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Abstract

Background: Malignant liver tumor is one of the main causes of human death. In order to help physician better
diagnose and make personalized treatment schemes, in clinical practice, it is often necessary to segment and visualize
the liver tumor from abdominal computed tomography images. Due to the large number of slices in computed
tomography sequence, developing an automatic and reliable segmentation method is very favored by physicians.
However, because of the noise existed in the scan sequence and the similar pixel intensity of liver tumors with their
surrounding tissues, besides, the size, position and shape of tumors also vary from one patient to another, automatic
liver tumor segmentation is still a difficult task.

Results: We perform the proposed algorithm to the Liver Tumor Segmentation Challenge dataset and evaluate the
segmentation results. Experimental results reveal that the proposed method achieved an average Dice score of 68.4%
for tumor segmentation by using the designed network, and ASD, MSD, VOE and RVD improved from 27.8 to 21, 147
to 124, 0.52 to 0.46 and 0.69 to 0.73, respectively after performing adversarial training strategy, which proved the
effectiveness of the proposed method.

Conclusions: The testing results show that the proposed method achieves improved performance, which
corroborated the adversarial training based strategy can achieve more accurate and robustness results on liver tumor
segmentation task.
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Background
Liver cancer is one of the cancers which has the high-
est mortality rate in the world. Each year, the morbidity
and mortality of liver cancer increase steadily. Computed
tomography (CT) is the widely used imaging method for
screening, diagnosing, staging, and even prognosis assess-
ment of liver cancer. Segmentation of liver lesions can help
physicians diagnose cancer and make appropriate treat-
ment options with more convenient, and can also quickly
assess the effectiveness of surgical treatment. However,

*Correspondence: anniesun@bit.edu.cn
1School of Computer Science & Technology, Beijing Institute of Technology, 5
South Zhongguancun Street, 100081 Beijing, China
Full list of author information is available at the end of the article

manually measuring the tumor from a large number of CT
slices is very time consuming and relies on the experience
of the physician, which is much subjective and suscep-
tible to interference from knowledge differences among
different physicians. Therefore, it is very promising to
design an objective and accurate scheme for automatic
liver tumor segmentation to help physicians better inter-
pret CT images. However, because the number, location,
size and shape of liver tumors are significantly different
among the patients, additionally, the tumor boundary is
always blurred and the contrast between tumor and its
surrounding tissues is low, accurate segmentation of liver
tumor is still a difficult task.
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In order to address this problem, researchers have
invested in this study and proposed many methods. Dur-
ing the past few decades, they mainly focused on devel-
oping algorithms such as level set, watershed, statisti-
cal shape model, region growing, active contour model,
threshold processing, graph cuts and traditional machine
learning methods that require manually extract tumor fea-
tures. For example, Zhou et al. [1] proposed a unified level
set method (LSM) for liver tumor segmentation. They
used local pixel intensity clustering combined with hid-
den Markov random field to construct a unified LSM.
Then, regional information and edge information were
used to acquire the tumor contour, so that the problem
of edge leakage can be solved. Yan et al. [2] proposed
a semi-automatic segmentation method based on water-
shed transformation. They first placed seed points in the
tumor area manually as markers, then watershed trans-
formation was performed to depict and extract the tumor
contour in the image. Thus, the density information of
tumor can be acquired as threshold to separate liver lesion
from its neighborhood tissues. Then, refine the thresh-
old from the segmentation lesions for accurate results.
Massoptier et al. [3] proposed an automatic liver tumor
segmentation algorithm based on statistical shape model,
which used the active contour technique of gradient vec-
tor flow to obtain smooth and natural liver tumor seg-
mentation results without the need of interaction. Wong
et al. [4] proposed a semi-automatic tumor segmenta-
tion method based on region growing method. They first
sketch the region of interest of tumor manually and calcu-
late the seed point and feature vector in it, then regional
growing algorithm was performed to mark the tumor vox-
els. Incorporating knowledge based constraints into the
growing method ensures the segmented tumor size and
shape are within a reasonable range. Yim et al. [5] pro-
posed a segmentation method based on active contour
model, which realized liver lesion segmentation by alter-
nating manual initialization and elliptical initialization of
the active contour. Through this method, they finally got
a good segmentation result. Park et al. [6] proposed a
statistical optimal thresholding method for tumor seg-
mentation. They use techniques as maximum posterior
decision and binary morphological filtering to segment
the liver, then using algorithm such as mixed probability
density and minimum total probability error to calculate
the optimal threshold. Finally, the segmentation of liver
tumor is achieved by performing the calculated threshold.
Linguraru et al. [7] proposed a method based on graph
cut optimization. They used the shape parameterization
method to detect the liver activity contours, which can
correct the following abnormal tumor segmentation situ-
ation. The tumor segmentation is then realized by shape
constrained based graph cut algorithm. In recent years,
traditional machine learning based image segmentation

methods have played an active role in liver tumor segmen-
tation scenarios. Most of these methods need to manually
design tumor feature extraction methods, and develop-
ing a model to trained the features, making the model
has the ability to identify tumor pixels. Huang et al. [8]
proposed a liver tumor segmentation method based on
extreme learning machine (ELM), which classifies tumor
and non-tumor voxels by training classifiers in stochas-
tic feature subspace sets. The ELM is selected as the basic
classifier for model training. To further improve the seg-
mentation performance, voting mechanism is introduced
to decide the final classification results of these basic clas-
sifiers. Zhou et al. [9] proposed support vector machine
(SVM) based method for tumor segmentation. They first
trained a SVM model to segment tumor region from a
single slice and extracted its contour through morpho-
logical operation. Then, the contour is projected to the
adjacent slices for next resampling, learning, and classifi-
cation. Repeating this process until all slices are processed.
Most machine learning based methods can achieve better
performance than traditional ones, but they are still diffi-
cult to learn the accurate tumor feature and susceptible to
data fluctuations.

Recently, deep learning has penetrated into a variety
of applications and surpassed the state-of-the-art perfor-
mance in many fields such as image detection, classifica-
tion, and segmentation [10–15], which also excites us to
use this technique in the liver tumor segmentation task.
Many researchers have already used deep learning meth-
ods to explore the task of liver tumor segmentation. Li et
al. [16] proposed a H-DenseUNet which consists of 2D
UNet and 3D UNet for liver tumor segmentation. The
2D UNet is used to extract tumor features in a single
slice while the 3D UNet is designed to learn the spa-
tial information of tumor between slices. By designing a
mixed feature fusion layer to jointly optimize the feature
representation between intra- and inter-slice, they finally
acquired a satisfactory result in the liver tumor segmen-
tation challenge. Christ et al. [17] proposed a method
based on cascading two fully convolutional neural net-
works (FCN). They first trained an FCN to segment the
liver from the abdominal images and used the segmented
liver region as input of the second segmentation network,
then the tumor segmentation results can be acquired by
the second FCN. Finally, they used 3D conditional random
field to optimize the tumor segmentation results. Sun [18]
et al. proposed a multi-channel fully convolutional net-
work (MC-FCN) based liver tumor segmentation method.
They designed an MC-FCN to train contrast-enhanced
CT images at different imaging phase due to each phase
of the data provides unique information about the patho-
logical features of tumor. Specifically, they performed
network training for each phase data in a single channel,
and then merged the high-level feature layer in different



Chen et al. BMC Bioinformatics 2019, 20(Suppl 16):587 Page 3 of 13

channels to realize multi-channel training strategy. Exper-
imental results demonstrated the designed network can
capture more comprehensive tumor features and improve
the model performance in some extent. Yuan et al. [19]
developed a hierarchical framework of deep convolution-
deconvolution neural network (CDNN) for segmentation
of liver tumors. They first trained the CDNN model
to segment the liver region from entire abdominal CT
sequence, then they performed histogram equalization
enhancement on the liver region, and regard it as input of
the next CDNN for tumor segmentation. They replaced
the loss function by using Jaccard distance during the
training process to eliminate the sample reweighting effect
and achieved a remarkable segmentation results.

Meantime, generative adversarial network (GAN) has
become a more popular emerging technology in many
deep learning areas [20–22]. Generator and discrimina-
tor are two of its essential components, the responsibility
of generator is to make the output of network more simi-
lar with the ground truth, while the duty of discriminator
is to identify them. Theoretically, the generator output
will be adjusted under discriminator’s supervision and
move closer to the overall distribution of the ground truth,
which can promote the generator’s performance. Moti-
vated by [23], here we proposed an adversarial densely
connected network (ADCN) for automatic liver tumor
segmentation from CT images. A cascade framework was
used during the segmentation process which can utilize
the liver regions to reduce false positives. We first used a
multi-plane integrated network (MPNet) [24] to segment
the liver from the abnormal CT images. Then, a deep fully
convolutional neural network (DC-FCN) is designed as
the generator to predict the liver tumor from the liver ROI,
which is based on convolutional encoder-decoder back-
bone accompanied with multi-plane convolution, dilated
convolution, dense connection and multi-scale feature
fusion to enhance the network performance. The training
of ADCN is equivalent to jointly optimize the cross-
entropy loss with the adversarial training loss which is
used to discriminate the output of DC-FCN and ground
truth. The discriminator is a convolutional neural net-
work which predicts its input belong to fake (output of
DC-FCN) or real (ground truth).

Methods
The cascaded framework
Figure 1 shows the proposed cascade framework for liver
tumor segmentation. Two networks are sequentially used
to segment the liver and liver tumor. The MPNet first
segments the liver from abdominal 3D CT volumes, thus
we can acquire the accurate liver area. We then use the
liver area as the bounding box of ACDN and cropped
its input images to train the network for tumor segmen-
tation. The network construction can be summarized as

Fig. 1 The proposed cascade framework for liver tumor
segmentation. Two networks are sequentially used to segment the
liver (MPNet) and liver tumor (ADCN)

two steps, training the network for weight updating and
segmentation using the recording network, as shown in
Fig. 2. When training for searching the optimal network
parameters of liver or tumor, the bounding boxes are
directly selected from the ground truth, while during seg-
mentation step, the bounding boxes of tumor are the
segmentation results of liver. Due to the anatomical con-
straints, this training strategy can help network reduce the
false positive rate.

Multi-plane integrated fully convolutional networks for
liver segmentation
The output of an FCN is of a corresponding size with
its input,which can be any size. Each voxel input to
FCN can acquire a score map for them. In this section,
we briefly introduced our previous published method
MPNet. Details of the network structure and multi-plane
integrate operation can be find in [24]. The main strat-
egy of MPNet separately trained the data from three

Fig. 2 The training and segmentation step of the network
construction
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orthogonal planes (axial, sagittal and coronal) of the input
3D CT volumes. Each network consisted of techniques
such as multiple layers of dilated convolution filters,
multi-plane convolution filters and residual connections.
During segmentation stage, we apply multi-plane inte-
grate technique to fuse the prediction of three networks
to generate the final segmentation results. Thus, we can
acquire the liver ROI from the abdominal 3D CT volumes.

Adversarial densely connected network for tumor
segmentation
Through the acquired liver ROI, we can input it into the
tumor segmentation network. Due to the proved achieve-
ments of the convolutional encoder-decoder structure in
image segmentation, we try to improve it for liver tumor
segmentation task. In this work, we proposed an adver-
sarial densely connected network with adversarial train-
ing strategy, dense connection, dilated convolution and
multi-scale feature fusion technology for tumor voxel clas-
sification. The structure of ADCN is shown in Fig. 3. We
can see that the input of ADCN are 3D CT liver volumes
acquired from the MPNet and its output is the probability
map that reflects how the voxels belong to tumor. Details
of the network are shown in Table 1.

The backbone of ADCN follows the concept of convolu-
tional encoder-decoder. For training 3D network, we must
consider the trade-off between the memory consumption
and receptive field. Using small receptive field can only
capture local features while large receptive field can cap-
ture more global information. However, using large 3D
receptive field need input a lot of 3D patches for training,

which will cost much computing memory. Here because
our DC-FCN uses a stake of 3D slices as input, we set a
large 2D receptive field with size of 217*217 to learn the
tumor features intra-slice and a receptive field with size of
12 to capture the inter-slice tumor information. Then, we
designed a 3 × 3 × 1 intra-slice kernel and a 1 × 1 × 3
inter-slice kernel to realize the function of 3 × 3 × 3 ker-
nel. A batch normalization layer and parametric rectified
linear units (PReLU) activation layer [25] was conven-
tional attached behind each convolution layer. The total
amount of intra-slice and inter-slice convolution layer of
DC-FCN are 20 and 4, respectively. In order to guaran-
tee the image resolution and loss of tumor details, we just
use two downsampling layers in the network. To make
the receptive field of intra-slice larger, here we use dilated
conventional with different parameter as kernel in our
network, which is shown in blue, red and orange blocks
in Fig. 3.

Here we converted residual connection [26] to dense
connection [27] which connects each layer to every other
layer for effective extracting tumor features in deep net-
works. Our ADCN has four dense blocks, which the first
two blocks consists of 4 intra-slice convolution layers and
the last two blocks consist of 6 intra-slice convolution
layers. For each layer, its input are the feature maps out-
put from previous layers, and its output are used as inputs
to subsequent layers, which helps the current layer to
learn information with reference to the previous input.
Introducing dense connection can help information reuse,
smooth feature propagation and promote the network
convergence.

Fig. 3 Our adversarial densely connected network with adversarial training, multi-plane convolution, dilated convolution, dense connection block
and multi-scale prediction
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Table 1 Detailed parameters of the ADCN model

Layer name Kernel size Stride Padding Output size

Data - - - 96*96*29*1

Denseblock1(Db1)_Dilated Conv 3*3*1*32 1*1*1 SAME 96*96*29*32

Db1_Dilated Conv 3*3*1*32 1*1*1 SAME 96*96*29*32

Db1_sum - - - 96*96*29*32

Db1_Dilated Conv 3*3*1*32 1*1*1 SAME 96*96*29*32

Db1_Dilated Conv 3*3*1*32 1*1*1 SAME 96*96*29*32

Db1_sum - - - 96*96*29*32

Fuse 1*1*3 1*1*1 VALID 96*96*27*32

Down sampling 3*3*1 2*2*1 SAME 48*48*27*32

Denseblock2(Db2)_Dilated Conv 3*3*1*32 1*1*1 SAME 48*48*27*32

Db2_Dilated Conv 3*3*1*32 1*1*1 SAME 48*48*27*32

Db2_sum - - - 48*48*27*32

Db2_Dilated Conv 3*3*1*32 1*1*1 SAME 48*48*27*32

Db2_Dilated Conv 3*3*1*32 1*1*1 SAME 48*48*27*32

Db2_sum - - - 48*48*27*32

Fuse 1*1*3 1*1*1 VALID 48*48*25*32

Down sampling 3*3*1 2*2*1 SAME 48*48*25*32

Denseblock3(Db3)_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_sum - - - 24*24*25*32

Db3_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_sum - - - 24*24*25*32

Db3_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*25*32

Db3_sum - - - 24*24*25*32

Fuse 1*1*3 1*1*1 VALID 24*24*23*32

Denseblock4(Db4)_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_sum - - - 24*24*23*32

Db4_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_sum - - - 24*24*23*32

Db4_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_Dilated Conv 3*3*1*32 1*1*1 SAME 24*24*23*32

Db4_sum - - - 24*24*23*32

Fuse 1*1*3 1*1*1 VALID 24*24*23*32

Up sampling1 - - - 96*96*21*2

Up sampling2 - - - 96*96*21*4

Up sampling3 - - - 96*96*21*8

Concat - - - 96*96*21*14

Conv 3*3*1*2 1*1*1 SAME 96*96*21*2
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In our DC-FCN, the shallow convolution layers try
to capture low-level and local tumor features while the
deep convolution layers try to learn advanced and global
feature representation. Inspired by [28] of fusing predic-
tion results from multiple scales, here we combined the
tumor feature at three different network depths to realize
multi-scale prediction as shown in Fig. 4. Specifically, we
acquired the different intermediate prediction results by
applying 3 × 3 × 1 convolution layer after corresponding
layer as shown in black blocks in Fig. 4, and then upsam-
pling them directly to the resolution equal to the initial
input. Then the final score map of tumor segmentation is

acquired by sending the concatenation result of the above
feature maps to an extra 3 × 3 × 1 convolution layer. The
output layer has 2 channels which represent the tumor
and non-tumor two segmentation classes. Details of the
network structure are shown in Table 1.

To further improve the performance of DC-FCN, we try
to use the popular idea of introducing adversarial train-
ing strategy [29] in our network. Here we designed a
deep convolutional generative adversarial network (DC-
GAN) [30] based method to boost the tumor segmenta-
tion results of DC-FCN. The generator and discriminator
structure of the designed network can be seen in Fig. 3.

Fig. 4 The multi-scale prediction process of our DC-FCN
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The generator is DC-FCN and discriminator is a CNN
consists of five convolution layers with kernel size of 2 ×
4×4, a down sampling layer with size of 2×6×6 and a fully
connected layer. Each convolution layer is followed by a
batch normalization and Leaky ReLU layer for promot-
ing gradient propagation. The high-level information of
tumor appearance can be utilized by adversarial network
to better identify the output of DC-FCN and the ground
truth. In training stage, there will be an adversarial loss
function provided by the network, which aims to make the
output of DC-FCN more similar to the ground truth by
optimizing the generator’s parameters to help it predicting
more accurate tumor results. We used the adversarial loss
for training the network. For the discriminator D(Y ; wD),
where wD is its weights and we set the tumor ground truth
Ygtas 1 and the prediction Yp = G(X, wG) as 0, where G
is the generator, X is the input liver data and wG is the
weights of generator. During adversarial training, we used
the objective function as follows,

LD = −Ey/pgt log(D(y; wD)) − Ey′/ppred log(1 − D(y′; wD))

= −Ey/pgt log(D(y; wD)) − Ex/pdata log(1 − D(G(x; wG); wD))
(1)

Where y′ = D(G(x; wG) is the output of G, pgt represents
that the output is belong to ground truth, ppred represents
that the output is belong to prediction. When training dis-
criminator D, the gradient of discriminator loss LD will be
propagated back to optimize the weights of the generator
(DC-FCN), which the current generator loss LG consists
of the following two parts as shown in Eq. 2, where pdata
represents to sample a mini-batch from training images
and λ is a variable. The first part is the tumor content
loss Lseg , which is calculated by performing cross entropy
to the segmentation results and ground truth. And the
second part aims to confuse the discriminator with the
output of generator more similar to the ground truth.

LG = Ey/ppred ,y′/pgt [Lseg(y, y′)]−λEy/ppred log(1 − D(y; wD))

= Ey/ppred ,y′/pgt [Lseg(y, y′)]−λEx/pdata log(1−D(x; wG); wG)

(2)

Alternatively training the generator and discriminator
until the output of DC-FCN can not be easily discrimi-
nated with tumor ground truth anymore. Then we drop
out the discriminator to end the adversarial training pro-
cess, which the performance of the generator has already
improved to predict better tumor results.

Results and discussion
The 2017 liver tumor segmentation (LiTS) Challenge
dataset was used to train the MPNet, DC-FCN and ADCN
models. Then, the liver tumors were segmented using the
trained models.

Data and implementation details
There are a total of 131 abdominal 3D CT scans in 2017
LiTS Challenge dataset, which the slices have the size of
512x512 in axial plane. We selected 121 scans to train our
model and the remaining 10 scans to test the model per-
formance. Due to the data is collected by various scanning
protocols from European hospitals, which lead to a non-
uniform slice spacing and large resolution difference. We
first re-sampled all the scans to an isotropic resolution of
1mm3. The manual segmentation of liver and its tumors
were performed by experienced experts as ground truth.

As the experimental environment, here we adopted
TensorFlow with NiftyNet [31] to implement our mod-
els, which used Adaptive Moment Estimation (Adam) [32]
with initial learning rate of 1 × 10−3, weight decay of
1 × 10−7 for training. We set the maximal iteration of 20k
in all the experiments. The training patch size for liver was
set to 256×256×19 and for tumor is 96×96×29. The Dice
loss function [33] was selected to train our network. A
computer with the Linux Ubuntu 16.04 LST 64-bit operat-
ing system cooperated with a 32 GB Intel i7 3.4 GHz CPU
and a NVIDIA GeForce GTX 1080 Ti graphics card with
12GB memory was used in our experiment.

Quantitative evaluations criteria
We provided quantitative measurements including Dice
score, average symmetric surface distance (ASD), mean
square symmetric surface distance (MSD), relative volume
difference (RVD) and volumetric overlap error (VOE) to
evaluate the effectiveness of our proposed model. Here we
use S to represent the segmented liver/liver tumor region,
and G is the ground truth, r is a point of arbitrary surface
voxel, d is the Euclidean distance, R(S) and R(G) are the
areas of liver/tumor region in S and G, respectively.

The Dice score can be evaluated as follows,

Dice(S, G) = 2
∣
∣S

⋂
G

∣
∣

|S| + |G| (3)

Where the score is between [ 0, 1], an ideal segmentation
is expressed as the Dice score close to 1.

The ASD is related to the surface voxels of S and G,
by calculating the d of surface voxel S to the closest sur-
face voxel G and repeat the same process from the surface
voxel G to those of surface voxel S. The ASD can be cal-
culated as the mean value of all distances, which can be
represented in Eq. 4, for which a smaller value represents
a better segmentation result.

ASD(S, G) = 1
|R(S)| + |R(G)|

⎛

⎝
∑

rS∈R(S)

d(rS, R(G))

+
∑

rG∈R(G)

d(rG, R(S))

⎞

⎠

(4)
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Fig. 5 The liver segmentation results in three orthogonal views

The calculating of MSD is similar with ASD, which is
also related to the surface voxels of S and G but need to
calculate the mean square error as follows,

MSD(S, G)

= max
(

maxrS∈R(S)d2 (rS , R(G)) , maxrG∈R(G)d2(rG, R(S))
)

(5)

The RVD can be represented as follows, An RVD of 0
represents that the region of S and G are identical.

RVD(S, G) = |G| − |S|
|S| (6)

And the VOE can be calculated as follows, the larger
VOE value represents the worse segmentation perfor-
mance.

VOE(S, G) = 1 −
∣
∣S

⋂
G

∣
∣

∣
∣S

⋃
G

∣
∣

(7)

Liver segmentation results
The segmentation results of liver from testing images
are shown in Fig. 5, we compared the proposed method
with the network which is only trained in axial plane.
It can be seen easily of the under segmentation phe-
nomenon without using the multi-plane integrate training
method, which proved the effectiveness of our MPNet in

Fig. 6 The liver tumor segmentation results using different networks from a training image
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Fig. 7 Example of tumor segmentation results from a testing image

liver tumor segmentation tasks. For quantitative evalua-
tion, the MPNet has achieved an average Dice score of
0.967, VOE of 0.063, ASD of 1.32 and MSD of 29.9 for
liver segmentation, respectively, while the model trained
only in axial plane has achieved a Dice score of 0.685,
VOE of 0.438, ASD of 25 and MSD of 92.3, which further
proved that using multi-plane integrate prediction can
help model utilize more robust liver features for segmen-
tation. It took us about 97 h to train the MPNet due to the

need of training three separate networks. However, dur-
ing testing stage, the time to deal with one case is related
to its slices number, which is ranging from 13 s to 85 s for
network without multi-plane integrate, and 30 s to 250 s
for MPNet.

Tumor segmentation results
Figures 6 and 7 show the tumor segmentation results from
training and testing images, respectively. The red colors

Fig. 8 Training loss of the three networks
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represent the liver tumor. We compared the results gener-
ated by ground truth with residual based MPNet, densely
connected based DC-FCN and adversarial training based
ADCN. To visualize the results simplicity caused by the
network differences, here we only trained the network in
axial plane. In Fig. 6, results provided by MPNet, DC-
FCN and ADCN are presented in the second, third and
forth columns, respectively, which we can see that for
the MPNet segmentation results, residual connection can
discriminate the tumor in some extent, but miss a part
of tissues which should belong to tumor, while the DC-
FCN can predict more accurate segmentation results with
the help of dense connection, but still have the under
segmentation problem compared with the results gener-
ated by ADCN, which was benefited from the adversar-
ial training strategy and can identify more voxels that
belong to tumor. In Fig. 7, the achieved results of a test-
ing image show similar appearance with the training one.
However, it can be seen that the segmentation of liver
tumor produced by ADCN is more accurate. Although the
segmentation results provide by ADCN still have some
unsegmented tumor tissues, it’s already have a significant
improvement with the other two methods, which proves
the effectiveness of the proposed algorithm.

Results of performing power function to the loss values
of MPNet, DC-FCN and ADCN are shown in Fig. 8, it is
observed that all the three network training costs about
18k iterations to converge and the overall training loss of
ADCN is lower than DC-FCN by using adversarial train-
ing strategy, and the loss of DC-FCN is lower than MPNet
by using dense connection technology, the advantage of
combining these two techniques has further proved the
network performance.

Figures 9 and 10 show quantitative evaluation results
for liver and liver tumor segmentation on the testing
set. It can be seen that the proposed method achieved
average Dice scores of 0.684 and 0.967, ASD of 25 and
1.32, MSD of 92.3 and 29.9, VOE of 0.438 and 0.063, RVD
of 11 and 0.2 by using network without multi-plane inte-
grate and MPNet in liver segmentation task, while for
tumor segmentation, our MPNet, DC-FCN and ADCN
have achieved average Dice scores of 0.427, 0.616 and
0.684 with the ASD improved from 82.6, 27.8 to 21 and
MSD improved from 198, 147 to 124, VOE improved
from 0.68, 0.52 to 0.46 and RVD changed from 5.26, 0.69
to 0.73, respectively. We can see that after combining
dense connection and adversarial training strategy, eval-
uation results on both qualitative and quantitative can

Fig. 9 Quantitative evaluation results for liver segmentation
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Fig. 10 Quantitative evaluation results for tumor segmentation

be improved in some extent. Compared the performance
with other evaluation index, although the RVD value
have increased 0.04 after introducing adversarial training,
it will not affect the overall performance of segmenta-
tion task, which further proved the effectiveness of the
proposed strategy.

The benefit of using cascade framework can help reduce
the complexity of designing tumor segmentation network
and make it easier to train. It can also help reduce false
positives since ADCN works on the region segmented by
MPNet. What’s more, our network can use the spatial con-
straints provided by anatomical structures of the liver and
tumor, which the segmented liver mask restrict the liver
tumor inside the liver region. However, this kind of train-
ing strategy is always not end-to-end, which has a defect of
longer training time compared with other methods using
similar network structure. But as far as we consider, the

training time is not an important metric in liver tumor
segmentation task.

Examples of the result show that our method acquired
a satisfied performance for both liver and tumor segmen-
tation tasks. The multi-plane integrate technology helps
network get more higher accuracy, which is mainly ben-
efited from utilizing the 3D contextual information in
three orthogonal planes. And the dense connection com-
bined with adversarial training strategy further improve
the model performance because the deep reuse of spatial
information from tumor sequence and its global appear-
ance.

Conclusions
In this paper, we developed a cascaded adversarial train-
ing system to segment liver tumors from abdominal CT
volumes. The liver tumor segmentation challenge was
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divided into a two cascade binary segmentation tasks and
we designed two networks to segment the liver and liver
tumor, respectively. Specifically, we first used our previous
method named multi-plane integrate network to segment
the liver tissue from 3D CT abdominal volumes. Then
we extracted the tumors in the liver region by develop
a deep 3D densely connected fully convolutional neural
network with adversarial training strategy. Our networks
use a multi-plane convolution operation, which balanced
the computing memory consumption and receptive field.
We also introduced dense connection to capture more
accurate tumor features followed with multi-scale feature
fusion technique to reduce the miss segmented results.
Adversarial training strategy is used to minimize the out-
put of network with ground truth, which further boosts
the final segmentation result. Experimental results show
that our method achieved a best Dice score of 68.4%
for tumor segmentation, and ASD, MSD, VOE and RVD
improved from 27.8 to 21, 147 to 124, 0.52 to 0.46 and 0.69
to 0.73, respectively.
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