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Abstract

Background: The default mode network (DMN) in resting state has been increasingly used in disease diagnosis
since it was found in 2001. Prior work has mainly focused on extracting a single DMN with various techniques.
However, by using seeding-based analysis with more than one desirable seed, we can obtain multiple DMNs, which
are likely to have complementary information, and thus are more promising for disease diagnosis. In the study, we
used 18 early mild cognitive impairment (EMCI) participants and 18 late mild cognitive impairment (LMCI) participants
of Alzheimer’s disease (AD). First, we used seeding-based analysis with four seeds to extract four DMNs for each
subject. Then, we conducted fusion analysis for all different combinations of the four DMNs. Finally, we carried out
nonlinear support vector machine classification based on the mixing coefficients from the fusion analysis.

Results: We found that (1) the four DMNs corresponding to the four different seeds indeed capture different
functional regions of each subject; (2) Maps of the four DMNs in the most different joint source from fusion analysis
are centered at the regions of the corresponding seeds; (3) Classification results reveal the effectiveness of using
multiple seeds to extract DMNs. When using a single seed, the regions of posterior cingulate cortex (PCC) extractions
of EMCI and LMCI show the largest difference. For multiple-seed cases, the regions of PCC extraction and right lateral
parietal cortex (RLP) extraction provide complementary information for each other in fusion, which improves the
classification accuracy. Furthermore, the regions of left lateral parietal cortex (LLP) extraction and RLP extraction also
have complementary effect in fusion. In summary, AD diagnosis can be improved by exploiting complementary
information of DMNs extracted with multiple seeds.

Conclusions: In this study, we applied fusion analysis to the DMNs extracted by using different seeds for exploiting
the complementary information hidden among the separately extracted DMNs, and the results supported our
expectation that using the complementary information can improve classification accuracy.
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Background
Functional Magnetic Resonance Imaging (fMRI) [1, 2]
provides a novel perspective for the study of brain func-
tions, which is noninvasive and has high resolution in both
space and time. Different from task-based fMRI [3, 4] that
studies the brain reacting to stimulus, resting state fMRI
[5, 6] studies the inner functional connectivity of brain,
which can obtain the change of spontaneous functions in
our brain. In resting state, there are several functions in
operation and the regions of each function constitute a
functional network, i.e., resting state network (RSN).

The approaches to extract RSNs from resting state
fMRI data mainly fall in two types: data-based [7, 8] and
model-based [9, 10]. Both of the two types of approaches
have their own merits and demerits. Data-based meth-
ods are data driven. For example, independent compo-
nent analysis (ICA) [11, 12] assumes the independence of
the brain patterns; Sparse representation analysis (SRA)
[13, 14] assumes the spatial sparsity of brain patterns, but
their performance is also limited by the fully data driven
process, because sometimes a brain pattern can be fur-
ther decomposed into more than one subpattern, which
causes the difficulty of recognizing RSNs. While model-
based methods manually select a representative signal as
reference. For example, seeding-based analysis [15–17]
assumes some representative regions as seeds and detects
temporal correlation between the selected seeds and the
other regions, its performance depends on the selected
seeds, but the results are unique. In this paper, we consider
seeding-based analysis.

Prior works of resting state fMRI mainly use a single
extraction of RSN to explore biomarkers or do classifica-
tion. However, in task-based fMRI, several works conduct
multi-task analysis to improve performance. Calhoun
et al. [18] described a two-task fusion of auditory odd-
ball and Sternberg working memory for schizophrenia,
which reveals two additional findings, compared to the
traditional separate analysis. Remezani et al. [19] reported
the fusion of three levels of auditory tasks, and showed
that the information across multiple tasks can be usefully
combined, Remezani et al. [20] compared SRA and ICA
for multi-task analysis, and showed the effectiveness of
multi-task analysis, but the fusion techniques need to be
further improved. The effectiveness of multi-task analysis
lies in that each subtraction related to a task can provide
complementary information for the others, even though
multi-task fMRI data are acquired from the same subject
but not necessary at the same time. Considering that rest-
ing state fMRI data can provide RSNs that exist at the
same time and on the same subject, so it is more likely to
get improved performance by combining multiple RSNs.

In our study, we found that there are four seeds can be
used to extract the default mode network [21–24] (the
main RSN in resting state) by seeding-based analysis, they

are medial prefrontal cortex (MPFC), PCC, LLP and RLP
[25]. One idea is to average the signals of the four seeds,
and then take the average signal as reference for extrac-
tion. In this paper, we try to extract four DMNs with the
four seeds separately, which can keep their specificities,
and then conduct fusion analysis to combine them. We
think that this process can help us look insight the rela-
tionship of signals of the four seeds. We test this idea
on a data set consisting of early mild cognitive impair-
ment participants (EMCI) and late mild cognitive impair-
ment participants (LMCI) of Alzheimer’s disease [26–28].
Alzheimer’s disease is a neurological, progressive disease,
which has a strong impact on the lives of some old people,
and gains more and more attention in recent years. As the
transition from EMCI to LMCI is irreversible, and means
a significant change in the state of a patient, we address
the classification of these two stages in this paper.

Our study consists of three major steps. First, seeding-
based analysis is used to extract DMNs for EMCIs and
LMCIs with four seeds, respectively. Second, joint ICA
[29–31] is adopted to fuse all the nonempty combinations
of the four DMNs. Third, the mixing coefficients from
joint ICA are taken as feature for classification, which
is based on nonlinear support vector machine (SVM)
[32, 33]. Our findings are as follows: 1) the four DMNs
extracted by different seeds for subjects are different, and
maps corresponding to different seeds in the most dif-
ferent joint source by fusion capture different functional
regions. All these lay the foundation of conducting fusion
analysis to integrate DMNs extracted by different seeds.
2) The regions of posterior cingulate cortex (PCC) extrac-
tions for EMCI and LMCI show the largest difference.
3) The regions of PCC extraction and right lateral pari-
etal cortex (RLP) extraction can provide complementary
information for each other in fusion. Besides, the regions
of right lateral parietal cortex (LLP) extraction and RLP
extraction also have complementary information for each
other. 4) We can improve AD diagnosis by exploiting com-
plementary information of DMNs extracted with multiple
seeds.

Methods
In resting state fMRI, seeding-based analysis can be used
to extract various resting state networks from fMRI data.
For a RSN, there are often more than one seed available for
selection. Concretely, four seeds (MPFC, PCC, LLP, RLP)
can be used to extract DMN. It is reasonable to expect that
these different extractions contain both complementary
and shared information. Our goal is to show that by fus-
ing multiple extractions, we integrate the complementary
information from different extractions and enhance the
shared information. Consequently, the combined infor-
mation is more effective in disease diagnosis than using
single extraction. To this end, we conduct fusion analysis
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(i.e., joint ICA) for DMNs extracted by four seeds, and
perform nonlinear support vector machine classification
based on the coupling shared coefficients. With the com-
bined information, it is expected that the classification
accuracy can be improved. The flowchart of this paper is
showed in Fig. 1.

Participants and fMRI data preprocessing
Participants falling to two stages of Alzheimer’s disease
are used, so they are split to two groups: early mild
cognitive impairment participants (EMCI) and late mild
cognitive impairment participants (LMCI). The transition
from EMCI to LMCI means an irreversible change of AD.
In total, the group of EMCI contains 18 subjects (with 11
females and 7 males, age mean = 72.1667 years and stan-
dard deviation (s.d.) = 5.0904 years, Mini Mental State
Examination (MMSE) score mean and s.d. are 27.3333 and
1.7150 respectively). The LMCI group also has 18 subjects
(5 females and 13 males, age mean and s.d. are 72.2778
and 8.3582 years, MMSE mean and s.d. are 26.5000 and
2.4313). All data were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu/), which connects researchers with data
to study the progression of Alzheimer’s disease since 2004.
And the fMRI data are relatively new, which have been
added and updated since 2009.

The magnetic resonance image data were acquired
using a 3.0T Philips Medical Systems. In the acquisi-
tion of functional images, subjects should have eyes open.
Each acquisition of functional images consists of 48 con-
tiguous slices, and each slice has a grid of 64 × 64
(TR = 3000 ms, TE = 30 ms, flip angle = 80o, voxel

Fig. 1 The flowchart of this work

size = 3.313 × 3.313 × 3.313 mm3). For each subject,
a high-resolution, T1-weighted, sagittal MPRAGE, 3D
structural image was also captured, which consists of 170
contiguous slices, each of which has a grid of 256 × 256
(TR = 6.78 ms, TE = 3.157 ms, flip angle = 9.0o,
voxel size = 1 × 1 × 1.2 mm3).

All subject data were preprocessed using Statistical
Parametric Mapping 8 (SPM8) and Functional Connec-
tivity Toolbox (Conn) on Matlab 2015a. First of all, by
using SPM8, the acquired DICOM images were con-
verted to NIFTI format with 140 3D functional images
and a 3D structural image for each subject. Then, the first
10 functional images for each subject were discarded to
equilibrate the T1 effect. Finally, the preprocessing was
done using Conn, the pipeline includes functional realign-
ment and unwarp, functional center to (0,0,0) coordi-
nates, functional slice-timing correction, structural center
to (0,0,0) coordinates, structural segmentation and nor-
malization, functional normalization, functional outlier
detection, and functional smoothing. It should be noted
that the selected standard brain is MNI-space template,
the slice order in slice timing is interleaved from top to
down, and smoothing is done with an 8-mm Gaussian ker-
nel. After preprocessing, the size of 3D functional images
is 91 × 109 × 91.

Seeding-based analysis
Seeding-based analysis is a model-based method because
a seed is selected as the model assumption of RSN.
The core idea is to evaluate the temporal correlation
between the seed and all other regions in brain, and
then constitute the corresponding functional connectivity
network. In this paper, we perform seeding-based anal-
ysis with 4 seeds, MPFC, PCC, LLP and RLP to extract
DMNs for EMCI and LMCI participants by using the
Conn software, available online at http://www.nitrc.org/
projects/conn/. After preprocessing, we do seed-to-voxel
analysis, which applies a weighted general linear model
to the weighted correlation measures of the condition-
specific association between the seed BOLD time series
and each voxel BOLD time series. As a result, four
DMNs corresponding to the four seeds were extracted for
each subject, which are regarded as features for fusion
analysis.

Fusion analysis
In fusion analysis, the extracted features (DMNs) of each
subject are concatenated together, so a joint feature is
created. Then, a matrix decomposition method (i.e., inde-
pendent component analysis) is used to represent the joint
feature as a linear combination of a set of joint inde-
pendent sources. The maps of different DMNs in a joint
source share a common mixing coefficient. If the fused
features are complementary, then the common coefficient

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.nitrc.org/projects/conn/
http://www.nitrc.org/projects/conn/


Pei et al. BMC Bioinformatics 2018, 19(Suppl 19):523 Page 150 of 188

could be more discriminative. This constitutes the foun-
dation of the fusion analysis in this paper.

Figure 2 shows the framework of joint ICA. The model
is formulated as X = AS, where X = [x1, x2, · · · , xM]T ∈
RM×NV is the observation, xi ∈ RNV is a joint feature of
subject i, M, N and V are the number of subjects (includ-
ing EMCI and LMCI), the number of features (DMNs) and
the number of voxels of each subject, respectively. S =
[s1, s2, · · · , sK ]T ∈ RK×NV is the joint source matrix, si ∈
RNV is the i-th joint source, and K is the number of joint
independent sources. A = [a1, a2, · · · , aM]T ∈ RM×K is
the common mixing coefficient matrix, where ai ∈ RK

is a much shorter vector (compared to the joint feature
xi) corresponding to subject i, which is taken as a fea-
ture for classification. The algorithm to solve this model is
generative: First, constructing a statistic to represent the
independence of sources, then maximizing or minimizing
the statistic to find a matrix W that is an approximation of
A−1, S is approximated by WX. Here, we usee the Infomax
algorithm [34, 35] to solve the model, which aims at min-
imizing the mutual information of the joint independent
sources, and is proved to be effective for fMRI data. The
optimal approach to estimate the value of K is an open
issue, although MDL algorithm [36, 37] can be used to
estimate it sometimes, it does not always converge. Here,
we set K=8 as in [38], and repeat the computation with
K= 6, 10, 12, 14 and 16, and found that the most signifi-
cant different joint sources have little change with K value,
which indicates the choice of K = 8 is desirable. Joint ICA
is done by FIT software, available at http://mialab.mrn.
org/software/fit/index.html.

To examine whether the fusion of DMNs extracted by
four different seeds can integrate complementary infor-
mation and enhance shared information, we consider all
the combinations of the four DMNs, totally 15 settings: 1
of combining 4 DMNs, 4 of combing 3 of the 4 DMNs, 6
of combing 2 of the 4 DMNs, and 4 of using only one of
the 4 DMNs.

Classification with nonlinear support vector machine
As a result of fusion analysis, each subject is transformed
to an 8-dimensional feature vector. If the DMNs extracted
by different seeds can be effectively fused, the resulting
feature vectors can be used to effectively classify EMCI
and LMCI. Here, classification is performed by a nonlin-
ear SVM that is useful for a small number of samples.
The radial basis function (RBF) is used as the kernel func-
tion, and the two parameters, i.e., penalty parameter C
and radius of the kernel function g are determined by grid
search with a step size of 0.5. In addition, we use the ROC
curve to measure the classification performance. As the
output of SVM is not a probability, we train a sigmoid
function following the SVM to generate probability out-
put for test set [39]. The nonlinear SVM is implemented
by using Statistical Pattern Recognition Toolbox soft-
ware, available at http://cmp.felk.cvut.cz/cmp/software/
stprtool/.

Both the 18 EMCI subjects and the 18 LMCI subjects
are randomly split into two groups: 13 subjects for training
and 5 subjects for testing. Such splitting is repeatedly done
100 times, and the final performance result is obtained
by averaging the results of the 100 testings. Note that the

Fig. 2 The framework of joint ICA
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Fig. 3 Seeding-based analysis results of DMNs for subject 100_S_4556. From left to right, the sub-figures are the time series and extracted DMNs
corresponding to the four seeds MPFC, PCC, LLP and RLP, respectively. The first row are timeseries and the second row are DMNs

splitting is done on DMN data, while each input of SVM is
an 8-dimensional feature vector obtained by fusion anal-
ysis. In training, the 8-dimensional feature vectors are
obtained by joint ICA. In testing, we set the joint sources
from joint ICA as basic sources, and the 8-dimensional
feature vectors are obtained by mapping the joint DMN
data to the bases, which is solution of a least square
problem.

All the 15 combinations of the four seeds of DMNs
are tested. Performance comparison is done to check the
complementary effect of the seeds for Alzheimer’s disease
diagnosis.

Results
DMNs extracted by seeding-based analysis
Figure 3 shows the source time series and extracted DMNs
with the four seeds MPFC, PCC, LLP and RLP for sub-
ject 100_S_4556 (randomly selected). The results show
that the signals extracted by 4 different seeds are quite
variant, and even for the same DMN, different seeds can
capture different characteristics of DMN, which lays down
the foundation of conducting fusion analysis to combine
the complementary information of different DMNs.

The most significant joint source from joint ICA
As an example, Fig. 4 shows the most significantly dif-
ferent joint source for the fusion of all the four DMNs
extracted by the four seeds (MPFC, PCC, LLP, RLP)
between EMCI and LMCI. From left to right, the maps
correspond to the results of MPFC, PCC, LLP and RLP
respectively. It can be seen that the maps correspond-
ing to different seeds show obvious difference, and are
concentrated on the regions of the corresponding seeds.
Particularly, the maps corresponding to LLP and RLP look
like each other more than the other maps. In fusion anal-
ysis, the four maps share a common coefficient, which
is determined by the four maps. If the information from
DMNs extracted by different seeds can be fused, the per-
formance of classification by common coefficients can be
improved.

Classification
Figure 5 shows classification accuracies of all combina-
tions of the four DMNs extracted by the four seeds.
As it can be seen, for one-seed cases, PCC obtains the
best performance (67.1%), which indicates the regions of
PCC extraction in the DMNs of AD subjects are more

Fig. 4 Most different joint source between EMCI and LMCI from the joint ICA of DMNs extracted by MPFC, PCC, LLP and RLP. From left to right, the
sub-figures are maps corresponding to MPFC, PCC, LLP and RLP respectively
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Fig. 5 Classification accuracy results of the 15 combinations of the four DMNs extracted seeds MPFC, PCC, LLP and RLP. We label MPFC, PCC, LLP
and RLP by ‘1, ‘2’, ‘3’ and ‘4’ respectively. EL1-1, EL1-2, EL1-3, EL1-4 represent the cases using only one of the four seeds; EL2-12, EL2-13, EL2-14,
EL2-23, EL2-24, EL2-34 represent the cases using two seeds; EL3-123, EL3-124, EL3-134, EL3-234 represent the cases using three seeds, and EL4-1234
represent the case using all the four seeds

discriminative. For the multiple seeds cases, the combi-
nation of PCC and RLP obtains the best performance
(70%). Besides, the combination of LLP and RLP also gets
improved performance (68.5%), while the other combi-
nations cannot get improved performance in comparison
with their sub-combinations. This means that the regions
of PCC extraction and RLP extraction can provide com-
plementary information for each other, and the regions of

LLP extraction and RLP extraction also have complemen-
tary information for each other. However, for the other
cases, it is harder to combine the maps in fusion.

To further illustrate the classification performance of
the cases corresponding to PCC, RLP and their combi-
nation, LLP, RLP and their combination, we plot their
ROC curves and present their AUC values in Figs. 6 and 7
respectively.

Fig. 6 ROC curves and AUC values for PCC, RLP and their combination
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Fig. 7 ROC curves and AUC values for the cases of LLP, RLP, and their combination

Discussion and conclusion
In this paper, we first applied seeding-based analysis with
four seeds to extract DMNs from resting state fMRI data
for two groups of AD subjects (EMCI and LMCI), then
performed joint ICA on them, finally trained a nonlinear
SVM to classify these two groups of AD subjects with the
fused information. The results support our expectation
that using complementary information among separately
extracted DMNs can improve classification accuracy.

In the classification based on a single seed (without
fusion), PCC extraction obtains the best performance.
This suggests that if we want to discriminate patients of
EMCI and LMCI using one DMN, PCC extraction is the
best choice. In our fusion analysis, we found that the maps
of LLP and RLP extractions in the joint source show high
similarity, and fusing the two extractions can improve
classification accuracy by about 5%. This indicates the
symmetry and complementarity of the left and right brain
functions.

In practice, we often need a unique DMN for each sub-
ject to do follow-up research. Now we know PCC and
RLP extractions can complement each other, so we can
use the RLP extraction to supplement the PCC extraction,
which can generate a unique DMN with more complete
information.

Our study about the relationship among different seeds
is a second-level approach, which is based on the fusion
of extracted DMNs instead of straightforwardly analyzing
the extracted DMNs. Whether or not the extracted DMNs

are complementary is implied in the mixing coefficients,
which are short features (rather than thousands of voxels).

For a subject, joint ICA provides an 8-dimensional
feature vector that is favorable for classification,
and it indeed proves our expectation. However, it is
worthy of pointing out that the feature selection is
limited by the hypothesis of independence. We believe
that with more advanced feature selection methods
(e.g. deep neural networks [40, 41]), the accuracy
of EMCI and LMCI classification can be further
improved.

The experimental results in this paper show that
the fusion of DMNs obtained with different seeds
is effective. Moreover, the idea of this work can be
extended to multiple RSNs, and different RSNs can
also be fused to improve disease diagnosis. The key
is to exploit the complementary information among
the RSNs.

In summary, we used seeding-based analysis, joint
ICA and SVM to improve classification accuracy by
combining different DMNs extracted by different seeds
over two groups of AD conditional subjects, and
found that PCC extraction shows the largest between
EMCI and LMCI. Meanwhile, PCC and RLP extrac-
tions as well as LLP and RLP extractions can com-
plement each other in fusion. Our future work will
focus on more advanced feature selection methods to
improve classification accuracy under the fusion analysis
framework.
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