN. Finestr: a web server for
single-base-resolution nucleosome positioning. Bioinformatics.
2010;26(6):845–6.

16. Yuan G-CC, Liu JS. Genomic sequence is highly predictive of local
nucleosome depletion. PLoS Comput Biol. 2008;4(1):13.

17. Xi L, Fondufe-Mittendorf Y, Xia L, Flatow J, Widom J, Wang J-P.
Predicting nucleosome positioning using a duration hidden markov
model. BMC Bioinformatics. 2010;11(1):346.

18. Guo S-H, Deng E-Z, Xu L-Q, Ding H, Lin H, Chen W, Chou K-C.
inuc-pseknc: a sequence-based predictor for predicting nucleosome
positioning in genomes with pseudo k-tuple nucleotide composition.
Bioinformatics. 2014;30(11):1522–9.

19. Kuksa P, Pavlovic V. Efficient alignment-free dna barcode analytics. BMC
Bioinformatics. 2009;10(14):9.

20. Pinello L, Lo Bosco G, Hanlon B, Yuan G-C. A motif-independent metric
for dna sequence specificity. BMC Bioinformatics. 2012;12:408.

https://github.com/mattiadg/Nucleosome-predict
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-14

Di Gangi et al. BMC Bioinformatics 2018, 19(Suppl 14):418 Page 135 of 176

21. Pinello L, Lo Bosco G. A new feature selection methodology for k-mers
representation of dna sequences. In: Computational Intelligence
Methods for Bioinformatics and Biostatistics. Lecture Notes in Computer
Science, vol. 8623. 2015. p. 99–108.

22. Rizzo R, Fiannaca A, La Rosa M, Urso A. The general regression neural
network to classify barcode and mini-barcode dna. In: Computational
Intelligence Methods for Bioinformatics and Biostatistics, Lecture Notes in
Computer Science, vol. 8623. 2015. p. 142–55.

23. Lo Bosco G. Alignment free dissimilarities for nucleosome classification. In:
Computational Intelligence Methods for Bioinformatics and Biostatistics,
Lecture Notes in Computer Science, vol. 9874. 2016. p. 114–28.

24. Fiannaca A, La Rosa M, Rizzo R, Urso A. Analysis of dna barcode
sequences using neural gas and spectral representation. In: Iliadis L,
Papadopoulos H, Jayne C, editors. Engineering Applications of Neural
Networks, Communications in Computer and Information Science, vol
384. Berlin: Springer; 2013. p. 212–21.

25. Fiannaca A, La Rosa M, Rizzo R, Urso A. A k-mer-based barcode dna
classification methodology based on spectral representation and a neural
gas network. Artif Intell Med. 2015;64(3):173–84. https://doi.org/10.1016/j.
artmed.2015.06.002.

26. Bengio Y. Learning deep architectures for ai. Found Trends Mach Learn.
2009;2(1):1–127.

27. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):
436–44.

28. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied
to document recognition. Proc IEEE. 1998;86(11):2278–324.

29. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P.
Natural language processing (almost) from scratch. J Mach Learn Res.
2011;12:2493–537.

30. Rizzo R, Fiannaca A, La Rosa M, Urso A. A deep learning approach to dna
sequence classification. In: Computational Intelligence Methods for
Bioinformatics and Biostatistics, Lecture Notes in Computer Science vol.
9874. 2016. p. 129–140.

31. Lo Bosco G, Di Gangi MA. Fuzzy Logic and Soft Computing Applications:
11th International Workshop, WILF 2016, Naples, Italy, December 19–21,
2016. In: Petrosino A, Loia V, Pedrycz W, editors. Revised Selected Papers.
Springer; 2017. p. 162–71.

32. Fiannaca A, La Paglia L, La Rosa M, Lo Bosco G, Renda G, Rizzo R, Gaglio
S, Urso A. Deep learning models for bacteria taxonomic classication of
metagenomic data. BMC Bioinformatics. 2018;19(S7):198.

33. Lo Bosco G, Rizzo R, Fiannaca A, La Rosa M, Urso A. A deep learning
model for epigenomic studies. In: 12th International Conference on
Signal-Image Technology Internet-Based Systems (SITIS). Naples; 2016. p.
688–92.

34. Di Gangi MA, Gaglio S, La Bua C, Lo Bosco G, Rizzo R. A deep learning
network for exploiting positional information in nucleosome related
sequences. In: Rojas I, Ortuño F, editors. Bioinformatics and Biomedical
Engineering: 5th International Work-Conference, IWBBIO 2017, Granada,
Spain, April 26–28, 2017, Proceedings, Part II. Springer; 2017. p. 524–33.

35. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. In:
Kremer SC, Kolen JF, editors. A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press; 2001.

36. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–80.

37. Graves A, Mohamed A-r, Hinton G. Speech recognition with deep
recurrent neural networks. In: Acoustics, Speech and Signal Processing
(icassp), 2013 Ieee International Conference On. IEEE; 2013. p. 6645–9.

38. Di Gangi MA, Bertoldi N, Federico M. Fbk’s participation to the
english-to-german news translation task of wmt 2017. In: 2nd Conference
on Machine Translation (WMT17), vol 2. Copenhagen; 2017. p. 271–5.

39. Wang C, Yang H, Bartz C, Meinel C. Image captioning with deep
bidirectional lstms. In: Proceedings of the 2016 ACM on Multimedia
Conference, MM ’16. New York: ACM; 2016. p. 988–97. https://doi.org/10.
1145/2964284.2964299. http://doi.acm.org/10.1145/2964284.2964299.

40. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR.
Improving neural networks by preventing co-adaptation of feature
detectors. arXiv e-prints. 2012;abs/1207.0580:1–18.

41. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: a simple way to prevent neural networks from overfitting.
J Mach Learn Res. 2014;15(1):1929–58.

42. Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network
architectures for predicting dna–protein binding. Bioinformatics.
2016;32(12):121–7.

43. Chollet F, et al. Keras. GitHub. 2015. https://github.com/fchollet/keras.
44. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,

Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. https://www.tensorflow.org/.

45. Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints.
2016;abs/1605.02688:1–19.

46. Kingma D, Ba J. Adam: A method for stochastic optimization. Proc 3rd Int
Conf Learn Represent (ICLR). 2015.

47. Liu H, Zhang R, Xiong W, Guan J, Zhuang Z, Zhou S. A comparative
evaluation on prediction methods of nucleosome positioning. Brief
Bioinform. 2014;15(6):1014–27. https://doi.org/10.1093/bib/bbt062.

48. Teif VB. Nucleosome positioning: resources and tools online. Brief
Bioinform. 2016;17(5):745–57.

https://doi.org/10.1016/j.artmed.2015.06.002
https://doi.org/10.1016/j.artmed.2015.06.002
https://doi.org/10.1145/2964284.2964299
https://doi.org/10.1145/2964284.2964299
http://doi.acm.org/10.1145/2964284.2964299
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://doi.org/10.1093/bib/bbt062

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Convolutional layer
	Long short-term memory layer
	Fully connected layer
	Dropout
	The proposed deep architecture
	Dataset descriptions

	Results an discussion
	Results on first group of dataset
	Results on second group of dataset

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Authors' information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

