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Abstract

Background: The genetic bases of many complex phenotypes are still largely unknown, mostly due to the
polygenic nature of the traits and the small effect of each associated mutation. An alternative approach to classic
association studies to determining such genetic bases is an evolutionary framework. As sites targeted by natural
selection are likely to harbor important functionalities for the carrier, the identification of selection signatures in the
genome has the potential to unveil the genetic mechanisms underpinning human phenotypes. Popular methods of
detecting such signals rely on compressing genomic information into summary statistics, resulting in the loss of
information. Furthermore, few methods are able to quantify the strength of selection. Here we explored the use of
deep learning in evolutionary biology and implemented a program, called ImaGene, to apply convolutional neural
networks on population genomic data for the detection and quantification of natural selection.

Results: ImaGene enables genomic information from multiple individuals to be represented as abstract images.
Each image is created by stacking aligned genomic data and encoding distinct alleles into separate colors. To detect
and quantify signatures of positive selection, ImaGene implements a convolutional neural network which is trained
using simulations. We show how the method implemented in ImaGene can be affected by data manipulation and
learning strategies. In particular, we show how sorting images by row and column leads to accurate predictions. We
also demonstrate how the misspecification of the correct demographic model for producing training data can
influence the quantification of positive selection. We finally illustrate an approach to estimate the selection coefficient,
a continuous variable, using multiclass classification techniques.

Conclusions: While the use of deep learning in evolutionary genomics is in its infancy, here we demonstrated its
potential to detect informative patterns from large-scale genomic data. We implemented methods to process
genomic data for deep learning in a user-friendly program called ImaGene. The joint inference of the evolutionary
history of mutations and their functional impact will facilitate mapping studies and provide novel insights into the
molecular mechanisms associated with human phenotypes.
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Background
The quest for a deeper understanding of the molecu-
lar mechanisms underpinning phenotypic variation has
transformed population genetics into a data-driven disci-
pline. Thanks to the technological advances in RNA/DNA
sequencing [1] coupled with exponentially increasing
computational power, we are now in the position to pro-
cess large amounts of genomic data to address some still
unanswered questions in this field.

By far, one of the most elusive questions in evolution-
ary biology is to what extent adaptation has shaped the
genomes of extant species. The identification of signatures
of natural selection in the genome has the importance of
(i) assessing the ability of endangered species to respond
to climate change [2] and (ii) identifying functional vari-
ants underlying notable or disease-related phenotypes [3].
In fact, genetic variants that are characteristic of past nat-
ural selection in the human genome have frequently been
linked with a wide spectrum of phenotypes of medical
relevance [4, 5].

A large range of methods for detecting genomic sig-
natures of natural selection from sequencing data have
been proposed [6]. Most of the efforts have been devoted
towards the identification of positive selection, the sit-
uation whereby beneficial mutations that confer an
increased fitness to the carrier become more common
in a population. Positive selection is the main driver of
genetic adaptation for many species, including humans
[7]. Current methods to detect natural selection are largely
based on compressing the information about population
genomic variation into summary statistics, whose distri-
bution under neutrality can be empirically or analytically
derived [8]. For instance, summary statistics may carry
information about the locus-specific distribution of allele
frequencies [9] or haplotype structure [10, 11].

However, most adaptive processes happened via weak-
to-moderate selection from standing variation [12]. As
such, a large proportion of selective events have left
genomic signatures which are cryptic, complex and hard
to detect when employing only a limited number of sum-
mary statistics. To overcome this dilemma, likelihood-free
methods have been successfully applied to detect selection
signatures, via approximate Bayesian computation [13],
unsupervised [14] or supervised machine learning (ML)
[15–17]. In contrast to classic modelling, ML algorithms
maximize the predictive accuracy by automatically and
iteratively tuning their internal parameters while remain-
ing relatively unconscious of the phenomenon they are
trying to predict. While unsupervised methods attempt
to learn the underlying structure in the data without
knowledge of the ground truth, supervised ML algorithms
require the specification of a known data set, called a
training set, to make predictions on new unknown data
sets [18].

A recently reintroduced class of supervised ML algo-
rithms is deep learning [19], an inference framework
based on artificial neural networks (ANN). ANNs com-
prise inputs (also called features) and outputs (responses),
connected by nodes in a series of hidden layers [20]. Con-
nections between nodes are optimized using the training
set to minimize the predictive error. After training, an
ANN can predict the response given any arbitrary new
data it receives in entry. Deep learning algorithms are
now heavily applied in biology [21] and genomics to pre-
dict, for instance, protein binding sites, splice junctions
or compound-protein interactions [22]. Whilst promis-
ing, their use in evolutionary genomics is still relatively
new [23].

Despite their ability to handle many correlated features,
the most established deep learning algorithms used in
evolutionary genomics still rely on reducing the infor-
mation into summary statistics [24, 25]. Summary statis-
tics are typically calculated to reduce data dimensionality
while capturing most of the relevant information. An
alternative approach makes full use of genomic informa-
tion and processes population genomic data by image
representation. For instance, at the intra-population level,
rows may correspond to individual sampled haplotypes,
columns represent the genomic location of each locus,
and each pixel’s color is a discrete value defining the
occurrence of a specific allele [26]. Such image represen-
tations of population genomic data can be directly used
to infer selective events [27, 28]. In fact, this data repre-
sentation maintains the original information and allows
the use of algorithms for image processing. Therefore, the
detection of selection signatures in the genome directly
translates into a problem of pattern recognition in image
analysis.

Under such data representation, Convolutional Neural
Networks (CNNs) are the most suitable class of algo-
rithms for feature extraction and prediction, as CNNs
are a branch of ANNs specifically designed for pro-
cessing images. As each pixel would be considered a
unique feature, standard ANNs would be unnecessarily
complex. Instead, CNNs use several layers of filtering
(called convolution), each one processing adjacent pix-
els grouped in windows, which are then moved to cover
the whole image [29]. Weights associated with each fil-
ter are then iteratively adjusted during the training to
detect informative local patterns. Therefore, convolu-
tion layers serve the additional purpose of automatically
extracting informative features which are then passed
as input units to several fully connected layers for the
prediction.

CNNs have been recently applied to population
genomic data to infer recombination hotspots [30] and
various population genetic parameters [25, 28]. Given the
inevitable lack of real data, training data was generated
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via simulations conditional on a known demographic
model. While such pioneering studies show how promis-
ing deep learning algorithms are in the field of population
genomics, there are still several open questions in the
use of CNNs in evolutionary biology for characterizing
natural selection.

First, all current implementations aim at classifying
regions into neutrally evolving or targeted by either soft
or hard sweep [28] without estimating any parameter of
the event (e.g. timing or strength). Also, a comprehen-
sive assessment of how population genomic data should
be presented as input to a CNN is still missing. Finally, it
is not clear whether such algorithms are scalable for pro-
cessing large sample sizes and whole-genome data, and
whether they are sufficiently robust to model assumptions
used to generate the training data.

In this study, we aim to address these shortcomings and
implement a CNN-based approach to detect and quan-
tify natural selection from population genomic data. After
providing an overview of several possible image repre-
sentations of population genomic data, we assess how
both data manipulation and model specification can affect
the accuracy for detecting and quantifying natural selec-
tion. We implement this inference in a user-friendly open
source program, ImaGene, available at https://github.
com/mfumagalli/ImaGene.

Implementation
The image representation of population genomic data is
suitable to translating pattern recognition algorithms for
the inference of evolutionary parameters, as recently pro-
posed [28, 30]. Here, we took advantage of this observa-
tion and implemented a CNN-based scalable classification
pipeline in python, called ImaGene, to quantify natural
selection from genomic data.
ImaGene consists of the following steps:

1 generate training and testing sets by performing
simulations of population genomic data conditional
on a demographic model and selection events;

2 process all simulations, convert them into images,
divide them into training, validation and testing sets;

3 train and test the network using Keras, and output
several metrics including the probability distribution
for the parameter of interest.

Current interactivity consists of python objects to set all
options for each stage of the pipeline.

As an illustration for the whole pipeline, in this
manuscript we assume that our aim is to detect and quan-
tify a positive selection event, with weak-to-moderate
magnitude, that occurred 15,000 years ago in a Euro-
pean human population with an initial population allele
frequency of 1%.

Step 1: simulations
In ImaGene, the training set is built via simulations using
msms [31]. For the illustrative purpose outlined above, we
assume a plausible demographic model describing the his-
tory of a European population [32]. The user also decides
the range for the selection coefficient to be estimated and
any other parameter of interest, including the sample size
and the number of simulations.

In this manuscript, as an illustration, we performed
more than 2 million simulations of genomic regions
of 80 kbp for 128 chromosomes representing unrelated
CEU individuals (CEU: Utah Residents with Northern
and Western European Ancestry) in the 1000 Genomes
Project [33]. We assumed a mutation rate of 1.5×10−8 per
base per generation and a uniform recombination rate of
1.0 × 10−8 per base pairs per generation, in line with real-
istic values for the human genome [34, 35]. Finally, pop-
ulation parameters were scaled using a reference effective
population size (Ne) of 10,000.

Step 2: image representation
Population genomic data is usually represented as letters
(nucleotides A,C,G,T) arranged in strings (chromosomes)
piled up in stacks (individuals or populations). An alter-
native approach to process population genomic data is by
image representation. Images are tridimensional matrices
with the third dimension being the color. In the sim-
plest scenario, populations are arranged along the height
(rows), loci along the width (columns), and the sam-
ple frequency of each allele along the depth (color). In
other words, each pixel contains information about the
frequency of each one of four possible nucleotides. There-
fore, each vector of nucleotide frequencies encodes a
specific color in the CMYK scale.

As much of human genetic variation is diallelic, it is
convenient to convert such full-color images to black and
white ones. The color dimension is now reduced to length
one, and each pixel encodes the frequency of one of the
two alleles for a population in a locus. When data from
one or more outgroup species are available, it is possible
to infer the ancestral state for each polymorphism. Under
such circumstances it is usual to report the frequency of
the derived allele (as opposed to the ancestral state). When
such information is not available, the frequency of the
least frequent allele (usually referred to as minor) is con-
sidered. At the intra-population level, individual sampled
haplotypes (from phased genotypes) are instead ordered
on rows and the color of each pixel is a discrete value out
of four possibilities. Again, alleles can be transformed into
binary values to produce black and white images, with a
polarization based on ancestral or major states.

In practice, this step consists of several intermediate
stages. Files encoding simulations from msms are parsed
and converted to binary matrices. If the ancestral state of

https://github.com/mfumagalli/ImaGene
https://github.com/mfumagalli/ImaGene
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the locus of interest is unknown, the alignment is recoded
so that the most frequent allele in each column is con-
verted into zeros, and the least frequent allele into ones.
Rows and columns can be then sorted using different cri-
teria. For instance, they can be ordered by their number of
occurrence. A filter on the minor allele frequency can be
set by the user, otherwise each column is considered. No
monomorphic site is recorded within the simulations nor
converted into images.

Each image in the training set is required to have same
dimensions. However, this condition is not guaranteed
given the stochasticity of simulations which can produce
a different number of polymorphic sites. In ImaGene,
users can resize images to have the same dimensions.
For instance, columns can be resized to the average
value across the training set or to arbitrary preset values.
Resized images and their corresponding labels are then
shuffled randomly and split into the training, validation
and testing data sets. Parameter values are converted into
class labels, and these can be transformed into probability
mass functions.

Step 3: prediction and quantification
ImaGene directly interacts with Keras models [36] and
therefore the user can define her/his own architecture and
hyperparameters. ImaGene provides utilities to monitor
and evaluate the training and it uses a standard approach
for binary and multiclass classification tasks.

Current implementations of deep learning to estimate
continuous parameters in population genetics use a final
layer comprised of a regression step [24, 28]. By taking
advantage of the Bayesian interpretation of class scores
in ANNs/CNNs [37], ImaGene allows users to estimate
continuous variables via multiclass classification of dis-
crete intervals from the posterior distribution of the
parameter of interest.

During training, the loss function is defined as the dis-
similarity between the predicted distribution and the true
one, and we measure it using the cross-entropy function.
ImaGene allows the user to define the true distribution
in different ways. An intuitive method consists of placing
all the mass of the distribution on the true class result-
ing in a Dirac delta distribution (also called categorical),
where all the other vector elements are zeros. However,
this definition does not increasingly penalize dissimilar-
ity as it happens farther from the true label. Therefore, we
also implement Gaussian distributions with mean equal to
the true class and variable variance. ImaGene also imple-
ments a procedure that randomly perturbs true labels to
some fixed margin.

A point estimate for the parameter of interest (e.g. selec-
tion coefficient) is given by either the maximum a poste-
riori (MAP) value or the posterior mean of the probability
distribution over all classes. Likewise, highest posterior

density intervals (HPDI) can be obtained from the esti-
mated posterior distribution by Monte Carlo sampling.
Finally, model testing (e.g. for the presence of natural
selection) can be performed by calculating Bayes factors.

Results
Image representations of population genomic data
As an illustration, we produced images from population
genomic data for a notable human gene of interest, EDAR
(Fig. 1). This gene contains alleles associated with multiple
phenotypes in several human populations [38, 39], and it
is a well-known target of positive selection in East Asians
[10, 40]. In Fig. 1a-b, each row represents a human pop-
ulation from the 1000 Genomes Project [33] sorted from
top to bottom by their geographical distance from cen-
tral Africa. For ease of visualization, only loci which are
polymorphic in at least one population (i.e. at least one
heterozygote is observed) are reported.

A visual inspection of Fig. 1a-b reveals a pattern of hori-
zontal clustering and differentiation between populations.
In particular, rows representing populations in East Asia
appear to be highly homogeneous within themselves but
largely deviating from others. This is in line with previous
findings of positive selection targeting this gene in East
Asian populations only [10, 40].

Indeed, images such as Fig. 1 harbor information about
processes such as population structure (changes in color
gradients across populations) and adaptation (larger areas
of the same color for populations targeted by positive
selection) without being explicit about the phenomena
that generated these signals. This is even more evident
when investigating images of individual populations tar-
geted by selection (Fig. 1c-e), and these are the ones
which are currently used by ImaGene to quantify positive
selection.

Assessment of pipeline under various data and learning
configurations
Herein, our aim is to evaluate the accuracy of detect-
ing and quantifying a positive selective event under dif-
ferent settings of learning and data manipulation using
ImaGene. We analyze data from one population only
with diallelic polymorphisms with unknown ancestral
state. Therefore, the corresponding images are the ones
illustrated in Fig. 1e.

Manipulating images by sorting rows and columns improves
detection
In all images considered herein, each row represents a
haplotype randomly sampled from the population. There-
fore, any ordering of rows is purely stochastic and does not
contain any viable information for our inferences (Fig. 2a).
One possibility is to let the network learn this (lack of) fea-
ture. Alternatively, we can manipulate images by sorting
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Fig. 1 Image representations of human population genomic data for EDAR gene. In panels a and b, each row represents a population from the 1000
Genomes Project data set, sorted from the top to the bottom by increasing geographical distance from central Africa. Each pixel encodes for the
frequency of four nucleotides (panel a) or the derived allele (panel b) for each polymorphism. Panels c-e refer to the Han Chinese population only,
and each row represents a sampled haplotype. Pixel encodes for the frequency of four nucleotides (c), the derived allele (d) or the minor allele
calculated across all populations (e)

rows according to certain criteria to help feature extrac-
tion. As positive selection, in the form of a selective
sweep, creates a common haplotype with less frequent
ones, previous studies either used a strategy of hierarchi-
cal sorting of rows by genetic distance [28] or modelled
exchange-ability of haplotypes [30]. An additional possi-
bility implemented in ImaGene is to enforce the abstract

representation of images by sorting rows by their fre-
quency of occurrence from top to bottom (Fig. 2b).

On the other hand, each column carries information
about the relative position of polymorphisms along the
locus. The ordering of columns contains information
about linkage disequilibrium which can be informative for
detecting selective sweeps [41]. However, this ordering

A B

C D

Fig. 2 Image representations with different sorting conditions. The same image of genomic data is presented before (a) and after its rows (b),
columns (c), or both (d) have been sorted by frequency of occurrence
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is also affected by mutation and recombination events.
Therefore, Imagene allows the generation of images by
sorting columns by frequency from left to right (Fig. 2c) or
by sorting both rows and columns by frequency (Fig. 2d).

We assessed whether the relative position of rows
and/or columns carries more information than noise for
detecting selection. Specifically, we calculated the accu-
racy of detecting positive selection against neutral evolu-
tion for different values of selection coefficient (200, 300,
or 400 in 2Ne units with Ne = 10, 000).

For this analysis, we implemented a CNN with three
2D convolutional layers of 32 units with kernel size of
3 × 3 and stride 1 × 1 each followed by a max-pooling
layer with kernel size of 2 × 2. We finally applied a fully-
connected layer with 64 units. We used ReLU (rectified
linear unit) activation functions and a mini-batch size of
32. No zero-padding was applied. We removed columns
corresponding to allele frequencies less than 0.01. After
sorting, we resized all images to a dimension of 128 × 128
pixels.

To prevent overfitting, we used a “simulation-on-the-
fly" approach where the algorithm is trained over newly

generated data at each epoch. However, we retained the
full training data set for ease of benchmarking. For each
epoch, 10% for the training data was used as validation set
while 10% of the whole data set was used for testing. A
total of 50,000 simulations per class was generated.

Figure 3 shows the confusion matrices for the detec-
tion of positive selection under different sorting options
(on the x-axis) and different values of the selection coef-
ficient S (on the y-axis). Sorting rows by their frequency
has a large impact in the performance and improves the
prediction accuracy compared to using unsorted images
especially for low values of the selection coefficient (Fig. 3,
Additional file 1), in line with previous findings [28].
Notably, when rows and columns are both sorted, the
accuracy is similar to the scenario of sorting rows only
(Fig. 3). These results suggest that sorting both rows and
columns can be a valuable option in case of unknown or
uncertain mutation and/or recombination rates.

Furthermore, we noticed that inferences on double-
sorted images do not require a final fully-connected
layer in the CNN, as the spatial distribution of features is
maintained. We tested this hypothesis and calculated the

Fig. 3 Accuracy of detecting positive selection using images with different sorting conditions. For each tested strength of positive selection
(S = {200, 300, 400}) we report the confusion matrices for predicting whether a genomic region is under neutrality (N) or selection (S) when images
have been sorted with different conditions
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accuracy for prediction selection with S = 300 without
a final dense layer. We found a prediction accuracy of
0.9882 similar to what obtained when employing a final
fully-connected layer (Additional file 1). Finally, we tested
the prediction accuracy when adopting a larger kernel
size 5 × 5 in the convolutional layers. We do not observe
a significant change in accuracy under this condition
(Additional file 1).

Quantification of natural selection is mildly robust to model
assumptions
As the training data is generated by simulations con-
ditional on a demographic model, the latter can have
a notable effect on the prediction of natural selection.
While the inference of parameters for demographic mod-
els is now achievable thanks to dramatic methodological
advances [42–45], it less clear how to define a mini-
mal configuration of size changes, especially for complex
models with multiple populations.

We sought to test the robustness of our predictions
to the underlying demographic model. Specifically, we
assessed the prediction accuracy when training the net-
work under a 3-epoch demographic model for a putative
European human population [32], and testing it assuming
a simpler 1-epoch model [32].

For this analysis, we implemented a CNN with three 2D
convolutional layers of 32, 64 and 64 units, each followed
by a max-pooling layer. Hyperparameters were set as pre-
viously described. No fully-connected layers were used.
Images were resized to 128 × 128 pixels. We performed
a multiclass classification for either neutral evolution or
positive selection at different extent (S = 200 or S = 400).

Figure 4 shows the accuracy in classifying events under
three classes of either neutral or selective events when

the network is trained with the same model used for test-
ing (on the left) or a different one (on the right). While
the detection of selection is not affected when the net-
work is trained with a different demographic model, the
accuracy for distinguishing between different extents of
selection decreases (Fig. 4, Additional file 1). These results
suggest that model misspecification during training has a
larger effect for the quantification than for the prediction
of natural selection.

A quantification of natural selection from genomic data
After training, the CNN produces a posterior proba-
bility distribution for the parameter of interest, i.e. the
selection coefficient. In fact, the output layer includes
a softmax function that transforms the vector of class
scores into probabilities. From this distribution, several
statistical inferences can be made. ImaGene implements
the estimation of continuous parameters using multiclass
classification, by discretizing the parameter’s distribution
into bins which are then considered as individual classes.

We sought to test the accuracy on estimating the selec-
tion coefficient by dividing the range of possible values
(from 0 to 400) into 11 linearly spaced bins under different
definitions of the true distribution: categorical, Guassian
distribution centered around the true label with fixed
standard deviation (0.5), or by randomly perturbing the
true categorical distribution by a maximum step of 1 in
either direction.

For this analysis, we implemented a CNN with three
2D convolutional layers of 32, 64 and 128 units, each fol-
lowed by a max-pooling layer. Hyperparameters were set
as previously described. Images were resized to 128 × 128
pixels. A total of 2,005,000 simulations were generated
with selection coefficients drawn from a uniform prior

Fig. 4 Accuracy of quantifying positive selection under different training models. We report the confusion matrices for predicting whether a
genomic region is under neutrality (S = 0), weak-to-moderate selection (S = 200), or strong selection (S = 400) when the network has been trained
under the correct demographic model (3-epoch, on the left) or the incorrect one (1-epoch, on the right)
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distribution from 0 to 400. We then assigned each simula-
tion to one of the 11 classes. We emphasize that here we
did not attempt to optimize the architecture to minimize
the bias in the estimation, but rather we aimed at compar-
ing the accuracy under different configurations of the true
parameter’s distribution in a multiclass classification task.

Confusion matrices between true and predicted labels
(inferred as MAP values) show a general agreement
among different methods to represent labels’ distribution
(Fig. 5). The root mean squared error between true labels
and estimated posterior means for the selection coeffi-
cient decreases by approx. 2% (corresponding to approx. 1
in 2Ne units) when using a Gaussian distribution instead
of a categorical one. We did not observe an improvement
in the estimation of the selection coefficient after ran-
domly perturbing the true labels, possibly because of the
limited number of discrete bins considered herein. How-
ever, using a perturbed categorical distribution for true
labels leads to a lower standardized bias than the one
obtained using a Gaussian distribution. The results sug-
gest that incorporating uncertainty in the true labels may
provide some advantages when estimating continuous
variables with multiclass classification techniques.

As an illustration, we provide the posterior probabil-
ity distribution for selection coefficients under weak-to-
moderate (S = 120) and strong (S = 320) selection for two
cases where the estimation was accurate (Fig. 6). From the
scores in the output layer, we calculated posterior mean
and MAP values, as well as the HDPI (with α = 0.05)
after Monte Carlo sampling. Figure 6 shows that, for the
case of weak-to-moderate selection (left panel), the HDPI
is wide and includes the value of 0. However, the Bayes
factor for testing a model with selection (coefficient larger

than 0) vs. a model with no selection (coefficient equal to
0) is approx. 20, giving moderate support for the action
of positive selection. Conversely, the Bayes factor in sup-
port of selection for the case of S = 320 (right panel)
is greater than 87,000, providing strong support towards
positive selection occurring at this locus, as expected.
ImaGene provides the full information on the probability
distribution of the parameter of interest (e.g. the selection
coefficient), allowing the user to derive several metrics
and perform statistical tests.

Discussion
In this study, we introduce a program, called ImaGene,
for applying deep neural networks to population genomic
data. In particular, we illustrated an application of convo-
lutional neural networks to detect and quantify signatures
of natural selection. We showed that ImaGene is flexible,
scalable and fairly robust to data and model uncertainty.

In addition to these promising results, we foresee
potential improvements and extensions to make its pre-
dictions more accurate and robust than the ones pre-
sented herein. Although there is currently no gen-
eralized formal framework for optimally designing a
CNN for a particular classification problem, an exten-
sive and systematic search over a wide range of archi-
tectures and hyperparameters is desirable to achieve
maximum validation accuracy [46]. Furthermore, our
choice of a random initialization method for setting
the initial network parameters before training may be
sub-optimal. Indeed, initializing the network with the
parameters from a previously trained autoencoder has
been shown to have a significantly positive impact on
predictions [24].

Fig. 5 Accuracy of quantifying positive selection under different representation of the distribution of true labels. Confusion matrices for estimating
selection coefficients into 11 intervals from 0 to 400. Classification was performed assuming a different representation of true labels, either as a
categorical distribution, a Guassian distribution, or a perturbed categorical distribution
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Fig. 6 Sampled posterior distributions of selection coefficients. Histograms of 100,000 random samples from the posterior distributions of one case
of weak-to-moderate selection (S = 120, on the left) and one case of strong selection (S = 320, on the right). Point estimates and credible intervals
are reported

It is important to assess how different loss functions can
affect the estimation of continuous variables using multi-
class classification. Also, while we evaluated several ways
of manipulating labels after data discretization, further
methods should be explored, including ordinal regres-
sions [47] or the estimation of parameters (e.g. mean and
standard deviation) of the posterior distribution [48].

The approach of resizing images on both axes has clear
computational benefits. Resizing to a predefined square
size allows for more efficient operations during the CNN
optimization and for extended re-usability of the trained
network in case of subsequent variations in sample size
and genomic length. However, further investigations are
in need to assess the effect of resizing input images, and on
the trade-off between computational speed and accuracy
when reducing their dimensionality.

In the current implementation, we do not use any spa-
tial information on the distribution of polymorphisms,
in contrast to other studies [28, 30]. While such infor-
mation can improve prediction, here we show that even
a purely abstract image representation of genomic data
can be used for evolutionary inferences. Furthermore,

using additional information on the physical distance
between polymorphic sites may require a very detailed
simulation of local genomic features (e.g. mutation rate,
recombination rate, functionality) which is hardly achiev-
able and may lead to loss of generality. Finally, it is
not clear whether the use of color images showing the
full information on nucleotidic content will increase pre-
diction accuracy or simply slow the learning process.
Nevertheless, further explorations of the potential of
image representation of population genomic data are
required.

Typically, CNNs are trained over a number of itera-
tions (often called epochs), defined as one forward pass
and one backwards pass over all the training data. When
using this training method, data is re-seen by the learn-
ing algorithm multiple times. This often results in the
overfitting of models, where CNN models learn spe-
cific images in the training data, along with any noise,
rather than patterns important for classification. For lim-
ited training data and multiple epochs, regularization and
dropout techniques are used to circumvent the issue of
overfitting [49]. When training CNNs using simulated
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data, the amount of training data is only limited by com-
putational time and space. “Simulation-on-the-fly" uses
this ability to generate almost unlimited training data to
prevent overfitting, as it involves carrying out simula-
tions alongside training, so each data point is only seen
once during training. This continuous simulation of data
is carried out for many training iterations, until validation
loss is sufficiently small, thus reducing overfitting [30].
Whilst effective, “simulation-on-the-fly” does not allow
reproducible analyses for hyperparameter estimation [50].
ImaGene allows the user to choose a hybrid approach,
where each iteration is performed over a fraction of the
training data, and thus is visited by the CNN only once at
the cost of producing a large training data at the beginning
of the analysis.

Our current pipeline is integrated with msms [31], a
commonly used program for simulating genomic data
under selective scenarios. However, as ImaGene pro-
cesses simulations in ms format, our pipeline is easily
integrable with other programs such as msprime [51] and
SLiM [52]. As the current time bottleneck in our pipeline
is the generation and processing of ms files, we foresee
the future opportunity of greatly improving computa-
tional efficiency by using state-of-the-art data representa-
tion of genealogical history of genomes in forward-time
simulations [53, 54]. The use of efficient forward-time
simulations is particularly welcomed, as they allow the
generation of more realistic genomic data that take into
account the functional context of the locus to analyze.

We have shown that, as expected, CNN-based quantifi-
cation of natural selection is sensitive to violations of the
assumed demographic history. To make sensible predic-
tions from population genomic data, robustness should
be assessed by training one single CNN with data coming
from many different demographic histories or by adding
model uncertainty within individual simulations. Com-
monly used methods to detect selection achieve robust-
ness over the misspecification of demographic models
by normalizing the information in their summary statis-
tics against background signatures at the whole-genome
level [55]. In a similar fashion, CNN-based estimation
can generate Bayes factors for models supporting positive
selection for each locus, and such empirical distribution
can be used to detect outliers as candidates for targets of
positive selection [7].

Summary statistics that incorporate information on the
derived allele or haplotype frequency have been shown
to have great power to detect strong and recent positive
selection events [56]. However, in many cases, it is dif-
ficult to assign ancestral and derived allelic states with
sufficient certainty [57]. In these cases, polarizing alleles
based on their frequency in major or minor states can be
directly calculated from sequence data with confidence.
We predict that CNN-based inferences should achieve

greater accuracy and shorter learning time when employ-
ing data incorporating information about ancestral and
derived allelic states.

Additional accuracy in quantifying positive selection
can be gained by using images from multiple popula-
tions simultaneously, either by stacking them or encoding
differential allele frequencies in individual pixels. Such
approach will mimic current methods to detect selec-
tion based on population genetic differentiation [10, 58,
59]. Similarly, incorporating temporal information from
ancient genomes is likely to improve the prediction accu-
racy [60]. Finally, we foresee the application of this
pipeline for the quantification of other selection events,
e.g. balancing selection [61] or soft sweeps [62].

While ImaGene has been developed for deep sequenc-
ing data, SNP-chip data or targeted sequencing (e.g.
exome) can be valid inputs, as long as simulations for the
training data incorporate any ascertainment scheme used
[63]. Also, this pipeline assumes that the data is phased,
and that individual haplotypes are known. While this is
a fair assumption for the study of model species, it is a
strict requirement for the analysis of non-model species
or with limited sample sizes. However, we foresee the
potential use of unphased genotypes as input to any CNN-
based classification. Finally, we predict the usefulness of
such methodology for localizing functional variants tar-
geted by natural selection, a task which is still challenging
in population genomics [64]. As such, we plan to provide
any updated analyses or extensions of ImaGene on its
dedicated repository.

Conclusions
In this study we provide a scalable pipeline for training a
CNN classifier to detect and quantify signatures of natural
selection from genomic data. We show how the prediction
accuracy is affected by data preprocessing and learning
settings. Furthermore, we show that misspecification of
the demographic model used for generating the training
set can affect the quantification of natural selection.

This study opens novel research directions for the use
of deep learning, in particular of CNNs, in population
genomics and human genetics [65]. Findings from these
efforts will help better predict how evolution has shaped
human predisposition to diseases [66] and unveil novel
association with complex disorders.

Availability and requirements
Project name: ImaGene
Project home page: https://github.com/mfumagalli/
ImaGene
Operating system(s): Platform independent
Programming language: Python
Other requirements: Keras
License: GNU GPL v3
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