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Abstract

Background: With the recent advancements in high-throughput experimental procedures, biologists are gathering
huge quantities of data. A main priority in bioinformatics and computational biology is to provide system level
analytical tools capable of meeting an ever-growing production of high-throughput biological data while taking into
account its biological context. In gene expression data analysis, genes have widely been considered as independent
components. However, a systemic view shows that they act synergistically in living cells, forming functional
complexes and more generally a biological system.

Results: In this paper, we propose LATNET, a signal transformation framework that, starting from an initial large-scale
gene expression data, allows to generate new representations based on latent network-based relationships between
the genes. LATNET aims to leverage system level relations between the genes as an underlying hidden structure to
derive the new transformed latent signals. We present a concrete implementation of our framework, based on a gene
regulatory network structure and two signal transformation approaches, to quantify latent network-based activity of
regulators, as well as gene perturbation signals. The new gene/regulator signals are at the level of each sample of the
input data and, thus, could directly be used instead of the initial expression signals for major bioinformatics analysis,
including diagnosis and personalized medicine.

Conclusion: Multiple patterns could be hidden or weakly observed in expression data. LATNET helps in uncovering
latent signals that could emphasize hidden patterns based on the relations between the genes and, thus, enhancing
the performance of gene expression-based analysis algorithms. We use LATNET for the analysis of real-world gene
expression data of bladder cancer and we show the efficiency of our transformation framework as compared to using
the initial expression data.
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Background
The last few years have seen major advancements in
experimental procedures, making it possible to gather
huge quantities of biological data. Scientists now rou-
tinely measure, characterize and localize an ever-growing
number of molecules at the level of entire biological sys-
tems. However, despite the continuous expansion of omics
approaches contributing to the elucidation of systems-
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level networks, we still know little about the organization
of discrete biological activities in space and time, and
their integration into larger systems and coherent phe-
notypes. The main difficulty lies in bridging the growing
gap between high-throughput biological data production
and analytical tools capable of developing a system level
view of the data that also takes into account its biological
context. Gene expression data analysis has become one of
the most active fields in bioinformatics and computational
biology. Although genes have been considered as inde-
pendent components in multiple expression data-based
analyses, in living cells and organisms, they act together

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2481-y&domain=pdf
mailto: mohamed.elati@univ-lille.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Dhifli et al. BMC Bioinformatics 2019, 19(Suppl 13):466 Page 82 of 242

in harmony forming functional networks and more gener-
ally a biological system. In this context, multiple inference
methods of regulatory networks have been developed,
and were recently reviewed in [1]. Most of them fall into
the domain of machine learning or empirical inference
[2] and they usually use expression data obtained from
microarray or RNA-seq technology. However, regulatory
network reconstruction is not the ultimate goal but an
important intermediate step that addresses diverse biolog-
ical and biomedical questions. Thus, novel computational
approaches are still required for capturing latent bio-
logical system relationships (e.g., regulator activity, post-
transcriptional control, gene perturbation, etc.. Linear and
non-linear transformations of expression data could be
derived from specific mechanistic models (e.g, regulatory
networks [3, 4]) and statistical measurements (e.g, Matrix
Factorization (MF) [5]), and could play a key role in cap-
turing such indirect and latent relationships. Principal
Component Analysis (PCA) [6], Singular Value Decompo-
sition (SVD) [6] and Non Negative Matrix Factorization
(NMF) [7] are among the most widely used state-of the-art
MF methods for extracting latent variables from an input
signal through a data decomposition. MF was first applied
to gene expression data analysis in the early 2000s [8, 9]
with broad successful applications to unsupervised clus-
tering, component identification, and prediction [5]. The
main drawback with MF approaches is that they suffer
a difficulty in the interpretability of the resulting factor-
ized components. This has imposed a serious focus on the
analysis of these components in the form of metagenes
and metasamples, to facilitate their interpretability and
association to biologically relevant mechanisms [9, 10].

In this paper, we propose a generic network-based trans-
formation framework that allows to generate from an
initial expression data new latent representations based on
a network of relations between the genes. Our approach
aims to leverage the background knowledge about the
underlying hidden structure of the biological system
between genes that could be derived from gene regula-
tory networks. In contrast to MF methods, our approach
generates latent signals that are associated to regulators
and genes of the network and thus biological interpreta-
tions could be performed directly on the output signals.
This approach has also a direct impact on many impor-
tant algorithms (for visualization, classification, clustering
and more) which are at the heart of major bioinfor-
matics applications including diagnosis and personalized
medicine. Indeed, most of these algorithms could perform
poorly when the used gene expression signal of the genes
(as features) is noisy or not informative for the consid-
ered task. By using a network structure to transform the
initial expression data, our framework will help in uncov-
ering latent signals that could emphasize hidden patterns
based on the relations between the features and thus

enhancing the performance of these algorithms. Con-
cretely, our transformation framework takes as input a
gene expression dataset and a regulatory network express-
ing the relations between the regulatory elements (mainly
transcription factors and miRNA) and their target genes.
The new transformed values are at the level of each sam-
ple/condition and thus could be directly used instead of
the initial expression data, for instance, for the classifica-
tion of cancer subtypes. We use our framework for the
analysis of real-world gene expression data of bladder and
breast cancer and we show the efficiency of our transfor-
mation framework as compared to using the initial expres-
sion data as well as other state-of-the-art approaches for
extracting latent features.

Methods
Genes have been considered as independent components
(features) in multiple expression data-based analyses
[11–13]. However, in real-world biological organisms,
they interact together in a systemic way to ensure the
consistency of the functional machinery of the cell. Con-
sidering these relations between the genes is very impor-
tant for statistical gene expression-based analyses as it
allows to boost their accuracy by making the analyses bet-
ter reflect the underlying mechanisms of the biological
system under study. Yet, these relations have not been suf-
ficiently exploited in the literature. In fact, the relations
between genes could be expressed through a network
structure where the nodes could be the genes and the
edges express their relations. Multiple network represen-
tations are possible in this context and have shown to
be very informative, including co-expression [14], regula-
tory [15], co-regulation [16] and co-regulatory networks
[3]. For instance, in [16], the authors proposed a method
for clustering genes using a network of co-regulations
that is derived from an input regulatory network, where
genes are represented by graph nodes and an edge con-
nects two nodes if they share a high number of regulators.
The authors showed that this approach allows to dis-
cover modules that are highly enriched in terms of gene
ontology (GO) associations and that are not captured by
classical clustering techniques.

We propose a generic framework that could lever-
age any network structure that defines relations between
the features and appropriate measurements for expres-
sion signal transformation into novel representations to
unravel hidden patterns. Figure 1a shows an overview of
our framework (termed LATNET for LATent NETwork-
based representations). The signal transformation schema
in our framework could be formalized as follows. Given
an input expression dataset D of n samples/conditions,
let � be the set of m features (genes) defined over the
samples. Let G be a network structure that defines the
relations E between the features (G = (�, E)) and φ is
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Fig. 1 General framework. (a) An overview of our framework LATNET for latent network-based representations. (b) A regulatory program (network)
of a target gene with its co-activators and co-inhibitors. (c) An example of a regulator and its set of activated and repressed genes. (d) An example of
a pipeline for comparative analyses based on LATNET transformed signals

a measure defined over the expression values of the fea-
tures in � based on their relations in G. We define � as
the transformation function that uses φ and G to derive
a new representation D′ of D based on the elementary
transformations of φ such that D′ = �(D, G, φ). In the
following, we present a concrete implementation of LAT-
NET based on the LICORN [15] network structure and two
novel network-based signal transformation techniques of
input expression signals. The first transformation tech-
nique operates at the level of target genes to capture gene
perturbation signals and the second one estimates the
activity of network regulators in a given set of expression
conditions. Note that LATNET does not depend on the
platform where the data comes from, and thus could be
used on any kind of large-scale gene expression data such
as microarray and RNA-Seq data.

Gene regulatory network as an underlying structure
between the features
In this work, we use gene regulatory networks (GRNs)
as the structure that defines the directed connections
between genes. GRNs also define an informative hierarchy
between genes that puts transcription factors at the top
level and target genes at the bottom level in the form of
a bipartite graph. The inference of GRNs has been exten-
sively studied in the literature and a large number of free
tools are available for it [1], making the acquirement of
such a network very easy. Besides, for many organisms, a
large number of transcription factors (TFs), genes and reg-
ulatory interactions have been experimentally validated

and are available in online databases (e.g. TRRUST [17]:
TF–target interaction database for humans). We propose
to consider a GRN as a background network structure that
defines the relations between genes (used as features in
gene expression-based data analyses) and to exploit this
structure to perform a transformation of the input sig-
nal of expression for unravelling latent signals that are
more informative than the initial expression data. In this
study, we use LICORN [15, 18] approach for the infer-
ence of regulatory networks. LICORN identifies groups of
regulators as co-activators A and co-inhibitors I for each
target gene. We formalize a local regulatory network as
GRN(g) = (Ag , Ig), and the global regulatory network
as a graph G that is defined by G = (V , E) such that
V = V R ∪ V T , where V R is the set of regulator nodes,
V T are the target nodes and E is the set of regulatory con-
nections (the edges). We also note that for a target gene
g, V R

g = Ag ∪ Ig .

Network-based quantification of sample-specific gene
perturbation
In this section, we present our first data transformation
technique that allows to capture latent perturbation sig-
nals for each gene at each sample by taking into account a
local regulatory program (network) that defines the base-
line state of the expected regulations. We introduce a
model based on a regulatory process (see Fig. 1b), allowing
genes not to respond to their regulators in the expected
manner, i.e., to be perturbed. This approach models the
LICORN inferred GRN structure (∀g ∈ V T , GRN(g) =
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(Ag , Ig)) by combining, for each gene, its set of co-
activators Ag and co-inhibitors Ig in a regression model
that estimates the expression level of the target gene (̂y).
The regression model is defined as follows:

ŷ =
q+p
∑

j=1
αj ∗ rj + αa

q
∏

k=1
ak + αi

p
∏

l=1
il + β , (1)

where q and p are the numbers of co-activators (q = |Ag |)
and co-inhibitors (p = |Ig |), rj is the expression of the jth
regulator in V R

g , ak is that of the kth activator in Ag , and
il is that of the lth inhibitor in Ig . Note that the last vari-
ables (i.e., ak and il) are inserted in the regression model
in order to promote the cooperativity mode of activators
and inhibitors [15, 18].

This regression model is optimized using a least-squares
estimation:

∀g ∈ V T , α̂ = arg min
α

m
∑

i=1
(̂yi − yi)

2, (2)

where α̂ is the vector of optimal regression coefficients for
the network regulatory model of gene g, ŷi is the expected
expression level of g in sample i, yi is its actual expression
value of g in sample i and m is the number of samples in
the dataset. Note that Eq. 2 is optimized on a reference
dataset, which is typically the one on which the network
models were constructed.

Now, given a calibrated reference model and a query
expression dataset (abnormal/stress/disease conditions),
the perturbation level for each gene is computed based
on the expected expression and the observed one. In
other words, we use the reference network-regression
model to estimate the expression of the target gene
given the expression of its regulators. Then, we com-
pare the observed expression level with the expected
one, to capture significant unexpected changes of high
over/under-expression. One would expect unperturbed
genes to respond to their regulators in the expected man-
ner as expressed by the network regression model that was
fitted on reference samples. The estimated level of pertur-
bation for a target gene g ∈ V T is simply computed as:

̂Pert(g) = ŷ−y =
q+p
∑

j=1
αj∗rj+αa

q
∏

k=1
ak+αi

p
∏

l=1
il+β−y,

(3)

where y is the expression of g in the target sample and
ŷ is its estimated expression based on its fitted reference
regulatory regression model and the expression of its reg-
ulators in the target sample. Note that the type of the
perturbation (i.e., under or over-expression) could be cap-
tured from the sign of the raw difference between the
estimated and the observed expression (̂y − y) and that

it is possible to use the absolute operator to flatten posi-
tive and negative perturbation differences into a distance
level. We also emphasize that the proposed formalization
allows to estimate per sample perturbation levels which
could be of interest in multiple applications where the
analysis and/or the decision making is personalized and
sample specific. It is important here to clarify that it is
possible to leverage existing differential expression (DE)
analysis measures [11, 13] in this framework. Yet, the pro-
posed approach differs from existing DE techniques in
fundamental key aspects, in the sense that, here, we aim
to unravel latent perturbation signals and not differen-
tially expressed genes. Unlike DE techniques that focus
on the direct comparison of the expression of genes in
different conditions, here, we make use of the underlying
structure of regulatory networks of genes and we asso-
ciate regulatory weights to each single regulator as well as
to the groups of co-activators and co-inhibitors, through
a statistical linear model. The associated weights reflect
the estimated true regulatory power that each member
of the model has on the calibration of the target gene
expression.

Network-based quantification of sample-specific regulator
activity
In this section, we present our second transformation
technique, that allows to capture latent signals of the reg-
ulators activity at each sample by taking into account the
regulatory network structure that defines, for each regu-
lator, its set of activated and repressed genes in baseline
reference conditions. For this purpose, we introduce a
model based on a regulatory process (see Fig. 1c) allow-
ing to capture the true activity level of a regulator, not
based on its own expression level, but on its observed
effect on downstream entities. This approach also mod-
els the LICORN-inferred GRN structure by comparing, for
each regulator r, the distribution of its activated Ar and
repressed Ir genes (∀r ∈ V R, targets(r) = (Ar , Ir)). This
model is based on the work in [3], where the influence
measure was introduced to estimate the activity of a regu-
lator through a Welch t-test by comparing the distribution
of the expression of Ar and Ir . The influence of a regulator
r is computed as follows:

Influence(r) = E (Ar) − E (Ir)
√

μ2
Ar|Ar | + μ2

Ir|Ir |

, (4)

where E(Ar) and E(Ir) are respectively the expressions set
of the activated and repressed genes in the samples. E (Ar)
and E (Ir) are their respective means and μ2

Ar
and μ2

Ir
are

their standard deviations.



Dhifli et al. BMC Bioinformatics 2019, 19(Suppl 13):466 Page 85 of 242

We propose an adaptation of the Influence measure as
follows:

Activity(r) =
{

Influence(r), if Influence(r) > 0
0, otherwise. (5)

Unlike the Influence measure, Activity considers that the
regulator is active only when it activates Ar and represses
Ir as expected by the network reference model, which is
reflected by a positive welch t-test value. The regulator is
more active when this value is higher. We consider that
negative values of the test do reflect the absence of activity
of the regulator (Activity(r) = 0) and we do not attribute
them to the latter.

Scalability of LATNET to large datasets
With the recent advancements in high-throughput
experimental procedures, biologists are gathering huge
quantities of data in a fast pace. For a practical usage
of computational analysis tools, it is important that they
be capable of efficiently handling large scale inputs to
meet the ever-growing production of data. We conceived
LATNET in a way that allows it to leverage parallel and
distributed computational resources. For both network
transformations (i.e., regulator activity and gene pertur-
bation) the computation is performed independently for
each regulator or target gene and on each sample. Thus,
each computation could be run in a single process in
parallel/distributed architectures (e.g., multi-core, cloud
computing) making LATNET capable of efficiently han-
dling extremely large datasets.

Usefulness of LATNET in bioinformatics applications
In this section, we present potential bioinformatics appli-
cations that are based on expression data and that show
the usefulness of our framework.

Clustering. Clustering is an exploratory task that aims
to capture groups of homogeneous objects based on
their similarities. Capturing similarities between the data
instances is the core task of all clustering methods. Clearly,
the robustness of this task is highly related to the qual-
ity of the signals in the input data. In this context,
latent activity/perturbation signals could help capturing
different regularities in the data and thus emphasizing
clusters of interest with similarities of cohesive latent sig-
nals that are difficult to capture directly from the input
expression data.

Classification. Another very important application of
LATNET is classification where the aim is to predict the
class label of an unknown object based on a reference set
of objects with known labels. Similarly to clustering, the
performance of a classifier could be impacted by the qual-
ity of the input data. The latent signals derived by our

framework could also be used to improve the classification
in multiple expression data-based methods. For instance,
these latent signals can be used as robust clinical biomark-
ers or tumor-type specific transcriptomic signatures of
tumoral cells.

Comparative analyses. Multiple gene expression based
studies rely on comparative analyses where the expression
of genes is compared across multiple samples of different
experiments. LATNET could also be used in this context,
for instance, for ranking regulators based on their activ-
ities to unravel master regulators in the system or for
ranking genes according to their perturbation signals to
capture perturbed ones. The same experiments could also
be performed between multiple expression datasets for
comparative analyses (e.g., different stress conditions or
different subtypes of a disease) to capture context spe-
cific markers. Figure 1d shows an example of a pipeline for
comparative analyses using LATNET.

Experimental data and settings
Experimental dataset
To empirically assess the efficiency of LATNET, we per-
form a study on three gene expression datasets deposited
at the ArrayExpress [19] or Gene Expression Omnibus
[20] databases through accession numbers: E-MTAB-
1803 [21], E-TABM-147 [22] and GSE32894 [23]. All three
datasets consist of gene expression profiles of human
bladder cancer patients. For each tumor sample, gene
expressions are available from experimental data, and
the samples are classified into two classes according to
whether the cancer is muscle-INVASIVE or SUPERFICIAL.
The datasets characteristics are reported in Table 1.

Network inference
In order to obtain a graph structure that presents the
underlying relations between the features (genes) of a
transcriptomic dataset, we use LICORN [15, 18] (available
in the COREGNET Bioconductor R package [3]). LICORN
is a data mining algorithm that allows the inference of
gene regulatory networks that can capture the targets of
transcription factors from genome wide expression data.
Note that LATNET does not depend on the network infer-
ence method and can also leverage regulatory networks
from any other inference methods, such as ARACNE [24]

Table 1 Number of genes, samples and classification of the
bladder cancer datasets

Genes Tumor samples Invasive Superficial

E-MTAB-1803 20,326 193 89 104

E-TABM-147 8174 79 43 36

GSE32894 15,092 306 93 213
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or CLR [25]. Note also that the evaluation of the used net-
work inference method has previously been addressed in
[3, 15, 18] and is beyond the scope of this paper. For this
study, we inferred the regulatory networks using LICORN
with its default input parameters.

Generation of latent transformations
We apply LATNET on the three selected bladder cancer
gene expression datasets: E-MTAB-1803, E-TABM-147
and GSE32894. We denote by LATNETP and LATNETA

the signals generated by LATNET. The resulting number
of features for the new signal of each dataset is reported
in Table 2. Note that in order to conduct a fair compari-
son, we restricted the EXPRESSION data exclusively to the
genes present in the network, hence the decrease in the
number of features compared to Table 1.

To compare with existing competitors, we generate
three other signals from the original gene expression data
with three state-of-the-art latent methods namely PCA
[6], SVD [6] and NMF [7]. We applied the PCA, SVD
and NMF methods on the original gene expression data
and obtained new datasets with 2, 10 and 10 features,
respectively.

Stability analysis
The ability of a method to select the same features after
perturbing the dataset is a determinant factor. We apply
a learning procedure (support vector machines [26]) on
random subsets of samples of the original dataset to
extract its associated set of selected features. The number
of repetitions is set to 20, the size of the sampled sub-
sets are 90% of the original dataset and the used feature
selection approach is the Recursive Feature Elimination
(RFE) [27] with the number of selected features set to
100. The stability was estimated by measuring the average
overlap of all pairs of selected features on the subsamples.
Formally:

stability = 2
∑i=1

Ns

∑j=i+1
Ns

F
(

fi, fj
)

Ns (Ns − 1)
(6)

where fi and fj represent the sets of selected features for
different subsets of data, and F is a function that measures
the overlap between the two signatures. Here, we use the
Kuncheva index [28] (Ku) defined as:

Table 2 Number of features in EXPRESSION, LATNETA and LATNETP

data

Number of features

EXPRESSION LATNETA LATNETP

E-MTAB-1803 7089 667 6359

E-TABM-147 3238 394 2773

GSE32894 5858 606 5190

Ku
(

fi, fj
) =

∣

∣fi ∩ fj
∣

∣ · N − s2

s · (N − s)
=

∣

∣fi ∩ fj
∣

∣ − s2

N

s − s2
N

(7)

where N is the total number of features and s = ∣

∣fi
∣

∣ = ∣

∣fj
∣

∣.
Note that the Kuncheva index takes into account the bias
related to the number of features in the dataset.

Reproducibility analysis
One of the most important drawbacks of current models
in genome biology is the lack of reproducibility of results
when using different datasets [29]. While these meth-
ods could produce models with acceptable classification
performances, they are unable to find models with over-
lapping attributes, a feature of high relevance in biological
studies. We evaluated the reproducibility of the selected
features using LATNETA and LATNETP signals on two
different (comparable) bladder cancer datasets. We use
SVM-RFE for feature selection on each of the two datasets
and the Kuncheva index to evaluate the overlap between
the sets of selected features.

Results and discussion
LATNET classification performance evaluation
In this experiment, we attempt to assess the quality of
the two new signals (i.e., LATNETP and LATNETA) on
the prediction of clinical phenotypes (i.e., invasive and
superficial) for bladder cancer samples of the 3 datasets
(i.e., E-MTAB-1803, E-TABM-147 and GSE32894). To this
aim, we use two well established classifiers namely Ran-
dom Forest (RF) [30] and Support Vector Machine (SVM).
All methods are applied with a 5 fold cross-validation
strategy. Additionally, we reproduce the same classifica-
tion task with the EXPRESSION input signal. For each
of the 3 signals, we report the Area Under the Curve
(AUC) obtained with both methods. Results are showed
in Table 3.

We observe that overall all the 3 input signals are com-
parable across the 3 bladder cancer datasets. Note that
the EXPRESSION signal already produces high scores on
all datasets. Thus, more in depth analyses (especially in
terms of stability and reproducibility) are required for
evaluation.

Table 3 Classification results in terms of AUC obtained on the
E-MTAB-1803, E-TABM-147 and GSE32894 datasets with Random
Forest (RF) and Support Vector Machine (SVM) classifiers using
input signals LATNETP , LATNETA and EXPRESSION

LATNETA LATNETP EXPRESSION

RF SVM RF SVM RF SVM

E-MTAB-1803 0.93 0.91 0.94 0.85 0.94 0.93

E-TABM-147 0.88 0.87 0.91 0.91 0.90 0.83

GSE32894 0.83 0.82 0.83 0.83 0.84 0.90

In bold are the best AUC achieved in each of the 3 datasets
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Performance comparison of different latent approaches
In this section, we compare LATNETP and LATNETA to
other state-of-the-art latent methods namely PCA, SVD
and NMF. For the three latent signals, we repeat the clas-
sification experiment conducted previously and we report
the AUC performances obtained with the RF and SVM.
Table 4 shows the obtained results.

We observe that although the 5 input signals gen-
erated good AUC performances across the 3 bladder
cancer datasets, our approach scored best overall. We
note that PCA, SVD and NMF signals present slightly
lower results in the major part of the experiments with
respect to LATNETP and LATNETA. Moreover, we remind
that the signals obtained using these approaches lack of
interpretable features, whereas both LATNET signals are
directly associated with the existing regulators/targets of
the dataset. Thus, for the rest of the “Results” section, we
exclusively use EXPRESSION as a benchmark of LATNETP

and LATNETA as its classification results reported in
Table 3 are more challenging for our approach.

Stability and reproducibility of LATNET

With the activity and perturbation transformations, we
do not solely aim at reducing the dimensionality of the
original data, but also at providing a signal able to pro-
vide more stable and reproducible results in terms of
feature selection. In order to assess the gain earned by
the above mentioned transformations in terms of stabil-
ity and reproducibility, we perform the following analyses.
For the stability, we consider all bladder cancer datasets.
For the reproducibility, we consider the E-MTAB-1803
and GSE32894 bladder cancer datasets.

The stability estimated with the Kuncheva index in
either EXPRESSION, LATNETA or LATNETP for all blad-
der cancer datasets is presented in Fig. 2a. The stability of
the feature selection method in transformed data are bet-
ter with our approach and the three methods could clearly
be ranked in a decreasing order of stability as LATNETA,
LATNETP and EXPRESSION.

Figure 2b represents the reproducibility results for
EXPRESSION, LATNETA or LATNETP between two

Table 4 Classification results in terms of AUC obtained on the
E-MTAB-1803, E-TABM-147 and GSE32894 datasets with Random
Forest (RF) and Support Vector Machine (SVM) classifiers using
input signals LATNETP , LATNETA , PCA, SVD and NMF

LATNETA LATNETP PCA SVD NMF

RF SVM RF SVM RF SVM RF SVM RF SVM

E-MTAB-1803 0.93 0.91 0.94 0.85 0.93 0.87 0.93 0.90 0.92 0.92

E-TABM-147 0.88 0.87 0.91 0.91 0.87 0.87 0.86 0.90 0.84 0.89

GSE32894 0.83 0.82 0.83 0.83 0.75 0.75 0.77 0.81 0.82 0.82

In bold are the best AUC achieved on each dataset

bladder cancer datasets. Concretely, we used the
Kuncheva index to measure the overlap of the feature
sets selected with repetitions from both GSE32894 and
E-MTAB-1803 datasets. These results clearly show a
much higher reproducibility with models trained on the
LATNETA datasets, regardless of the number of selected
features. Although the performances of LATNETP were
lower than LATNETA, it showed a higher reproducibility
that EXPRESSION.

Case study: comparative analysis and visualisation of
molecular tumour subgroups
In this case study, we apply LATNET on the breast cancer
BRCA-TCGA dataset which contains the expression level
of 18,908 genes of 1,051 breast cancer samples. Each of
the samples is classified in one of 4 molecular tumour sub-
types: Basal, Her2, LumA and LumB. Note that in contrast
to the bladder cancer datasets used earlier in the study, i)
TCGA data is obtained from RNA-Seq and not microarray
technology. ii) Moreover, molecular subtypes have been
derived from gene expression itself.

Given the BRCA transcriptomic dataset, the signals
LATNETA and LATNETP allow to obtain the activity
of regulators at each sample and to detect per sample
gene perturbation, respectively. In this section, we aim
to leverage these functionalities to capture tumour sub-
type characteristics, and thus give an overview of one
possible direct application of LATNET. For LATNETA

and LATNETP , we want to respectively capture differ-
ent behaviours of the regulators activity and perturbed
genes that could be specific to tumour subtypes. For both
signals as well as for EXPRESSION, we follow the same
experimental procedure. We first perform a per-subtype
computation of the mean signal for each variable. We then
construct a correlation network for the features of each
signal. To ease the visualization-based comparison, for
each subtype we sort genes by their mean signal across
samples and we restrain the visualization on the top-100
features. We uses a unified cut-off of 0.2 such that two
nodes in the network are only connected if their cor-
relation is above the threshold. The cut-off was chosen
visually (in an interactive way) to increase connectiv-
ity between nodes without overwhelming the visualiza-
tion plot. Figure 3 shows a network visualization of the
obtained results on each signal and each subtype.

In Fig. 3, we notice a very clear distinction in terms of
the regulators activities in each of the breast cancer sub-
types. For the perturbation, the change in signal intensities
is lower on different subtypes. Nevertheless, complemen-
tary subnetworks are observed between Basal and LumA
networks and between Basal-LumA and LumB-Her2 net-
works. In contrast, for the expression signal it is very
hard to find such complementarity between the four net-
works. Although a per gene/regulator biological study of
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Fig. 2 Stability and reproducibility of Expression, LATNETA and LATNETP for bladder cancer dataset. a) The stability of signatures depending of the
number of selected features estimated by the Kuncheva index in dataset E-TABM-147, GSE32894 and E-MTAB-1803 respectively. b) The
reproducibility between signature from GSE32894 and E-MTAB-1803 dataset. The overlap between signatures was computed by the Kuncheva
index between signatures from the two dataset with the same number of selected features

the results is beyond the scope of this paper, we note that,
in contrast to EXPRESSION, i) among the most active regu-
lators, we find multiple transcription factors known to be
associated with breast cancer in the literature, including
ESR1, E2F2, E2F3, BRCA1, BRCA2, CCNE1 and others
[31], ii) we find multiple perturbed genes that have been
found to be altered in breast cancer, including PP1RIB,
DEFB1, GPR161 and others [32].

Conclusion
Gene expression data analysis is among the major topics
in bioinformatics and computational biology that could
rise impactful insights in a wide range of real-world
problems, including diagnosis and personalized medicine.
With the recent advancements in experimental proce-
dures, huge quantities of expression data are made avail-
able, and the need for efficient and large-scale analysis
tools capable of providing system level insights is all the
more urgent. In multiple gene expression data analy-
ses, existing well-established approaches could perform
poorly simply because the raw input signal (expression)

could be flat, noisy and not informative. Besides, multi-
ple signals of patterns could be hidden or weakly observed
directly in the expression data. In this paper, we pro-
posed LATNET, a signal transformation framework that
allows to generate from an initial large-scale gene expres-
sion data new latent representations based on a hid-
den network structure defining relations between the
genes. LATNET considers the genes in a systemic per-
spective and aims to leverage existing background knowl-
edge about the relations between them (i.e., regulatory
networks, co-expression networks, ...) as an underlying
hidden structure to perform signal transformations. We
proposed an implementation of LATNET that leverages
a gene regulatory network structure between the genes
to unravel latent signals expressing the activity level of
regulators and the perturbation level of target genes in
the given data context. For a practical usage of our
framework in real-world applications, we also provided a
parallel implementation making it scalable to large-scale
input datasets and we showed how LATNET could be
used to perform classification and comparative analyses.
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Fig. 3 Network visualization of EXPRESSION, LATNETA and LATNETP signals (in green, red and blue, respectively) on each breast cancer subtype.
Colour intensity represents the strength of the signal for the nodes

Experimental results of using LATNET for the analysis of
gene expression data of bladder cancer show the efficiency
of our framework and how the performances, includ-
ing stability and reproducibility, are enhanced compared
to state-of-the-art latent methods and to the original
expression data. Additionally, the case study performed
on gene expression data of breast cancer shows the abil-
ity of our method to find relevant biomarkers. Lastly,
we believe the ability to generate latent sample-specific
regulatory signals using hidden network structure will

greatly facilitate the application of network-based meth-
ods to the increasingly large, complex omics datasets, and
ultimately support the emerging field of precision network
medicine.
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