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Abstract

Background: Cell size is a key characteristic that significantly affects many aspects of cellular physiology. There are
specific control mechanisms during cell cycle that maintain the cell size within a range from generation to generation.
Such control mechanisms introduce substantial variabilities to important properties of the cell cycle such as growth
and division. To quantitatively study the effect of such variability in progression through cell cycle, detailed stochastic
models are required.

Results: In this paper, a new hybrid stochastic model is proposed to study the effect of molecular noise and size
control mechanism on the variabilities in cell cycle of the budding yeast Saccharomyces cerevisiae. The proposed
model provides an accurate, yet computationally efficient approach for simulation of an intricate system by
integrating the deterministic and stochastic simulation schemes. The developed hybrid stochastic model can
successfully capture several key features of the cell cycle observed in experimental data. In particular, the proposed
model: 1) confirms that the majority of noise in size control stems from low copy numbers of transcripts in the G1
phase, 2) identifies the size and time regulation modules in the size control mechanism, and 3) conforms with
phenotypes of early G1 mutants in exquisite detail.

Conclusions: Hybrid stochastic modeling approach can be used to provide quantitative descriptions for stochastic
properties of the cell cycle within a computationally efficient framework.

Keywords: Cell cycle, Size control mechanism, Budding yeast, Hybrid model, Stochastic model, Deterministic model,
Stochastic size control, Cell cycle variability, G1 phase variability

Background
Progression through eukaryotic cell cycle is governed by
various control mechanisms such that new born progenies
are able to repeat the cycle, while maintaining cell size in
certain range generation after generation. Such complex
control mechanisms are regulated by positive and neg-
ative feedbacks. The feedbacks create bistable switches
to make the progression through different phases (G1→
S→ G2 → M) irreversible. The specification of these bio-
chemical feedbacks varies between different organisms.
Extensive experimental studies have been carried out to
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identify the underlying molecular mechanisms that reg-
ulate the cell cycle [1–16]. Many signaling pathways in
regulatory networks in addition to myriad of mutant phe-
notypes have been explored. Along with experimental
studies, various mathematical models, including deter-
ministic models, boolean networks, stochastic models,
and hybrid approaches have been developed to quantita-
tively describe the cell cycle as a dynamical system.

Despite the large body of experimental and mathemat-
ical works, there are still important aspects of the cell
cycle control mechanism that require further studies. For
instance, mechanisms that control the cell size increase
the survival chance for a cell under different circum-
stances, e.g., in presence of the molecular noise. However,
despite their importance, it is still not clear what under-
lying control mechanisms maintain the robustness of cell
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size. Experimental data shows that in most types of liv-
ing cells, size control is often regulated through feedbacks
between the time a cell spends in each phase of cell cycle
and the cell volume [17–22]. Nonetheless, the specifica-
tion of those feedbacks may vary across different living
cells, such as fission yeast, mammalian eukaryotes, epithe-
lial cells, and budding yeast.

Since yeasts are genetically tractable in experimental
studies, most studies are focused on these unicellular
organisms, in particular the budding yeast. Prior stud-
ies show that the asymmetric division of budding yeast
cells produces smaller daughter cells and larger mother
cells. Those small daughter cells spend longer time in G1
phase before they go through the START transition, when
a cell makes an irreversible commitment to commence
a new cycle. However, those mother cells of the same
size commence a new cycle soon after division [23]. This
observation suggests that the size control is not strong in
mother cells, even if their size is as small as a daughter cell.

Di Talia et al. [23] have studied the effect of molecular
noise and size control in variability of the budding yeast
cell cycle. More specifically, they used single-cell imaging
of fluorescent labeled budding yeast cells to measure the
G1 time. According to their observations: 1) the hypoth-
esis that substantial portion of intrinsic noise stems from
the noise in gene expression level is confirmed. More
specifically, they showed that the variabilities in G1 time
decrease with square root of the ploidy and increased
dosage of G1 cyclins, 2) size control plays important role
in G1 time variability of daughter cells, but not on that
of mother cells, and 3) the G1 cyclin genes CLN2 and
CLN3 dominantly control the regulatory dynamics of the
START transition by size control and time control mod-
ules. In fact, the size control module enforces longer
G1 times to small size daughter cells, but not mother
cells. However, the time control module is the same in
both daughter and mother cells. The study by Di Talia
provides a comprehensive data set that can be used to
construct new informative models to quantitatively study
the effect of size control module on variability of the
cell cycle.

To build such models, deterministic method is the
most common approach to study the average properties
of protein-protein regulatory network [24–27]. However,
this model cannot be generalized to account for the
cell-to-cell variabilities observed in experiments. Partic-
ularly, analysis of data obtained from single-cell imaging
techniques suggests that properties of cell cycle control
mechanism involve inevitable intrinsic and extrinsic noise
[23, 28]. For instance, partial viability of certain mutant
strains reported in [29, 30] is an intrinsically stochas-
tic phenotype caused by substantial variability within the
dynamics of cell cycle. Thus, stochastic models are desired
to identify the source of variability, quantify the amplitude

of noise, and to describe and predict the stochastic phe-
notypes of mutant strains.

Stochastic models simulate the biochemical reaction
network of a living cell using Gillespie’s stochastic sim-
ulation algorithm (SSA) [31] to generate discrete time-
evolution trajectories of species (genes, mRNAs, and
proteins) based on the number of molecules. SSA works
accurately if sufficient simulations can be generated. How-
ever, SSA is computationally expensive. In fact, the com-
putational complexity of stochastic simulation algorithm
scales with the number of reaction firings. Hence, if the
dynamical system is large and involves substantial number
of reactions with high firing frequency, the computational
cost will be extremely high. To reduce this computa-
tional complexity, various strategies have been proposed
[32–34]. Among the proposed strategies, Haseltine and
Rawlings’ (HR) hybrid method is a promising approach.

The HR hybrid method benefits from the multiscale
characteristic of biochemical systems. The multiscale fea-
ture is inherent in reaction rates and reactant populations
inside living cells. For instance, the post-translational
reactions (such as phosphorylation/dephosphorylation)
during the budding yeast cell cycle are several orders of
magnitude more frequent than transcriptional reactions.
Moreover, species in a system may also exhibit different
scales of populations. For example, mRNAs with aver-
age abundance of 5–10 molecules per cell are translated
into proteins with average abundance of 1000–10,000
molecules per cell. The HR hybrid method leverages
the efficiency of solving ordinary differential equations
(ODEs) and accuracy of SSA by integrating both deter-
ministic and stochastic approaches in a single model.

The main contribution of this paper is a new hybrid
model that quantitatively describes key characteristics
of the cell cycle, such as inter-division times and cell
sizes, distribution of mRNAs, as well as the partial via-
bility of specific mutant strains. Building on our previous
work in [35], our new model includes the transcripts
of the early G1 phase. This feature is in a direct con-
trast with existing works, such as [27, 35], that disre-
gard the dynamics of early G1 proteins (Cln3 and Bck2)
and do not include the G1 cyclin transcripts (mCln3
and mBck2). The proposed model enables studying the
effect of noise on G1 cyclins and size control mecha-
nism in the budding yeast cell cycle. In fact, the developed
model partitions all 45 proteins and 21 mRNAs, respec-
tively, in fast and slow subsets. Using this partitioning,
we obtain the dynamics of the system by solving ODEs
for fast subset and applying SSA to slow subset. In addi-
tion, we use our model to predict variabilities in mutant
strains of G1 phase. Finally, we present comprehensive
results for the performance comparison between our pro-
posed model and the experimental observations reported
by Di Talia et al. [23].
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Methods and simulation
Model description
The model we explore in this paper is based on the molec-
ular regulatory network originally proposed by Chen et
al. [27]. Chen’s model is a comprehensive deterministic
model that accounts for average properties of wild-type
budding yeast cells, in addition to the phenotypes of more
than 100 mutant strains. Next, we briefly summarize the
regulatory network of the Chen’s model.

Cdc28 is the main regulator of the budding yeast cell
cycle which is assumed to be constitutively expressed.
Cdc28 forms an active kinase by binding to two fami-
lies of cyclin partners, Cln1-3 and Clb1-6. In the early
G1 phase, Cln3 and Bck2 (a backup protein) are the main
partners of Cdc28. As a newborn cell grows, the Cln3
and Bck2 proteins accumulate in nucleus to activate the
transcription factors SBF and MBF. These two transcrip-
tion factors are responsible for the production of Cln2 and
Clb5. Cln2 accumulation induces the emergence of bud
and Clb5 initiates the DNA synthesis. The activation of
SBF corresponds to a transition called the START. Once
the cell goes through the START transition, it commits to
a new cycle. Shortly after the emergence of bud and ini-
tiation of DNA synthesis in the S phase, the level of Clb2
rises and the spindle assembly starts to form. Later, the cell
goes through another transition called the FINISH, during
which a pair of proteins, Cdc20 and Cdh1, become active
and facilitate the degradation of Clb2 and Clb5. Through
this transition, the level of Clb2 drops, the cell divides and
returns to the G1 phase.

Chen’s model describes the protein-protein regulatory
network, but does not include the dynamics of mRNAs.
There is strong evidence suggesting that the noise in the
cell cycle mainly results from the low copy number of
mRNAs [23, 29, 36]. Thus, to construct a model that
accounts for the variabilities in the cell cycle, it is crucial

to incorporate the dynamics of mRNAs along with protein
regulators in a stochastic model. Therefore, in our ear-
lier work in [37], we substantially extended Chen’s model
by adding the dynamics of 19 important mRNAs. More-
over, we constructed a hybrid stochastic model that not
only explains the average properties of the budding yeast
cell cycle, it can also reproduce the variability in critical
characteristics of the cell cycle, in addition to stochastic
phenotypes of specific mutants. Next, we briefly discuss
the HR hybrid model.

The HR hybrid model
Fully stochastic simulation becomes substantially slow
when reactants with high abundance or reactions with
high frequency are involved [33]. That is because the
time complexity of SSA scales with the number of reac-
tions [31]. The HR hybrid method integrates stochastic
and deterministic approaches to construct a stochastic
model that achieves a good trade-off between accuracy
and efficiency. The deterministic method, typically for-
mulated by nonlinear ODEs, is a computationally efficient
approach to describe the average properties of a sys-
tem. Meanwhile, the stochastic counterpart implements
the computationally expensive SSA to generate stochas-
tic time-evolution trajectories of the states variables (here
the molecule counts of mRNAs). The main idea of the HR
hybrid stochastic model is to partition the system of reac-
tions into fast and slow subsets, apply the computationally
expensive SSA only to the slow reactions, and then solve
ODEs for the fast subset.

With predefined thresholds of propensity (P*) and abun-
dance (A*), the reaction channels can be partitioned into
four regions as shown in Fig. 1. Region I includes reactants
with low abundance and reactions with low propensity.
Reactions in the level of gene expression are examples of
reaction channels in region I. Due to low copy numbers

Fig. 1 Partitioning strategies for hybrid model. Region I : Slow reactions with low abundance reactant; region II: slow reactions with high abundance
reactants; region III: Fast reactions with low abundance reactants; region IV: fast reactions with high abundance reactants. a Conservative
partitioning strategy by Haseltine and Rawling [38]. b Possible partitioning strategy based on the definition of reactions in each region. c Partitioning
strategy proposed in [41] and used in our model
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of species in this region, it is unrealistic to assume that
the dynamics of the reactants evolve deterministically
over time. For this reason reaction channels in region I
are placed in the slow subset where the computationally
expensive SSA is applied to accurately simulate the trajec-
tories of state variables. Region IV on contrary, includes
reactions with high frequency and reactants with high
abundance. Post-translational reactions are examples of
the reactions in region IV. Due to the high abundance of
the reactants, it is reasonable to approximate the dynam-
ics of state variables in region IV using deterministic
methods such as ODEs. Region II and III need more
design considerations in order to achieve desired trade-off
between accuracy and efficiency.

Different strategies have been proposed in order to
choose appropriate simulation methods for reaction chan-
nels in region II and III. As described by Fig. 1a, Haseltin
and Rawling’s strategy [38] employs SSA for all reactions
within regions I, II, and III; and solves ODEs only in region
IV. Figure 1b shows a modification to this strategy, which
leads to a more efficient model in terms of computational
cost. The less conservative strategy in Fig. 1b approxi-
mates region II and III, respectively by the τ -leap method
[39] and the slow scale Stochastic Simulation Algorithm
(ssSSA) [40]. The τ -leap method leaps over reactions with
high-abundance reactants, since inclusion of these reac-
tions may not have a considerable effect on changing
the corresponding propensity functions. The ssSSA sim-
ulates only slow reactions, assuming that fast reactions
are always in partial-equilibrium or steady-state. Figure 1c
shows our adopted partitioning strategy that simulates all
reactions in region I (slow subset) by SSA, and reactions

in all other regions (fast subset) by ODEs. In Liu et al. [41],
this approach was applied to a three-variable model of cell
cycle and was shown to achieve much higher efficiency,
while maintaining very good accuracy in comparison with
other conservative partitioning strategies as well as a full
stochastic model.

In our model the reaction channels in region I includes
the synthesis and degradation of transcripts. After such
partitioning we apply the HR hybrid algorithm to simu-
late the trajectories of state variables. The step by step
algorithm is provided in [35, 37] and more implemen-
tation details can be found in [42]. In those works, we
have shown that placing the dynamics of mRNAs into SSA
regime and solving ODEs for protein regulatory network
leads to sufficiently accurate results, and significantly
reduces the computational cost.

In this paper, we substantially improve our extended
model in [37] as follows:

• First, we incorporate the dynamics of two early
G1-phase proteins, Cln3 and Bck2 as depicted in
Fig. 2. In fact, Cln3 and Bck2 play important roles in
the START transition and thus are necessary to be
included into the model. In Chen’s original model
[27] the activities of Cln3 and Bck2 were formulated
by algebraic Eqs. (1) and (2), respectively.

[Cln3] = C0 · Dn3 · [mass]
(Jn3 + Dn3 · [mass])

, (1)

[Bck2] = [mass] · B0 (2)

Fig. 2 Modified Cln3-Bck2 module for budding yeast cell cycle model. Solid arrows represent synthesis/degradation reactions and dashed arrows
represent activation. The mCln3 and mBck2 are unregulated mRNAs constitutively transcribed. As cell grows in G1 phase, Cln3 and Bck2 proteins
accumulate and the cell goes through the START transition, during which the cell commits to a new round of division. The START transition is
identified by the activation of two important transcription factors (SBF and MBF), which are included in Other Modules and not presented here
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Here C0 determines the maximum activity of Cln3,
Dn3 is the dosage of CLN3 gene, Jn3 is the Michaelis
Menton constant, and B0 is the Bck2 constant. We
note that [ X] denotes the concentration of species X.
These algebraic equations present an underlying
assumption that the aforementioned proteins are
always in steady states. We relax this assumption and
modify these two algebraic equations into
corresponding ODEs in (3) and (4):

dCln3
dt

= ks,n3 · V 2 · mCln3 − (kd,n3 − kg) · Cln3, (3)

dBck2
dt

= ks,k2 · V · mBck2 − (kd,k2 − kg) · Bck2, (4)

where kg is the growth rate of the cell, V indicates the
volume of the cell, ks,n3 and kd,n3 are the synthesis
and degradation rates of Cln3 and ks,k2 and kd,k2 are
the synthesis and degradation rates of Bck2. The
growth rate is defined as kg = ln2/MDT, where
MDT is the mass doubling time of the culture. MDT
is measured experimentally for different nutrient
cultures. For instance, the MDT for glucose is
observed to be approximately 90 minutes and thus,
the growth rate of glucose culture is estimated as
ln2/90 ≈ 0.0077 min−1. The synthesis and
degradation rates are estimated as follow: we first
estimate the degradation rate defined by
kd,p = ln2/τp, where τp is the half-life time of the
protein P. Then, we estimate the synthesis rate such
that the average abundance of the protein matches
with experimental observation reported in [15].
Table 1 lists the estimated parameters.
The reason we modified the algebraic equations in (1)
and (2) into ODEs in (3) and (4) is to follow the
experimental observations in [28, 43]. These
observations show that CLN3 gene is down-regulated
in a new born daughter cell. More specifically, Di
Talia et al. [28] observed that the CLN3 gene is about
3 times less expressed in daughter cells in
comparison with a newly divided mother cell. This
can be modeled by choosing a partitioning ratio of
25:75 for the distribution of Cln3 and Bck2 between
daughter and mother cells at division. To apply this
partitioning ratio, the dynamics of Cln3 and Bck2
should be formulated by ODEs rather than algebraic

Table 1 Estimated parameters (min−1) in fast subset of the
extended model

Parameter Value Parameter Value

ks,n3 0.0015 kd,n3 0.12

ks,k2 0.024 kd,k2 0.14

kg 0.0072

equations, since this particular partition rule can be
only applied to state variables, not those species in
algebraic equations. That is because the abundance of
species formulated by algebraic equations completely
depends on other species and thus, they cannot be
partitioned with individual rules.

• The second modification is that we coupled the
synthesis rate of Cln3 quadratically to growth as (V 2).
The reason is that to have the abundance of Cln3 to
be indicative of cell growth, this protein must be
synthesized in an accelerated rate in comparison with
other proteins such as Cln2 or Clb5 [44]. Through
many different sorts of experimental measurements
[16, 45–47], it has been observed that the size control
at START transition is primarily through the action of
Cln3 proteins. For instance, it has been shown that
the translation rate of mCln3 with low intrinsic
initiation rate, enhances more significantly by
increasing the availability of ribosomal precursors
[47]. Moreover, the translation of mCln3 is affected
by specific sequence that is sensitive to cell growth
rate [45]. Additionally, the mCln3 level rises more
than other mRNAs such as mCln2 in the presence of
glucose [46]. These observations support the idea
that Cln3 has stronger dependencies with cell size in
comparison with other proteins such as Cln2. For
this reason we believe that a quadratic coupling of
size and Cln3 better reflects the significant role of
Cln3 in START transition. We note that mass is an
indicator of the cell size in Chen’s model. We also
alter this variable mass by replacing it with a volume
variable (V ), which is a more sensible metric of size
and can be directly compared with experimental data.

• The last modification includes the dynamics of early
G1 transcripts in the subset of slow reactions. Table 2
lists the synthesis and degradation rates of the
transcripts, mCln3 and mBck2. To estimate the
corresponding reaction rates, the degradation rate is
defined first. For an mRNA denoted by m, the
degradation rate is kdm = ln2/τm, where τm is the
half-life time of transcript m. In our model, the
half-life time values are in the range of 5–10 minutes,
consistent with the experimental measurements of
Miller et al. reported in [14]. The synthesis rate, ksm,

Table 2 Modified reactions and propensities in slow subset of
the extended model

Reaction Reaction rate Parameter value Propensity

φ → mCln3 ks,mcln3 0.5 ks,mcln3 · V

mCln3 → φ kd,mcln3 0.10 kd,mcln3 · mCln3

φ → mBck2 ks,mbck2 0.7 ks,mbck2 · V

mBck2 → φ kd,mbck2 0.14 kd,mBck2 · mbck2
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is also estimated such that the average abundance of
the mRNA is consistent with experimental
measurements: 〈m〉 = ksm/kdm, where 〈m〉 denotes
the average abundance of the corresponding mRNA, m.

We apply the HR hybrid stochastic algorithm [37]
to the modified model with the listed parameters in
Tables 1 and 2.

Results and discussion
The modified hybrid stochastic model is used to gener-
ate sufficiently large populations of daughter and mother
cells (at least 5,000 cells in each independent simula-
tion run) starting from one cell at t = 0. Figure 3 shows
the oscillatory dynamics of the protein and mRNA
molecules in the modified Cln3-Bck2 module. The cell
volume grows exponentially with time and divides asym-
metrically between the daughter and mother cells. As the
cell grows in size, the levels of Cln3 and Bck2 proteins
rise. The average abundance of the proteins and mRNAs
are computed from the simulation results. The Cln3 pro-
tein, with an average abundance of 186 molecules per cell,
matches very well with experimental observations (216
molecule per cell) [15]. The unregulated mRNAs, mCln3
and mBck2, are constitutively expressed (see Fig. 3 bot-
tom panel) with an average abundance of about 5, which
is within the experimental range of 5-10 copies of unique
mRNAs per cell. First, we show that gene expression noise

introduces significant variability to cell cycle. One way to
look into this is through increasing the ploidy, because
ploidy increases the average number of transcripts. Thus,
if the source of noise stems from transcripts, the ploidy
will reduce the variability. Experimental studies show that
when the ploidy level is doubled, the abundance of all cel-
lular components as well as the volume of the cell are
doubled while the concentration of species remains the
same. In our simulations, in order to generate populations
of diploid and tetraploid wild-types, the synthesis rates of
all transcripts are estimated such that the average num-
ber of transcripts are, respectively, twice and four times
larger than haploid wild-type cells. Moreover, the average
volume of the cell is increased accordingly. To quantify
the variability the coefficient of variation (CV = standard
deviation/mean) is computed for each population.

Figure 4a-l shows histogram of the G1 time, gener-
ated from simulations of sufficiently large populations of
haploids, diploids, and tetraploids for both daughter and
mother cells. Comparing the covariances (CVs) of daugh-
ter cells (on left) and mother cells (on right), we notice
that the G1 variability is reduced from top to bottom
in both daughter and mother cells. Thus, we can infer
that the noise in gene expression level induces substantial
variability to the cell cycle system.

Next, we investigate the effect of the noise introduced
by G1 cyclin genes CLN3 and CLN2 along with BCK2 by
increasing the dosage of the corresponding transcripts. To
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this end, in simulations, the synthesis rates of the tran-
scripts are estimated such that their average abundance
is enlarged by 4 folds. Figure 4g-l demonstrates the his-
togram of the G1 time for cell population with increased
dosage of genes. Decreasing pattern of CVs in comparison
with haploid wild-type cells is evident for both daughter
and mother cells. Thus, the results of our model is con-
sistent with the hypothesis that the low copy number of
transcripts result in substantial variability in cell cycle.
In particular, in the G1 phase, this variability is more
considerable due to limited number of species.

This analysis shows how the noise reduction in level of
gene expression results in reduction in variability of the

G1 time. Next, we investigate the effect of size control on
such variability. Deterministic size control has long been
proposed as a mechanism that regulates the G1 time [17,
19]. This means that cells stay in G1 phase until they reach
a critical size. Such deterministic size control ensures that
all cells bud at the same size. Since the cell size at birth
is variable, the size control would assure smaller cells stay
long enough to reach the critical size. This introduces
variability in G1 duration. To quantify such variability
in experiment, instead of geometric volume estimation
which is less reliable, Di Talia et al. related size at bud,
Vbud, to size at birth, Vbirth, through the amount of time
the cell spends in G1 phase (TG1) by:

Vbud = Vbirthekg TG1 , (5)

where kg is the growth rate of the media. We notice
that the underlying assumption of (5) is that the pop-
ulation growth is exponential, which is consistent with
experimental observations for the budding yeast [23].
Equation (5) leads to kgTG1 = ln(Vbud)− ln(Vbirth), where
kgTG1 can be used as an indicator of the volume change
during the G1 phase. In simulations, however, change in
volume of cells from birth to bud can be directly recorded
by defining specific flags. Therefore, we use the volume
change in our simulations instead of kgTG1.

Figure 5a and b shows the correlation between the rel-
ative change in volume during G1 phase and the scaled
volume at birth for mother and daughter cells in glucose.
The growth of mother cells in G1 phase is almost inde-
pendent of the size at birth. There is a very good match
between the experimental observations (slope = −0.1)
and our model (slope = −0.13). For daughter cells, how-
ever, strong size control is evident (see Fig. 5b). Small
daughter cells need to stay longer and grow larger in G1
phase before they go through START transition and com-
mit to a new cycle. The size control is stronger in smaller
daughters (slope = −0.97) compared with the larger ones
(slope = −0.2). The quantified correlations are, respec-
tively, comparable with (slope = −0.7) and (slope = −0.3)
from experiments [23].

This analysis quantitatively describes two causes for G1
variability: 1) variability that is introduced by size control
and 2) variability that is independent of size and stems
from molecular noise [23]. The simulation results of cells
with increased copies of genes provides more quantita-
tive evidence in this regards. The efficient size control
observed in wild-type daughters (see Fig. 5a) is reduced by
ploidy and increasing the dosage of G1 cyclins. Figure 6
shows the correlation between relative volume growth
during G1 phase and the scaled volume at birth. The lin-
ear fit to the binned data demonstrates a smaller slop
in diploid and tetraploid daughters in comparison with
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haploid wild-type in Fig. 5a. Similarly, the less efficient
size control is evident in daughter cells with increased
dosage of CLN3, BCK2, and CLN2. In addition, Fig 6.
e, g, and i shows that increasing the number of CLN3
and BCK2 copies substantially alters the size control while
the increased dosage of CLN2 does not. The lack of size
control in mother cells is also evident in right-hand side
panels in Fig. 6. Our model describes the stochastic size
control of the budding yeast cell cycle very well and is
quantitatively consistent with experimental observations
by Di Talia et al. [23]

Thus far, using different analysis we have shown that
our hybrid stochastic model captures many properties of
the cell cycle and matches very well with experimental
data. Next we, use the proposed model to predict the
variability in phenotypes of mutant strains in START net-
work, more specifically the genes that play role in size
control. The average phenotype of mutants have been
modeled deterministically first by Chen et al. in [26, 27]
and recently by Kraikivski et al. in [48]. However, the vari-
ability of cell cycle properties in different mutant strains
needs stochastic modeling and yet is not addressed by
prior works.

Figure 7a and b shows the results from hybrid stochastic
simulation for some of viable mutants of START network.
Important properties of the cell cycle including division
time (Tdiv), G1 time (TG1), volume at birth (Vbirth), and
S/G2/M duration (TS/G2/M) are computed for the popula-
tion of the mutants. According to results in Fig. 7a and b
for both daughter and mother cells, the average properties
of the cell cycle predicted by our proposed model is con-
sistent with the experimental observations reported in

[27]. For instant, for those strains with deleted G1 cyclin
genes such as cln3� and cln2�, the G1 time is signifi-
cantly longer than the wild-type cell. That is because the
budding is delayed due to deletion of these genes. For a
similar reason, the G1 phase is prolonged in bck2� and
cln2�bck2�. Moreover, since these strains stay longer in
G1 phase, they grow larger before they commence a new
cycle. For this reason, the size of these mutants after divi-
sion (at birth) is larger on average in comparison with wild
type cell [26, 27]. GAL−CLN3 and multicopy-BCK2 with
increased activity of CLN3 and BCK2 produce cells with
smaller size. Such phenotype of these mutant strains is
precisely described by our model.

Figure 7c and d shows the percent change in variabil-
ity of cell cycle properties under perturbation of CLN3,
CLN2, and BCK2 genes compared with wild-type cell.
According to the prediction of the model, deletion of
CLN3 gene induces highest amount of noise into almost
all properties of the cell cycle, particularly to the G1
phase. The G1 time is highly variable because Cln3 pro-
tein is the cyclin that contributes the most in G1 phase
(by activation of SBF which is the transcription fac-
tor of Cln2). Hence, in the absence of CLN3 gene, the
START transition becomes sloppy. Another observation is
that cln3 deletion induces more variability to the mother
cell than the daughter cell. This can be explained by
the asymmetric division of Cln3 and mCln3 in budding
yeast. Considering the experimental observations in [28],
we partition both Cln3 and mCln3 with ratio of 25:75
between daughter and mother cells. Thus, the absence of
Cln3 protein has more considerable effect in variability of
mother cells.
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(log(Vbirth/〈Vbud〉) is shown for ploidy (a-d) and cells with increased dosage of genes (e-j). The quantified correlation shows that the cell size
independent noise is decreased by ploidy and also by increasing the copy numbers of G1 cyclins as well as BCK2

Bck2 is a back-up protein in G1 phase. In absence of this
protein, Cln3 is able to drive the cell to START transition
and hence, deletion of the bck2 does not greatly affect the
properties of cell cycle. However, increasing the dosage of
this gene in multicopy-BCK2 significantly decreases the
variability of G1 phase. Clearly, that is because multiple

copies of the gene decrease the fluctuation in level of gene
expression, and consequently, in G1 duration.

Deleting CLN2 gene in cln2� strain does not consid-
erably change the variability in cell size or other phases
of the cell cycle, except for G1 phase of daughter cell.
This phenotype is not consistent with our expectation and
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under current parameterization, this observation requires
more investigation. CLN1 and CLN2 genes have overlap-
ping functions in formation of bud and spindle pole body
duplication [26]. Due to the similarity of Cln1 and Cln2
proteins, the combined activity of these proteins is typi-
cally presented by only Cln2 to simplify the model. One
possible solution to study the dynamics of this family of
cyclins in more detail is to include the dynamics of Cln1
and mCln1 in the model.

Experimental studies show that the noisiest phase of the
budding yeast cell cycle is G1 with coefficient of variation
equal to 50% for both daughter and mother cells. Thus,
one may infer that the variability in other phases (S/G2/M)
is dictated by the G1 variability. However, Debashis et al.
in [30] showed that the variability in cell cycle times and

volume at birth are driven by the variability of the S/G2/M
phase (bud phase), rather than the G1 (unbud) phase.

Next, we study the correlation between variability in
division time and size at birth with respect to variability in
duration of G1 and S/G2/M phases. To this end, the CVs of
G1, S/G2/M, and division time along with the cell volume
at birth are computed from simulation of the following
populations: wild-type haploids, diploids and tetraploids
in glucose, mutant strains presented in Fig. 7, and the
cells with increased dosage of genes presented in Fig. 8.
Moreover, the product-moment correlation coefficient is
computed to quantify such correlations.

Figure 8a-d demonstrates that variability in cycle time
and volume with respect to variability in duration of G1
and S/G2/M phases. There is strong correlation (R = 0.91)
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between the CVs of division time and S/G2/M duration
(see Fig. 8a), while such correlation is less evident for G1
duration with coefficient of correlation equal to 0.52 (see
Fig. 8b). Similarly, Fig. 8c and d shows that CVs of birth
size are more strongly correlated to less noisy phase of the
cell cycle (S/G2/M ), rather than the G1 phase. The rea-
son for such non-intuitive observation lies in size control
mechanism. According to the results in Fig. 5, size control
imposes a negative correlation between the size at birth
and G1 duration in order to make the cells bud at the same
size such that the variability in size is minimized before
START transition [30]. Hence, major variability of the cell
size from birth to division takes place after START and
during the S/G2/M phase.

Conclusion
In this paper, we present a new hybrid stochastic
(ODE/SSA) model to address the variability in the bud-
ding yeast cell cycle introduced by noise in level of gene
expression and stochastic size control. We have signif-
icantly modified existing works by adding a modified
Cln3-Bck2 module. This module is required to study the
G1 variability due to importance of Cln3 and Bck2 pro-
teins at the early G1 phase. We have applied the HR
hybrid method in our developed model to maintain a good
trade-off between accuracy and efficiency by integrating
deterministic and stochastic simulations. We note that the
full stochastic simulation is computationally expensive to

be used in our large model that includes 66 proteins and
mRNAs. In order to incorporate the inherent molecular
fluctuations of the cell cycle in our model, we have
enhanced the protein-protein regulatory module of the
Chen’s deterministic model to a gene-protein regulatory
network, where mCln3 and mBck2 are incorporated.

We validate our model though comprehensive numeri-
cal simulations and present several comparisons with wet-
lab experimental data. With manageable computational
complexity, our approach has successfully accounted for
a broad range of single-cell experimental observations on
wild-type and mutant cells. In particular, our model has
confirmed that substantial amount of deleterious noise in
cell cycle stems from the low copy number of mRNAs
in early G1 phase. The imperfect sizer of the budding
yeast control mechanism has also been predicted by the
proposed model. Moreover, the effect of size control on
variability of certain mutant phenotypes in Cln3-Bck2
module have been quantitatively described. The proposed
model has yielded promising preliminary results that can
be used to build more comprehensive models of size
control regulatory network.

Abbreviations
CV: Coefficient of variation; HR: Haseltine and Rawlings; MDT: Mass doubling
time; ODEs: Ordinary differential equations; SSA: Stochastic simulation
algorithm; ssSSA: Slow scale Stochastic Simulation Algorithm

Acknowledgements
Not applicable.



Ahmadian et al. BMC Bioinformatics 2019, 20(Suppl 12):322 Page 12 of 13

Funding
This work was partially supported by the National Science Foundation under
awards CCF-0953590, CCF-1526666, and MCB-1613741. In particular,
publication costs are funded by CCF-1526666 (50%) and MCB-1613741 (50%).

Availability of data and materials
Not applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 12, 2019: Selected original research articles from the Fifth
International Workshop on Computational Network Biology: Modeling,
Analysis and Control (CNB-MAC 2018): Bioinformatics. The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-20-supplement-12.

Authors’ contributions
MA and YC conceived of the presented idea. MA developed the simulation
code and performed the computations. YC and JJT supervised the findings of
this work. All authors discussed the results and contributed to the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
2Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.

Published: 20 June 2019

References
1. Hartwell LH, Unger MW. Unequal division in saccharomyces cerevisiae

and its implications for the control of cell division. J Cell Biol. 1977;75(2 pt
1):422–35.

2. Carter BLA. The control of cell division in saccharomyces cerevisiae. In:
John PCL, editor. The Cell Cycle. Cambridge, UK: Cambridge University
Press; 1981. p. 99–117.

3. Murray A, Hunt T. The cell cycle: An introduction. New York: W.H.
Freeman; 1993.

4. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular
biology of the cell, 3rd ed. New York: Garland Publishing; 1994.

5. Nasmyth K. Evolution of the cell cycle. Philos Trans R Soc Lond B.
1995;349(1329):271–81.

6. Nasmyth K. At the heart of the budding yeast cell cycle. Trends Genet.
1996;12(10):405–12.

7. Botchan M. Coordinating dna replication with cell division: current status
of the licensing concept. Proc Natl Acad Sci USA. 1996;93(19):9997–10000.

8. Tyson JJ, Novak B, Odell GM, Chen KC, Thron CD. Chemical kinetic
theory as a tool for understanding the regulation of m-phase promoting
factor in the cell cycle. Trends Biochem Sci. 1996;21(3):89–96.

9. Amon A. Regulation of b-type cyclin proteolysis by cdc28-associated
kinases in budding yeast. EMBO J. 1997;16(10):2693–702.

10. Biggins S, Murray AW. Sister chromatid cohesion in mitosis. Curr Opin
Cell Biol. 1998;10(6):769–75.

11. Leatherwood J. Emerging mechanisms of eukaryotic dna replication
initiation. Curr Opin Cell Biol. 1998;10(6):742–8.

12. Zachariae W, Schwab M, Nasmyth K, Seufert W. Control of cyclin
ubiquitination by cdk-regulated binding of hct1 to the anaphase
promoting complex. Science. 1998;282(5394):1721–4.

13. Miller ME, Cross FR. Mechanisms controlling subcellular localization of
the g1 cyclins cln2p and cln3p in budding yeast. Mol Cell Biol.
2001;21(18):6292–311.

14. Miller C, Schwalb B, Maier K, Schulz D, Dümcke S, Zacher B, Mayer A,
Sydow J, Marcinowski L, Dölken L, Martin DE, Tresch A, Cramer P.
Dynamic transcriptome analysis measures rates of mrna synthesis and
decay in yeast. Mol Syst Biol. 2011;7(458). https://doi.org/10.1038/msb.
2010.112. PMCID: PMC3049410. PMID: 21206491.

15. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N,
O’Shea EK, Weissman JS. Global analysis of protein expression in yeast.
Nature. 2003;14(425):737–41.

16. Lord PG, Wheals AE. Asymmetrical division of saccharomyces cerevisiae. J
Bacteriol. 1980;142(3):808–18.

17. Johnston GC, Pringle JR, Hartwell LH. Coordination of growth with cell
division in the yeast saccharomyces cerevisiae. Exp Cell Res. 1997;105(1):
79–98.

18. Goranov AI, Cook M, Ricicova M, Ben-Ari G, Gonzalez C, Hansen C,
Tyers M, Amon A. The rate of cell growth is governed by cell cycle stage.
Genes Dev. 2009;23(12):1408–22.

19. Ferrezuelo F, Colomina N, Palmisano A, Gari E, Gallego C, Csikasz-Nagy A,
Aldea M. The critical size is set at a single-cell level by growth rate to
attain homeostasis and adaptation. Nat Commun. 2012;3:1012. https://
doi.org/10.1038/ncomms2015.

20. Schmoller KM, Turner JJ, Koivomagi M, Skotheim JM. Dilution of the cell
cycle inhibitor whi5 controls budding-yeast cell size. Nature.
2015;526(7572):268–72. https://doi.org/10.1038/nature14908.

21. Soifer I, Robert L, Amir A. Single-cell analysis of growth in budding yeast
and bacteria reveals a common size regulation strategy. Curr Biol.
2016;26(3):356–61.

22. Turner JJ, Ewald JC, Skotheim JM. Cell size control in yeast. Curr Biol.
2012;22(9):350–9.

23. Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR. The effects of
molecular noise and size control on variablility in the budding yeast cell
cycle. Nature. 2007;448:947–52.

24. Tyson JJ. Modeling the cell division cycle: Cdc2 and cyclin interactions.
PNAS. 1991;88(16):7328–32.

25. Tyson JJ, Novak B. Regulation of the eukaryotic cell cycle: molecular
antagonism, hysteresis, and irreversible transitions. J Theor Biol.
2001;210(2):249–63.

26. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Kinetic
analysis of a molecular model of the budding yeast cell cycle. Mol Biol
Cell. 2000;11(1):369–91.

27. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ.
Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell.
2004;15:3841–62.

28. Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR.
Daughter-specific transcription factors regulate cell size control in
budding yeast. PLoS Biol. 2009;7(10):e1000221.

29. Ball DA, Ahn T, Wang P, Chen KC, Cao Y, Tyson JJ, Peccoud J, Baumann
WT. Stochastic exit from mitosis in dudding yeast. Cell Cycle. 2011;10(6):
999–1009.

30. Barik D, Ball DA, Peccoud J, Tyson JJ. A stochastic model of the yeast cell
cycle reveals roles for feedback regulation in limiting cellular variability.
PLoS Comput Biol. 2016;12(12):e1005230.

31. Gillespie DT. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Contemp Math.
1976;22(4):403–34.

32. Gillespie DT, Petzold LR. Improved leap-size selection for accelerated
stochastic simulation. J Chem Phys. 2003;119(16):8229–34.

33. Gibson MA, Bruck J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J Chem Phys.
2000;104(2):1876–89.

34. Cao Y1, Li H, Petzold L. Efficient formulation of the stochastic simulation
algorithm for chemically reacting systems. J Chem Phys. 2001;121(9):
4059–67.

35. Wang S, Ahmadian M, Chen M, Tyson JJ, Cao Y. A hybrid stochastic model
of the budding yeast cell cycle control mechanism. In: Proceedings of the
7th ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics. New York: ACM; 2016. p. 261–270.

36. Ball DA, Adames NR, Reischmann N, Barik D, Franck CT, Tyson JJ.
Measurement and modeling of transcriptional noise in the cell cycle
regulatory network. Cell Cycle. 2013;12(19):3203–18.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-12
https://doi.org/10.1038/msb.2010.112
https://doi.org/10.1038/msb.2010.112
https://doi.org/10.1038/ncomms2015
https://doi.org/10.1038/ncomms2015
https://doi.org/10.1038/nature14908


Ahmadian et al. BMC Bioinformatics 2019, 20(Suppl 12):322 Page 13 of 13

37. Ahmadian M, Wang S, Tyson JJ, Cao Y. Hybrid ode/ssa model of the budding
yeast cell cycle control mechanism with mutant case study. In: Proceedings
of the8th ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics. New York: ACM; 2017. p. 464–473.

38. Haseltine EL, Rawlings JB. Approximate simulation of coupled fast and
slow reactions for stochastic chemical kinetics. J Chem Phys.
2002;117(15):6959–69.

39. Gillespie DT. Approximate accelerated stochastic simulation of chemically
reacting systems. J Chem Phys. 2001;115(4):1716–33.

40. Cao Y, Gillespie DT, Petzold LR. The slow-scale stochastic simulation
algorithm. J Chem Phys. 2005;122(1):014116.

41. Liu Z, Pu Y, Li F, Shaffer CA, Hoops S, Tyson JJ, Cao Y. Hybrid modeling
and simulation of stochastic effects on progression through the
eukaryotic cell cycle. J Chem Phys. 2012;136(3):034105.

42. Wang S, Chen M, Watson LT, Cao Y. Efficient implementation of the
hybrid method for stochastic simulation of biochemical systems. J
Micromech Mol Phys. 2017;02(02):1750006.

43. Laabs TL, Markwardt DD, Slattery MG, Newcomb LL, Stillman DJ,
Heideman W. Ace2 is required for daughter cell-specific g1 delay in
saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2003;100(18):
10275–80.

44. Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ. A model of yeast
cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol.
2010;6(405):1–18.

45. Polymenis M, Schmidt EV. Coupling cell division to cell growth by
translational control of the g1 cyclin cln3 in yeast. Genes Dev. 1997;11:
2522–31.

46. Newcomb LL, Hall DD, Heideman W. Azf1 is a glucose-dependent
positive regulator of cln3 transcription in saccharomyces cerevisiae. Mol
Cell Biol. 2002;22:1607–14.

47. Lodish HF. Model for the regulation of mrna translation applied to
haemoglobin synthesis. Nature. 1974;251:385–88.

48. Kraikivski P, Chen KC, Laomettachit T, Murali T, Tyson JJ. From start to
finish: computational analysis of cell cycle control in budding yeast. Syst
Biol Appl. 2015;1(15016):1–9.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods and simulation
	Model description
	The HR hybrid model

	Results and discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

