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Abstract

Background: Missing values frequently arise in modern biomedical studies due to various reasons, including
missing tests or complex profiling technologies for different omics measurements. Missing values can complicate the
application of clustering algorithms, whose goals are to group points based on some similarity criterion. A common
practice for dealing with missing values in the context of clustering is to first impute the missing values, and then
apply the clustering algorithm on the completed data.

Results: We consider missing values in the context of optimal clustering, which finds an optimal clustering operator
with reference to an underlying random labeled point process (RLPP). We show how the missing-value problem fits
neatly into the overall framework of optimal clustering by incorporating the missing value mechanism into the
random labeled point process and then marginalizing out the missing-value process. In particular, we demonstrate
the proposed framework for the Gaussian model with arbitrary covariance structures. Comprehensive experimental
studies on both synthetic and real-world RNA-seq data show the superior performance of the proposed optimal
clustering with missing values when compared to various clustering approaches.

Conclusion: Optimal clustering with missing values obviates the need for imputation-based pre-processing of the
data, while at the same time possessing smaller clustering errors.

Keywords: Clustering, Missing data, Optimal design, Pattern recognition

Background
Clustering has been a mainstay of genomics since the early
days of gene-expression microarrays [1]. For instance,
expression profiles can be taken over various tissue sam-
ples and then clustered according to the expression levels
for each sample, the aim being to discriminate patholo-
gies based on their differential patterns of gene expression
[2]. In particular, model-based clustering, which assumes
that the data are generated by a finite mixture of under-
lying probability distributions, has gained popularity over
heuristic clustering algorithms, for which there is no con-
crete way of determining the number of clusters or the
best clustering method [3]. Model-based clustering meth-
ods [4] provide more robust criteria for selecting the
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appropriate number of clusters. For example, in a Bayesian
framework, utilizing Bayes Factor can incorporate both
a priori knowledge of different models, and goodness of fit
of the parametric model to the observed data. Moreover,
nonparametric models such as Dirichlet-process mixture
models [5] provide a more flexible approach for cluster-
ing, by automatically learning the number of components.
In small-sample settings, model-based approaches that
incorporate model uncertainty have proved successful
in designing robust operators [6–9], and in objective-
based experiment design to expedite the discovery of such
operators [10–12].

Whereas classification theory is grounded in feature-
label distributions with the error being the probability
that the classifier mislabels a point [6, 13]; clustering
algorithms operate on random labeled point processes
(RLPPs) with error being the probability that a point will
be placed into the wrong cluster (partition) [14]. An opti-
mal (Bayes) clusterer minimizes the clustering error and
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can be found with respect to an appropriate representa-
tion of the cluster error [15].

A common problem in clustering is the existence
of missing values. These are ubiquitous with high-
throughput sequencing technologies, such as microarrays
[16] and RNA sequencing (RNA-seq) [17]. For instance,
with microarrays, missing data can occur due to poor res-
olution, image corruption, or dust or scratches on the
slide [18], while for RNA-seq, the sequencing machine
may fail to detect genes with low expression levels owing
to the random sampling nature of sequencing technolo-
gies. As a result of these missing data mechanisms, gene
expression data from microarray or RNA-seq experiments
are usually in the form of large matrices, with rows and
columns corresponding to genes and experimental condi-
tions or different subjects, respectively, with some values
missing. Imputation methods, such as MICE [19], Amelia
II [20] and missForest [21], are usually employed to com-
plete the data matrix before clustering analysis; however,
in small-sample settings, which are common in genomic
applications, these methods face difficulties, including co-
linearity due to potential high correlation between genes
in samples, which precludes the successful imputation of
missing values.

In this paper we follow a different direction by incorpo-
rating the generation of missing values with the original
generating random labeled point process, thereby pro-
ducing a new RLPP that generates the actual observed
points with missing values. The optimal clusterer in the
context of missing values is obtained by marginalizing
out the missing features in the new RLPP. One potential
challenge arising here is that in the case of missing val-
ues with general patterns, conducting the marginalization
can be computationally intractable, and hence resorting to
approximation methods such as Monte Carlo integration
is necessary.

Although the proposed framework for optimal cluster-
ing can incorporate the probabilistic modeling of arbitrary
types of missing data mechanisms, to facilitate analysis,
throughout this work we assume data are missing com-
pletely at random (MCAR) [22]. In this scenario, the
parameters of the missingness mechanism are indepen-
dent of other model parameters and therefore vanish
after the expectation operation in the calculation of the
posterior of label functions for clustering assignment.

We derive the optimal clusterer for different scenar-
ios in which features are distributed according to multi-
variate Gaussian distributions. The performance of this
clusterer is compared to various methods, including k-
POD [23] and fuzzy c-means with optimal completion
strategy [24], which are methods for directly clustering
data with missing values, and also k-means [25], fuzzy c-
means [26] and hierarchical clustering [27] with the miss-
ing values imputed. Comprehensive simulations based on

synthetic data show the superior performance of the pro-
posed framework for clustering with missing values over
a range of simulation setups. Moreover, evaluations based
on RNA-seq data further verify the superior performance
of the proposed method in a real-world application with
missing data.

Methods
Optimal clustering
Given a point set S ⊂ R

d , where d is the dimension of the
space, denote the number of points in S by η(S). A random
labeled point process (RLPP) is a pair (�, �), where � is a
point process generating S and � generates random labels
on point set S. � maps from a probability space to [ N ;N ],
where N is the family of finite sequences in R

d and N is
the smallest σ -algebra on N such that for any Borel set B
in R

d , the mapping S → η(S∩B) is measurable. A random
labeling is a family, � = {�S : S ∈ N}, where �S is a
random label function on the point set S in N. Denoting
the set of labels by L = {1, 2, ..., l}, �S has a probability
mass function on LS defined by PS(φS) = P(�S = φS|� =
S), where φS : S → L is a deterministic function assigning
a label to each point in S.

A label operator λ maps point sets to label functions,
λ(S) = φS,λ ∈ LS. For any set S, label function φS and label
operator λ, the label mismatch error is defined as

ελ(S, φS) = 1
η(S)

∑

x∈S
IφS(x) �=φS,λ(x), (1)

where IA is an indicator function equal to 1 if A is true
and 0 otherwise. The error of label function λ(S) is com-
puted as ελ(S) = E�S [ ελ(S, φS)|S], and the error of label
operator λ for the corresponding RLPP is then defined by
ε[ λ] = E�E�� [ ελ(�, φ�)].

Clustering involves identifying partitions of a point set
rather than the actual labeling, where a partition of S into
l clusters has the form PS = {S1, S2, ..., Sl} such that Si’s
are disjoint and S = ⋃l

i=1 Si. A cluster operator ζ maps
point sets to partitions, ζ(S) = PS,ζ . Considering the label
switching property of clustering operators, let us define
Fζ as the family of label operators that all induce the same
partitions as the clustering operator ζ . More precisely, a
label function φS induces partition PS = {S1, S2, ..., Sl}, if
Si = {x ∈ S : φS(x) = li} for distinct li ∈ L. Thereby,
λ ∈ Fζ if and only if φS,λ induces the same partition as ζ(S)

for all S ∈ N . For any set S, label function φS and cluster
operator ζ , define the cluster mismatch error by

εζ (S, φS) = min
λ∈Fζ

ελ(S, φS), (2)

the error of partition ζ(S) by εζ (S) = E�S [ εζ (S, φS)|S]
and the error of cluster operator ζ for the RLPP by ε[ ζ ] =
E�E�� [ εζ (�, φ�)].

As shown in [15], error definitions for partitions can be
represented in terms of risk with intuitive cost functions.
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Specifically, define GPS such that φS ∈ GPS if and only if
φS induces PS. The error of partition can be expressed as

εζ (S) =
∑

PS∈KS

cS(ζ(S),PS)PS(PS), (3)

where KS is the set of all possible partitions of S, PS(PS) =∑
φS∈GPS

PS(φS) is the probability mass function on par-
titions PS of S, and the partition cost function between
partitions PS and QS of S is defined as

cS(QS,PS) = 1
η(S)

min
φS,QS ∈GQS

∑

x∈S
IφS,PS �=φS,QS

, (4)

with φS,PS being any member of GPS . A Bayes cluster
operator ζ ∗ is a clusterer with the minimal error ε[ ζ ∗],
called the Bayes error, obtained by a Bayes partition, ζ ∗(S)

for each set S ∈ N :

ζ ∗(S) = arg min
ζ(S)∈KS

εζ (S)

= arg min
ζ(S)∈KS

∑

PS∈KS

cS(ζ(S),PS)PS(PS).

(5)

The Bayes clusterer can be solved for each fixed S
individually. More specifically, the search space in the
minimization and the set of partitions with known
probabilities in the summation can be constrained to
subsets of KS, denoted by CS and RS, respectively. We
refer to CS and RS as the set of candidate partitions
and the set of reference partitions, respectively. Follow-
ing [15], we can search for the optimal clusterer based
on both optimal and suboptimal procedures (detailed in
“Results and discussion” section) with derived bounds
that can be used to optimally reduce the size of CS and RS.

Gaussian model with missing values
We consider an RLPP model that generates the points in
the set S according to a Gaussian model, where features
of x ∈ S can be missing completely at random due to a
missing data mechanism independent of the RLPP. More
precisely, the points x ∈ S with label φS(x) = i are drawn
independently from a Gaussian distribution with param-
eters ρi = {μi, �i}. Assuming ni sample points with label
i, we divide the observations into Gi ≤ ni groups, where
all nig points in group g have the same set, Jig , of observed
features with cardinality |Jig | = dig . Denoting by Sig the
set of sample points in group g of label i, we represent the
pattern of missing data in this group using a dig ×d matrix
Mig , where each row is a d-dimensional vector with a sin-
gle non-zero element with value 1 corresponding to the
observed feature’s index. Thus, the non-missing portion of

sample point x ∈ Sig , i.e. Migx, has Gaussian distribution
N(Migμi, Mig�iMT

ig).
Given ρ = {ρ1, ρ2, ..., ρl} of independent parameters,

to evaluate the posterior probability of random labeling
function φS ∈ LS, we have

PS(φS) ∝ P(φS)f (S|φS) =
P(φS)

∫
f (S|φS, ρ)f (ρ)dρ =

P(φS)
l∏

i=1
ni≥1

∫ ⎛

⎝
∏

x∈Si

fi(x|ρi)

⎞

⎠ f (ρi)dρi =

P(φS)
l∏

i=1
ni≥1

∫ (∏Gi
g=1

∏
x∈Sig (6)

N
(

Migx; Migμi, Mig�iMT
ig

) )
f (μi, �i)dμid�i,

where P(φS) is the prior probability on label functions,
which we assume does not depend on the specific points
in S.

Known means and covariances
When mean and covariance parameters of label-
conditional distributions are known, the prior probability
f (μi, �i) in (6) is a point mass at ρi = {μi, �i}. Thus,

PS(φS) ∝ P(φS)×
l∏

i=1
ni≥1

Gi∏

g=1

∏

x∈Sig

[
(2π)−dig/2

∣∣∣Mig�iMT
ig

∣∣∣
−1/2 ×

exp
{
−1

2 (x − μi)T MT
ig

(
Mig�iMT

ig

)−1
Mig(x − μi)

} ]
.

(7)

We define the group-g statistics of label i as

mig := 1
nig

∑

x∈Sig

Migx,

�ig :=
∑

x∈Sig

(Migx − mig)(Migx − mig)
T , (8)

where mig and �ig are the sample mean and scatter matrix,
employing only the observed nig data points in group g of
label i. The posterior probability of labeling function (7)
then can be expressed as

PS(φS) ∝ P(φS)
l∏

i=1
ni≥1

Gi∏

g=1

[ ∣∣2π�ig
∣∣−nig/2 exp

{− 1
2 tr
(
�ig(�ig)−1)}×

exp
{− 1

2 nig(mig − Migμi)T (�ig)−1(mig − Migμi)
} ]

,
(9)



Boluki et al. BMC Bioinformatics 2019, 20(Suppl 12):321 Page 4 of 10

where �ig = Mig�iMT
ig is the covariance matrix corre-

sponding to group g of label i.

Gaussian means and known covariances
Under this model, data points are generated according to
Gaussians whose mean parameters are random and their
covariance matrices are fixed. Specifically, for label i we
have μi ∼ N(mi, 1

νi
�i), where νi > 0 and mi is a length d

real vector. Thus the posterior of label function given the
point set S can be derived as

PS(φS) ∝ P(φS)
l∏

i=1
ni≥1

[∏Gi
g=1

[ |2π�ig |−nig/2×

exp
{− 1

2 tr
(
�ig(�ig)−1)} ]× (νi)

d/2|2π�i|−1/2
∫

exp
{

− 1
2
∑Gi

g=1 nig(mig − Migμi)T (�ig)−1

(mig − Migμi) − νi
2 (μi − mi)T�−1

i (μi − mi)
}

dμi
]

.

(10)

By completing the square and using the normaliza-
tion constant of multivariate Gaussian distribution, the
integral in this equation can be expressed as

∫
exp

{
− 1

2

[
(μi − A−1

i bi)T Ai(μi − A−1
i bi)+

∑Gi
g=1 nigmT

ig�
−1
ig mig + νimT

i �−1
i mi − bT

i A−1
i bi

] }

= |Ai/(2π)|−1/2 exp
{

− 1
2

[∑Gi
g=1 nigmT

ig�
−1
ig mig+

νimT
i �−1

i mi − bT
i A−1

i bi
] }

,

(11)

where

Ai =
Gi∑

g=1
nigMT

ig�
−1
ig Mig + νi�

−1
i , (12)

bi =
Gi∑

g=1
nigMT

ig�
−1
ig mig + νi�

−1
i mi. (13)

Gaussian-Inverse-Wishart Means and Covariances
Under this model, data points are generated from Gaus-
sian distributions with random mean and covariance
parameters. More precisely, the parameters associated
with label i are distributed as μi|�i ∼ N

(
mi, 1

νi
�i
)

and
�i ∼ IW(κi, �i), where the covariance has inverse-
Wishart distribution

f (�i) = |�i|κi/2

2κid/2�d(κi/2)
|�i|

κi+d+1
2 exp

(
−1

2
tr
(
�i�

−1
i

))
.

(14)

To compute the posterior probability of labeling func-
tion (6), we first marginalize out the mean parameters μi
in a similar fashion to ( 10), obtaining

PS(φS) ∝P(φS)
l∏

i=1
ni≥1

∫ [∏Gi
g=1 |2π�ig |−nig/2×

exp
{
−1

2
tr
(
�ig(�ig)

−1)
}

×
(νi)

d/2|�i|−1/2|Ai/(2π)|−1/2×
exp

{
− 1

2

[∑Gi
g=1 nigmT

ig�
−1
ig mig

+ νimT
i �−1

i mi − bT
i A−1

i bi
] } ]

f (�i)d�i.

(15)

The integration in the above equation has no closed
form solution, thus we resort to Monte Carlo integra-
tion for approximating it. Specifically, denoting the term
in the brackets in Eq. (15) as g(�i) , we draw J samples
�

(j)
i ∼ IW(κi, �i), j = 1, 2, ..., J , and then compute the

integral as 1
J
∑J

j=1 g(�
(j)
i ).

Results and discussion
The performance of the proposed method for optimal
clustering with missing values at random is compared
with some suboptimal versions, two other methods for
clustering data with missing values, and also classical clus-
tering algorithms with imputed missing values. The per-
formance comparison is carried out on synthetic data gen-
erated from different Gaussian RLPP models with differ-
ent missing probability setups, and also on a publicly avail-
able dataset of breast cancer generated by TCGA Research
Network (https://cancergenome.nih.gov/). In our experi-
ments, the results of the exact optimal solution for the
RLPP with missing at random (Optimal) is provided for
smaller point sets, i.e. wherever computationally feasible.
We have also tested two suboptimal solutions, similar to
the ideas in [15], for an RLPP with missing at random. In
the first one (Subopt. Pmax), the set of reference partitions
(RS) is restricted to a closed ball of a specified radius cen-
tered on the partition with the highest probability, where
the distance of two partitions is defined as the minimum
Hamming distance between labels inducing the partitions.
In both Optimal and Pmax, the reference set is further
constrained to the partitions that assign the correct num-
ber of points to each cluster, but the set of candidate
partitions (CS) includes all the possible partitions of n
points, i.e. 2n−1. In the second suboptimal solution (Sub-
opt. Pseed), a local search within Hamming distance at 1
is performed starting from five random initial partitions
to approximately find the partition with (possibly local)
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maximum probability. Then the sets of reference and can-
didate partitions are constrained to the partitions with
correct cluster sizes with a specified Hamming distance
from the found (local) maximum probability partition.
The bounds derived in [15] for reducing the set of candi-
date and reference partitions are used, where applicable,
in Optimal, Pseed, and Pmax.

In all scenarios, k-POD and fuzzy c-means with opti-
mal completion strategy (FCM-OCS) are directly applied
to the data with missing values. In the simulations in
[24], where FCM-OCS is introduced, to initialize clus-
ter centers, the authors apply ordinary fuzzy c-means to
the complete data, i.e. using knowledge of the missing
values. To have a fair comparison with other methods,
we calculate the initial cluster centers for FCM-OCS by
applying fuzzy c-means to the subset of points with no
missing features for lower missing rates. For higher miss-
ing rates we impute the missing values by the mean of
the corresponding feature values across all points, and
then apply fuzzy c-means to all the points to initialize
the cluster centers. In order to apply the classical algo-
rithms, the missing values are imputed according to [28],
by employing a multivariate Gibbs sampler that itera-
tively generates samples for missing values and parame-
ters based on the observed data. The classical algorithms
included in our experiments include k-means (KM), fuzzy
c-means (FCM), hierarchical clustering with single link-
age (Hier. (Si)), and hierarchical clustering with complete
linkage (Hier. (Co)). Moreover, completely random clus-
terer (Random) results are also included for performance
comparisons.

Simulated data
In the simulation analysis, the number of clusters is fixed
at 2, and the dimensionality of the RLPPs (number of fea-
tures) is set to 5. Additional results for 20 features are

provided in Additional file 1. Point generation is done
based on a Gaussian mixture model (GMM). Three dif-
ferent scenarios for the parameters of the GMM are
considered: i) Fixed known means and covariances ii)
Known covariances and unknown means with Gaussian
distributions. iii) Unknown means and covariances with
Gaussian inverse-Wishart distributions. We select the val-
ues of the parameters of the point generation process to
have an approximate Bayes error of 0.15. The selected val-
ues are shown in Table 1 . For the point set generation,
the number of points from each cluster is fixed a priori.
The distributions are first drawn from the assumed model,
and then the points are generated based on the drawn dis-
tributions. A subset of the points’ features is randomly
selected to be hidden based on missing at random with
different missing probabilities. Four different setups for
the number of points are considered in our simulation
analysis: 10 points from each cluster (n1 = n2 = 10),
12 points from one cluster and 8 points from the other
cluster (n1 = 12, n2 = 8), 35 points from each cluster
(n1 = n2 = 35), and 42 points from one cluster and 28
points from the other cluster (n1 = 42, n2 = 28). When
having unequal sized clusters, in half of the repetitions
n1 points are generated from the first distribution and
n2 points from the second distribution, and vice-versa in
the other half. In each simulation repetition, all clustering
methods are applied to the points to generate a vector of
labels that induces a two-cluster partition. The predicted
label vector by each method is compared with the true
label vector of each point in the point set to calculate the
error of that method on that point set. In other words, for
each method the number of points assigned to a cluster
different from their true one are counted (after accounting
for the label switching issue) and divided by the total num-
ber of points (n = n1 +n2) to calculate the clustering error
of that method on the point set. These errors are averaged

Table 1 Parameters for the point generation under three models

Model Mean vectors Covariance matrices Distributions’ hyperparameters

Fixed means and
covariances

μ1 = 0 · 1d , μ2 = 0.445 · 1d �1 = �2 = 0.23 · Id —

Gaussian means and fixed
covariances

μ1 ∼ N
(

m1, 1
ν1

�1

)
, μ2 ∼ N

(
m2, 1

ν2
�2

)
�1 = �2 = 0.28 · Id m1 = 0 · 1d , m2 = 0.45 · 1d ,

ν1 = 30, ν2 = 5

Gaussian means
and inverse-Wishart
covariances

μ1 ∼ N
(

m1, 1
ν1

�1

)
, μ2 ∼ N

(
m2, 1

ν2
�2

)
�1 ∼ IW(κ1, �1), �2 ∼ IW(κ2, �2) m1 = 0 · 1d , m2 = 0.45 · 1d ,

ν1 = 30, ν2 = 5,

�1 = �2 = 20.7 · Id ,

κ1 = κ2 = 75

N, IW, 1d , and Id denote Gaussian, inverse-Wishart, column vector of all ones with length d, and d × d idendity matrix, respectively
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across all point sets in different repetitions to empiri-
cally estimate the clustering error of each method under
a model and fixed missing-value probability. In cases
with n = 70, since applying Optimal and Pmax is com-
putationally prohibitive, we only provide the results for
Pseed.

In Additional file 1, the average clustering errors are
shown as a function of the Hamming distance threshold
used to define the set of reference partitions in Pmax and
Pseed, for different simulation scenarios. From the Figures
in Additional file 1, we see that in all cases, the perfor-
mances of Pmax and Pseed are quite insensitive to the
set threshold of the Hamming distance for reference par-
titions. Note that in these types of figures all the other
methods’ performances other than Pmax and Pseed are
constant in each plot.

The average results for the fixed mean vectors and
covariance matrices across 100 repetitions are shown in
Fig. 1. Here, the Hamming distance threshold for ref-
erence partitions in Pmax and Pseed is fixed at 1. It
can be seen that Optimal, Pmax, and Pseed outperform
all the other methods in all the smaller sample size
settings, and Pmax and Pseed have virtually the same
performance as Optimal. For the larger sample size set-
tings where only Pseed is applied, its superior perfor-
mance compared with other methods is clear from the
figure.

Figure 2 depicts the comparison results under the
unknown mean vectors with Gaussian distributions and
fixed covariance matrices averaged over 80 repetitions.
The Hamming distance threshold in Pmax and Pseed is set
to 2. For smaller sample sizes, Optimal, Pmax and Pseed

(a) (b)

(c) (d)
Fig. 1 Average clustering errors vs. missing probability for fixed means and covariances model. The first and second rows correspond to n = 20 and
n = 70, respectively. a n1 = 10, n2 = 10, b n1 = 12, n2 = 8, c n1 = 35, n2 = 35, d n1 = 42, n2 = 28
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(a) (b)

(c) (d)
Fig. 2 Average clustering errors vs. missing probability for Gaussian means and fixed covariances model. The first and second rows correspond to
n = 20 and n = 70, respectively. a n1 = 10, n2 = 10, b n1 = 12, n2 = 8, c n1 = 35, n2 = 35, d n1 = 42, n2 = 28

have lower average errors than all the other methods. We
can see that for balanced clusters the suboptimal and opti-
mal solutions have very close performances, but for the
unbalanced clusters case with higher missing probabilities
the difference between Optimal and Pmax and Pseed gets
noticeable. For larger sample sizes Pseed consistently out-
performs the other methods, although for lower missing
probabilities it has closer competitors. In all cases, as the
missing probability increases, the superior performance of
the proposed methods becomes more significant.

The average results under the unknown mean vectors
and coavriance matrices with Gaussian-inverse-Wishart
distribution over 40 repetitions are provided in Fig. 3.
In the smaller sample size cases, the Hamming distance
threshold in Pmax and Pseed is fixed at 8, and we can see
that the proposed suboptimal (Pmax and Pseed) and opti-
mal clustering with missing values have very close average

errors, and all are much lower than the other methods’
errors. For larger sample sizes, only the results for miss-
ing probability equal to 0.15 are shown vs. the Hamming
distance threshold used to define the reference partitions
in Pseed. Again, Pseed performs better than the other
methods.

RNA-seq data
In this section the performance of the clustering meth-
ods are examined on a publicly available RNA-seq dataset
of breast cancer. The data is available on The Cancer
Genome Atlas (TCGA) [29], and is procured by the R
package TCGS2STAT [30]. It consists of matched tumor
and normal samples, and includes 97 points from each.
The original data are in terms of the number of sequence
reads mapped to each gene. RNA-seq data are integers,
highly skewed and over-dispersed [31–35]. Thus, we apply
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(a) (b)

(c) (d)
Fig. 3 Average clustering errors for Gaussian means and inverse-Wishart covariances model. The first row corresponds to n = 20, and the errors are
shown for different missing probabilities. The second row corresponds to n = 70 and missing probability of 0.15, where the errors are plotted vs. the
Hamming distance threshold used to define the reference partitions in Pseed. a n1 = 10, n2 = 10, b n1 = 12, n2 = 8, c
n1 = 35, n2 = 35, miss. prob. = 0.15, d n1 = 42, n2 = 28, miss. prob. = 0.15

a variance stabilizing transformation (VST) [36] imple-
mented in DESeq2 package [37], and transform data to
a log2 scale that have been normalized with respect to
library size. For all subsequent analysis, other than for cal-
culating clustering errors, we assume that the labels of
data are unknown. Feature selection is performed in a
completely unsupervised manner, since in clustering no
labels are known in practice. The top 10 genes in terms
of variance to mean ratio of expression are picked as fea-
tures to be used in clustering algorithms. In general, for
setting prior hyperparameters, external sources of infor-
mation like signaling pathways, where available, can be
leveraged [38, 39]. Here, we only use a subset of the dis-
carded gene expressions, i.e. the next 90 top genes (in
terms of variance to mean ratio of expression), for prior
hyperparameters calibration for the optimal/suboptimal
approaches. We follow the approach in [40] and employ

the method of moments for prior calibration, but unlike
[40], a single set of hyperparameters is estimated and used
for both clusters, since the labels of data are not avail-
able. It is well known that in small sample size settings,
estimation of covariance matrices, scatter matrices and
even mean vectors may be problematic. Therefore, similar
to [40], we assume the following structure

�0 = �1 =

⎡

⎢⎢⎢⎣

σ 2 ρσ 2 . . . ρσ 2

ρσ 2 σ 2 . . . ρσ 2

...
...

. . .
...

ρσ 2 . . . . . . σ 2

⎤

⎥⎥⎥⎦

d×d

,

m0 = m1 = m[ 1, · · · , 1]T
d ,

ν0 = ν1 = ν, κ0 = κ1 = κ ,

and estimate five scalars (m, σ 2, ρ, κ , ν) from the data.
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In each repetition, stratified sampling is done, i.e. n1 and
n2 points are sampled randomly from each group (normal
and tumor). When n1 �= n2, in half of the repetitions n1
and n2 points are randomly selected from the normal and
tumor samples, respectively, and vice-versa in the other
half. Prior calibration is performed in each repetition,
and 15% of the selected features are considered as miss-
ing values. Similar to the experiments on the simulated
data, the clustering error of each method in each iteration
is calculated by comparing the predicted labels and true
labels of the sampled points (accounting for label switch-
ing issue), and the average results over 40 repetitions
are provided in Fig. 4. It can be seen that the proposed
optimal clustering with missing values and its subopti-
mal versions outperform the other algorithms. It is worth
noting that the performance of Pseed is more sensitive

(a)

(b)
Fig. 4 Empirical clustering errors on breast cancer RNA-seq data. a
n1 = 10, n2 = 10, miss. prob. = 0.15, b
n1 = 12, n2 = 8, miss. prob. = 0.15

to the selected Hamming distance threshold for reference
partitions compared with the results on simulated data.

Conclusion
The methodology employed in this paper is very natural.
As with any signal processing problem, the basic problem
is to find an optimal operator from a class of operators
given the underlying random process and a cost func-
tion, which is often an error associated with operator
performance. While it may not be possible to compute
the optimal operator, one can at least employ subop-
timal approximations to it while knowing the penalties
associated with the approximations.

In this paper, we have, in effect, confronted an old prob-
lem in signal processing: If we wish to make a decision
based on a noisy observed signal, is it better to filter the
observed signal and then determine the optimal decision
on the filtered signal, or to find the optimal decision based
directly on the observed signal? The answer is the latter.
The reason is that the latter approach is fully optimal rel-
ative to the actual observation process, whereas, even if
in the first approach the filtering is optimal relative to the
noise process, the first approach produces a composite
of two actions, filter and decision, each of which is only
optimal relative to a portion of the actual observation pro-
cess. In the present situation involving clustering, in the
standard imputation-followed-by-clustering approach, it
is typically the case that neither the filter (imputation)
nor the decision (clustering) is optimal, so that even
more advantage is obtained by optimal clustering over the
missing-value-adjusted RLPP.

Additional file

Additional file 1: Supplementary materials. Additional figures are given in
a single multi-page PDF. (PDF 516 KB)
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