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Abstract

Background: Several large public repositories of microarray datasets and RNA-seq data are available. Two prominent
examples include ArrayExpress and NCBI GEO. Unfortunately, there is no easy way to import and manipulate data
from such resources, because the data is stored in large files, requiring large bandwidth to download and special
purpose data manipulation tools to extract subsets relevant for the specific analysis.

Results: TACITuS is a web-based system that supports rapid query access to high-throughput microarray and NGS
repositories. The system is equipped with modules capable of managing large files, storing them in a cloud
environment and extracting subsets of data in an easy and efficient way. The system also supports the ability to
import data into Galaxy for further analysis.

Conclusions: TACITuS automates most of the pre-processing needed to analyze high-throughput microarray and
NGS data from large publicly-available repositories. The system implements several modules to manage large files in
an easy and efficient way. Furthermore, it is capable deal with Galaxy environment allowing users to analyze data
through a user-friendly interface.
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Background
Transcriptome analysis can be applied to define biomark-
ers in precision medicine, to describe how observed
alterations impact a patient’s phenotype, or, more funda-
mentally, to infer causality among genes. To date, studies
have produced a huge amount of data stored in databases
such as NCBI GEO or ArrayExpress.

ArrayExpress [1] is a public database storing high-
throughput functional genomics data, such as Microarray
and Next-Generation Sequencing (NGS). Each dataset is
provided by a user, either by submitting it directly, or by
importing it from other databases (i.e. Gene Expression
Omnibus, GEO). Directly submitted datasets are manu-
ally curated according to the MIAME (Minimum infor-
mation about a Microarray experiment) standard [2] for
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Microarray, and MINSEQE (Minimum Information about
a high-throughput nucleotide SEQuencing Experiment)
standard for NGS.

These information standards support the sharing and
reuse of scientific data. The MIAME standard was intro-
duced in 2001 to simplify storing and exchanging gene
expression experiments. The specifications of this stan-
dard requires the recording of all the information needed
to unambiguously interpret the results of an experiment,
and be able to reproduce the experiment. The standard
defines the content and structure of necessary informa-
tion, rather than the technical format for archiving. Sim-
ilarly, MINSEQE defines a standard to allow the unam-
biguous interpretation and reproducibility of sequencing
experiments.

Users who submit data to ArrayExpress provide their
files together with metadata, describing sample content.
Data are exported and stored according to the MAGE-
TAB format [3]. Data sets imported from other functional
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genomics databases are also converted into MAGE-TAB
files for archiving.

MAGE-TAB is a tabular MIAME file format. MAGE-
TAB documents consist of five different types of files: (i)
A ’raw’ archive; (ii) A ’data matrix’ file; (iii) The Sample
and Data Relationship Format (SDRF) tab-delimited file;
(iv) The Array Design Format (ADF) tab-delimited file; (v)
The Investigation Description Format (IDF) tab-delimited
file.

Retrieving publicly available data from ArrayExpress for
analysis is a time-consuming task. First, some datasets are
quite large so take time to download. Second, few tools
are available to interact with ArrayExpress, though some
are very good: in [4] authors presented the ArrayExpress
package for R/Bioconductor to query ArrayExpress and
convert MAGE-TAB formatted datasets from the Array-
Express repository into objects of the Bioconductor class
(eSet).

NCBI GEO is a public functional genomics data reposi-
tory [5, 6] supporting MIAME-compliant data extraction.
The system’s tools support user query and download
experiments and curated gene expression profiles. End
users may encounter problems when downloading large
datasets.

To our knowledge, currently no system allows users to
select small amounts of data from big experimental files.
Consequently, users spend a lot of time to prepare data for
further analysis. In addition, uploading data into Galaxy
is complicated by the limited set of plugins offered by the
platform and the need to manually pre-process external
data.

Our system TACITuS (Transcriptomic Data Collector,
Integrator, and Selector) is a web app that simplifies
the process of collection, pre-processing, selection, and
integration of transcriptomics data. Through our inter-
face a user can collect data from major sources, such
as NCBI GEO or ArrayExpress, and integrate them with
their own data into a standardized format, facilitating sub-
sequent analyses. Our tool, built on top of MongoDB,
Apache Lucene, and proper indexing algorithms, can eas-
ily manage large amounts of data guaranteeing fast perfor-
mance. In its current version, TACITuS supports only pre-
processed NGS and Microarray dataset. Raw datasets can
not be imported. Furthermore, all metadata are collected
and standardized, enabling fast search and easy manage-
ment on large datasets. Our software is freely available
at https://tacitus.app/ and distributed through a GPL v3
licence. Finally, a module enabling complex data analysis
through a connection with the Galaxy [7] computational
platform is available.

To evaluate our methods, we imported several high
dimensional transcriptomics datasets to determine effi-
ciency in storage, pre-processing, and indexing. On such
datasets, we also performed several selection queries

and gathered their results to demonstrate the user
experience. These experiments show that the user can
import large datasets in a few hours, select samples
in less than an hour, map and integrate datasets in a
few minutes. All this is done with low memory and
CPU consumption, making the software capable to scale
and therefore suitable when large number of users are
connected.

Implementation
TACITuS is built on top of the Laravel framework
and is backed by two databases: MariaDB for stor-
ing fast indexes of all available datasets, and Mon-
goDB for data and meta-data storing. Data processing
is done in R, C++ and PHP to achieve high perfor-
mances. Our portal collects data from the major data
sources, NCBI GEO and ArrayExpress, and integrates
them with user data. TACITuS offers five major function-
alities: (i) data import, (ii) data selection, (iii) identifier
mapping, (iv) data integration, and (v) Galaxy Export.
In this section, we will provide a description of these
modules and their implementation. For more details, an
online step-by-step tutorial is available through the web
interface.

Import
TACITuS enables users to import dataset from several
public transcriptomics resources. Through the “Dataset
submission” panel (see Fig. 1a), a user selects one data
source (NCBI GEO, ArrayExpress or custom), specifies
the accession number of the dataset to be imported (see
Fig. 1b), and decides whether imported datasets should
be public or private. In the current interface, NGS and
Microarray datasets are supported if processed data are
available. Raw datasets can not be imported in this release.

When the request is submitted, a record is added into a
priority queue with all user-specified parameters and the
computation starts as soon as resources are available.

First, dataset files are downloaded. Next, all relevant
data are stored in a MongoDB databases, while building
two indexes to speed-up further phases: (i) a meta-data
index, and (ii) a sample index. The meta-data index is a
list of all sample descriptor attributes. The sample index
is a map that associates samples to their positions in the
expression matrix. Samples are identified by a unique
code. Finally, for each meta-data attribute, a Lucene-
backed full-text index is built and a record describing the
dataset is stored in the database and made available to the
user.

For NCBI GEO datasets, the platform descriptor, con-
taining information on mappings between probes iden-
tifiers and the respective ones in other datasets, such
as Entrez or Ensembl Gene Ids, is also downloaded and
imported in the database.

https://tacitus.app/
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Fig. 1 Data import panel. a The user selects the “Submit Dataset” button in the “Datasets” panel. b By filling the “Dataset submission” form an import
request can be submitted

Selection
TACITuS allows users to select portions of imported
datasets through a meta-data search. Selection improves
performance when working with large datasets that can
not be entirely loaded into memory. By clicking on the
“Make Selection” button in the list of datasets (see Fig. 1a),
the “Sample Selection” panel will appear, allowing to the
user to specify all parameters. Specifically, the user can
provide a selection name, for easy content identifica-
tion, and select the samples to include. The table lists
all samples and their meta-data to simplify the selection
process. Sample search by meta-data is supported by the
full-text indices built during the import phase (see Fig. 2).

After submitting the selection, a job is added to a pri-
ority queue, and processed when computational resources
become available. As the process starts, selected sam-
ple meta-data are stored in a TSV (Tab-Separated Value)

file and positions of such samples in the dataset expres-
sion matrix are extracted from the sample index. Next, all
probes containing each sample set are gathered and stored
in TSV files. Each line of the file contains the name of a
probe, and the selected expression values. The first line of
such a file contains the name of the selected samples.

As soon as the selection process is completed, the user
can download both data and metadata in TSV or CSV for-
mat. If CSV format is chosen, the delimiter character can
be specified.

Mapping
For each selection, TACITuS supports a mapping from
probe identifiers to standardized, e.g., Entrez, Identi-
fiers. This facilitates the data integration process when
using different platforms, because standardized identifiers
between different experiments can be easily matched.
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Fig. 2 Data selection panel. The “Sample selection” panel can be employed to produce a sub-datasets containing only portion of the samples. The
selection table provides functions to filter samples by metadata attributes

The functionality is activated through the “Selections”
panel, where the “Map Identifiers” button is located (see
Fig. 3a). By making such a selection, a panel will open
up. The desired platform for the transcriptomics experi-
ment and the destination identifier are then selected (see
Fig. 3b). If, as in NCBI GEO, the platform is automatically
detected, the user can proceed directly to the destination
identifier choice.

Once the request has been completed, a job is added
to the priority queue. As soon as processing starts,
a mapping table is built, where each probe identi-
fier is associated with a standard one. The data file
is read, and each probe identifier is replaced with the
selected one, according to the mapping table. If no
entry is available for an identifier, the probe will be
removed from the output. The results are stored in
TSV format. The first line contains the selected sample
names, while the remaining lines contain the expression
of probes for which a mapping is available. The user can
choose to download data and metadata in TSV or CSV
format.

Integration
TACITuS implements an integration procedure devised to
combine two or more selections into a single dataset. The
system exploits the following techniques: (i) Sims et al.,
2008 [8], (ii) COMBAT [9], (iii) Gene Standardization, and
(iv) Cross-platform Normalization (XPN) [10].

Sims et al., 2008 applies a technique like z-score nor-
malization, transforming each dataset through mean-
centering. COMBAT exploits an Empirical Bayesian
model to estimate the mean and variance of each gene
in each dataset, correcting data for batch effects. Gene
Standardization is the simplest mathematical transforma-
tion to make datasets comparable. For each gene, the
expression value is corrected subtracting the mean and
dividing by the standard deviation. XPN finds blocks of
genes and samples showing similar expression patterns
and, therefore, uses the average of these blocks to shift and
scale data.

The integration procedure starts by clicking on the
“Request Integration” button available through the “Inte-
grator” panel (see Fig. 4a). The user specifies which
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Fig. 3 Identifiers mapping panel. a The user selects the “Map Identifiers” button in the “Selections” panel. b By choosing a platform and a destination
identifier in the “Map Identifiers” form a request is submitted

datasets to integrate, the combination method (see
Fig. 4b). Integration algorithms can also be disabled if
the user needs to combine expression matrices without
altering the values.

Once the request has been completed, a job is added to
the priority queue. The process will start as soon as the
resources are available. First, all meta-data are merged in
a single table, using the meta-data index to speed-up the
identification of variables in the final table. All attributes
from the original datasets are saved. If one or more sam-
ples in the merged table have the same identifier, a unique
number will be appended. Next, all expression matrices
are loaded in memory and the chosen algorithm builds a
combined expression matrix. Finally, results are stored in
TSV format and can be downloaded either in TSV or CSV
format.

The integration procedure loads full expression matri-
ces, therefore is a memory-intensive process.

Galaxy integration
TACITuS implements a module to upload data and meta-
data to the Galaxy platform. The integration with the
Galaxy cloud environment has been done with Blend4php
API [11]. To enable this module, the user has to pro-
vide the details of a galaxy server (name, host name,
port) together with user’s credentials (API key) through
the “Galaxy Account” panel in the “User Profile” page
(see Fig. 5a). This activates the “Upload to Galaxy” but-
ton (see Fig. 5b). By clicking on the upload button beside
each dataset, the user will open the uploading panel,
enabling the selection of a Galaxy server for the upload
(see Fig. 5c).
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Fig. 4 Integration panel. a The user requests the integrator procedure through the button in the “Integrator” panel. b The request can be submitted
after choosing the dataset selection and the algorithm

Fig. 5 Galaxy Upload Module. a The module is activated by adding at least one server in the “Galaxy Accounts” panel. b The user will be then able to
use the “Upload to galaxy” button provided in all panels. c) Finally, the upload process can be initiated in the “Upload to Galaxy” panel
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Once the selection has been made, the request is sub-
mitted to the priority queue and the process will start as
soon as the requested resources become available. First, a
connection to the remote Galaxy Server is created. Then
an authentication request through the user API key is
performed. If the request is successful, a new history with
the dataset name is created. An history is a container

in Galaxy maintaining the location of a dataset and the
results of its analysis. Finally, data and metadata files are
sent to the galaxy server for storage in the generated container.

Results
To show how our approach can manage large expres-
sion data, we perform a case study with the ArrayExpress

Fig. 6 Effect of the integration procedures on synthetic expression datasets. The two datasets simulate Microarray data (a) and NGS data (b). Each
synthetic dataset was randomly partitioned in two sets. Then, each integration procedure was applied and DEGs were computed varying the
p-value threshold. Receiver-Operating Characteristic (ROC) curves were computed using true DEGs, and the performances were assessed by means
of Area Under the ROC Curve (AUC)
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dataset “A comprehensive human expression map” (E-
MTAB-3732). This dataset has been selected because of
its size and complexity (~30GB). The dataset consists of
27,887 samples comprising expression data from approx-
imately 50,000 genes. All experiments were performed
using the Affymetrix HG-U133Plus2 platform. For each
sample descriptive variables identifying cell type, source
tissue, cell line, and any pharmacological treatments are
available. We imported the dataset, and performed sev-
eral procedures evaluating the employed amount of RAM,
percentage of CPU, and time. For all tests we used an Intel
Xeon E5-2440 (6 cores - 12 threads) with 32Gb of RAM.

Furthermore, we evaluated the effect that integration
methods have on expression datasets to understand which
technique yields better results. For this purpose, two anal-
ysis were carried out on (i) synthetic datasets and (ii) real
datasets taken from The Cancer Genome Atlas (TCGA).

First, two synthetic datasets were generated to simu-
late Microarray and NGS experiments, respectively. The
Microarray dataset was generated using the R package
madsim [12], while the compcodeR [13] package was used
for the NGS one. For both datasets, recommended param-
eters were used, generating 7 case samples and 7 controls.
Both packages, in addition to expression matrices, pro-
vide the list of true Differentially Expressed Genes (DEGs)
and their expected direction (upregulation or downreg-
ulation). Then, each dataset was randomly partitioned
into two subset of samples and the integration meth-
ods were applied on them. Finally, DEGs were estimated
using Limma, varying the p-value threshold from 0.001
to 0.05. Next, Receiver-Operating Characteristic (ROC)
curves were built by comparing estimated DEGs with true
ones. Curves were summarized by computing the Area
Under the ROC Curve (AUC). Furthermore, the same test

was performed on the original matrix without any inte-
gration procedure to obtain a baseline AUC, since some
DEGs might not be detected due to Limma.

For the simulated Microarray dataset (Fig. 6b), all meth-
ods obtain an AUC comparable to the baseline except
for gene standardization which obtained ∼ 0.5. There-
fore, we excluded the latter from Fig. 6b to allow a better
visualization. For the simulated NGS dataset (Fig. 6a), the
baseline method obtained a mean AUC greater than 0.65.
Only COMBAT obtained a comparable value. The other
three methods had significantly lower values.

The second test was performed on the Lung Squamous
Cell Carcinoma (LUSC) dataset obtained from TCGA.
The dataset comprises of 552 RNA-seq samples (501 cases
and 51 controls) obtained using the Illumina HiSeq-2000
sequencing platform. Furthermore, expressions measured
using Affymetrix HG-U133A were available for 131 of the
501 cases. First we built a reference set by determining
DEGs on all RNA-seq samples using Limma (p < 0.01).
Next, we removed the RNA-seq samples corresponding
to the 131 microarray cases. This yielded two different
dataset. Then, the two series of samples were processed
using integration algorithms. Finally, the performances
were evaluated using the above described methodology.
Results show that both Sims et al., 2008 and COMBAT are
capable to obtain results more accurate than the baseline
approach (Fig. 7).

Discussion
TACITuS is a user-friendly system providing a web inter-
face designed to simplify the process of collection, pre-
processing, selection, and integration of large transcrip-
tomics datasets. The system also enables uploading of data
to Galaxy Servers to allow further analysis.

Fig. 7 Effect of the integration procedures on TCGA LUSC datasets. Two datasets comprising of Illumina HiSeq-2000 and Affymetrix HG-U133A data
were employed to evaluate the effect of the integration on two different platforms. After applying the integration procedure, DEGs were computed
varying the p-value threshold. Receiver-Operating Characteristic (ROC) curves were computed using known DEGs, and the performances were
assessed by means of Area Under the ROC Curve (AUC)
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To show how our approach can easily manage large
expression data, we perform a case study with the Array-
Express dataset “A comprehensive human expression
map” (E-MTAB-3732). The dataset has been imported
through the “Submit Dataset” button in the “Datasets”
panel. The system checked that all necessary parameters
were specified. Next, the job was submitted to our analy-
sis queue (see Fig. 8). In two hours, the system was able to
import the dataset with minimal resource usage (~600MB
of RAM and 8% sustained usage of a 6 cores CPU). At the
end of the procedure, a notification was sent to the user,
and the selection panel was enabled for the dataset (see
Fig. 8).

We decided to select samples from two cell lines: H125
(lung cancer samples) and H460 (non-small cell lung
cancer samples). These have been separately submitted
to TACITuS, to obtain two different sub-datasets. The
system was able to generate such subsets in one hour

consuming only 370MB of RAM. Once the data become
available, we used the integration tool to build a single
dataset and map probe identifiers to Entrez Gene IDs (see
Fig. 8). The procedure took only a few minutes using a
modest amount of memory, approximately 1GB of RAM.
Finally, we uploaded the data in the Galaxy Public Server,
and performed a differential expression analysis using
Limma (see Fig. 9).

Our tests show that TACITuS can handle large datasets
with modest computational resources. Moreover, the sim-
plified interface allows inexperienced users to manage
large datasets. To evaluate integration algorithms impact,
we performed several experiments on synthetic and real
datasets. Experiments carried out on synthetic datasets
showed how COMBAT is the only integration method
capable to yield results comparable both on Microarray
and NGS data. However, the chosen technique seems to
have less impact in NGS rather than Microarrays. These

Fig. 8 A common workflow in TACITuS. First, the user selects a dataset from a public database. As soon as the dataset is imported, selections on the
samples can be performed. Finally, selection from multiple datasets can be integrated to obtain a single set of samples and their metadata
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Fig. 9 Galaxy Analysis Pipeline. A description of the galaxy analysis pipeline used for our case study. First data were uploaded in Galaxy using
TACITuS. Next, we applied Limma to determine if any differentially expressed genes were present

results are also confirmed in the TCGA LUSC dataset.
Both COMBAT and Sims et al., 2008 were able to obtain
superior results compared to the baseline approach.

Conclusions
TACITuS is a web app allowing users to manage and
integrate data coming from ArrayExpress and NCBI
GEO. Large transcriptomics datasets can be easily pre-
processed, selected, and integrated. This enables many
users to access large genome data usually available only
to advanced bioinformaticians with large computational
resources. The system allows also to upload data to the
Galaxy platform for further analysis.

Availability and requirements
Project Name: TACITuS
Project Home page: https://tacitus.app/
BugsReporting: https://github.com/alaimos/tacitus/issues

Operating system: Platform independent
Programming languages: PHP, R, C++
Other requirements: All modern web browser
License: GNU GPL 3
Other restrictions: For non-academics, licence is needed
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MicroArray gene expression tabular; MIAME: Minimum information about a
microarray experiment; MINSEQE: Minimum information about a
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The cancer genome atlas; XPN: Cross-platform normalization
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