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Abstract

Background: Glaucoma is an irreversible eye disease caused by the optic nerve injury. Therefore, it usually changes
the structure of the optic nerve head (ONH). Clinically, ONH assessment based on fundus image is one of the most
useful way for glaucoma detection. However, the effective representation for ONH assessment is a challenging task
because its structural changes result in the complex and mixed visual patterns.

Method: We proposed a novel feature representation based on Radon and Wavelet transform to capture these
visual patterns. Firstly, Radon transform (RT) is used to map the fundus image into Radon domain, in which the
spatial radial variations of ONH are converted to a discrete signal for the description of image structural features.
Secondly, the discrete wavelet transform (DWT) is utilized to capture differences and get quantitative
representation. Finally, principal component analysis (PCA) and support vector machine (SVM) are used for
dimensionality reduction and glaucoma detection.

Results: The proposed method achieves the state-of-the-art detection performance on RIMONE-r2 dataset with the
accuracy and area under the curve (AUC) at 0.861 and 0.906, respectively.

Conclusion: In conclusion, we showed that the proposed method has the capacity as an effective tool for large-
scale glaucoma screening, and it can provide a reference for the clinical diagnosis on glaucoma.
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Background
Glaucoma is an irreversible eye disease, by which the
vison is permanently damaged. Moreover, glaucoma be-
comes one of the most common causes of blindness,
and more than 80 million people will suffer from this
disease by 2020 [1, 2]. Therefore, early glaucoma detec-
tion is significant and helpful to save the vision of pa-
tients. Clinically, the detection includes intraocular

pressure measurement, optic nerve head (ONH) assess-
ment, optical coherence tomography and visual field test
[3, 4]. Among these techniques, the ONH assessment is
commonly used in the detection. It identifies glaucoma
by manually measuring the geometric features of ONH,
and is accepted as a significant clinical indicator for
glaucoma detection. In fundus images, the ONH is also
called optic disc (OD). It is consisted of two distinct re-
gions: a bright region in OD center called optic cup
(OC) and the remaining region around OC called neuro-
retinal rim. Generally, glaucoma will lead to the struc-
tural changes in ONH such as the enlargement of OC,
neuro-retinal rim loss, peripapillary atrophy (PPA) etc.
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ONH assessment can be accomplished by the experts,
but manual assessment is influenced by subjective fac-
tors and time-consuming. On the contrast, computer-
aided methods have the merits of impersonality, rap-
idity and repeatability [5, 6]. They gain much atten-
tion in medical and biological field [7, 8] for
association analysis [9–11], feature expression [12, 13]
and disease detection [14, 15].
Computer-aided diagnosis methods based on ONH for

glaucoma detection were subject to numerous studies in
the past. The extensive review published in 2013 [16]
cites many works that used template matching, Hough
transform, active contours model and level set. We
briefly review the most relevant approaches from that
study and the methods published later. These methods
based on ONH for glaucoma detection can be divided
into two categories.

Glaucoma detection based on geometric parameter
measurement
The cup to disc ratio (CDR) is the main risk index used
to measure the structure of ONH for glaucoma detec-
tion, and neuro-retinal rim loss is also an important
evidence in glaucoma detection. Most methods have car-
ried out researches based on these pathological features,
including OD localization, OD and OC segmentation,
CDR calculation, neuro-retinal rim detection and so on
[17–19].
The OD localization can be divided into three categor-

ies: (1) OD is the brightest region in the fundus image
[20]; (2) OD shows approximate circular or elliptical
shape [21]; (3) the blood vessels are used as auxiliary in-
formation [22, 23]. The segmentation methods of OD
and OC mainly include active contours model [24], mor-
phological method [25], level set [26] and so on. In
addition, a series of methods for the measurement of
neuro-retinal rim have been proposed, such as ISNT
[27] and PPA [28, 29]. On the basis of the above work
[30], significant features for glaucoma such as CDR,
neuro retinal rim and vascular information around OD
were extracted, followed by support vector machine
(SVM) and artificial neural network for classification.
These glaucoma detection methods heavily depend on

the precise segmentation of OD and OC. However, the
structure of OD is liable to be changed by the glaucoma.
Moreover, it is difficult to segment the OC region due to
its blurring boundary.

Glaucoma detection based on texture feature
In recent years, glaucoma detection based on texture
feature without segmentation is proposed. The texture
feature is roughly defined as the spatial variation of the
pixel value, which is not specific location on the image

[31]. The superiority of earlier mentioned approach is
avoiding the probable error in the segmentation, which
achieves the goal by learning determining features from
the labeled samples and optimizing the machine learning
model.
Effectively capturing texture features is the main inter-

est of related work. Bock [32] published research work
in this field, which established foundation for the tech-
nology. They integrated varieties of texture features for
glaucoma detection, including pixel intensity values,
Fourier’s coefficients and B-spline coefficients decoding
spatial frequency information, and subsequently experi-
mented with SVM to extract glaucoma risk index which
indicates the feasibility of the method. Since the texture
features can be represented by wavelet transform [33],
Dua [31] was concerned about the challenge what wave-
let feature was the most discriminative for classification.
The three prominent wavelet families that were called
Daubechies (db3), Symlets (sym3) and biorthogonal
(bio3.3, bio3.5, bio3.7), were adopted for experiments.
The features containing pixel values and energy were ex-
tracted from wavelet transform, which were subjected to
SVM, random forest (RF) and naive Bayes classifier. It
proved that db3 and bio3.3 were highly discriminatory.
Noronha [34] adopted the perspective of image analysis
and recognition, combined the Radon transform (RT)
with higher order spectra to represent the fundus im-
ages, and employed SVM and Naive Bayes to achieve
the purpose of glaucoma classification. Acharya [35]
used Gabor filters which possessed the excellent char-
acteristics in the description of the image, and then
the mean, variance, entropy and energy features were
extracted. After different feature rank and selection
strategies, SVM and Naive Bayes completed the ul-
timate work. Singh [36] thought the area outside of
OD in fundus images would introduce interferential
information. Therefore, they removed blood vessels
from the segmented OD region to improve the classi-
fication performance, extracted wavelet features in-
cluding mean and energy, and used feature reduction
and varieties of learning algorithms such as SVM,
RF and naive Bayes. In 2017, Zhao [37] combined
color distribution, multi-scale Gabor filter and ori-
ented gradient histogram to form multi-channel fea-
tures representing color fundus images in order to
characterize the subtle changes of OD structure and
morphology. An RF classifier finally was developed to
verify the effectiveness of the algorithm.
In the above literatures, the texture features such as

mean and energy are extracted to represent the fun-
dus images, which cannot describe well the complex
pattern of glaucoma. Moreover, there is not very con-
vincing that the experimental results are based on the
small private dataset. Recently, many deep learning
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methods are used for medical data analysis, such as
convolutional neural networks, recurrent neural net-
work, autoencoder and so on. However, these ap-
proaches require large-scale data [38–40]. The aim of
this study is to develop a feature representation
method to fully and effectively describe on ONH for
glaucoma detection. It should provide a reference for
the clinical diagnosis on glaucoma.

Materials and method
Datasets
Two different datasets were used in our experiments:
RIMONE-r2 [41] and Drishti-GS [42]. The RIMONE-r2
consists of 455 ONH images of which 200 are glaucoma
and 255 are normal. These images are obtained from full
fundus images and have different resolution. This data-
set comes from Medical Image Analysis Group and is
available online. The Drishti-GS contains 101 fundus
images, including 70 glaucoma images and 31 normals.
The images are approximately 2047 × 1760 pixels in
resolution.

Method
In this section, we propose a novel feature representa-
tion method for glaucoma detection. Figure 1 gives
the flowchart of the proposed method. After the pre-
processing, RT and discrete wavelet transform (DWT)

is adopted for feature extraction, principal component
analysis (PCA) is performed to reduce the dimen-
sions, and SVM is finally developed for automatic de-
tection. In the proposed method, we introduce RT for
effective feature representation and avoiding informa-
tion loss. RT provides a representation of images in
the Radon domain, which has the following
properties:

1) Constraints Optimization: Generally, CDR is
calculated by the ratio of vertical diameter of OC to
OD. Neuro-retinal rim loss is not consistent in
different directions [13]. Additionally, PPA commonly
occurs in the temporal region, as shown in Fig. 2a.
Obviously, these characteristics present a trend of
radial variation and a 2-dimensional distribution rela-
tionship in space. So, it is hard to define an effective
descriptor to represent them. By contrast, RT con-
verts the image into 1-dimensional signal and these
radial variation and spatial relationship are con-
strained to a certain extent, as shown in Fig. 2b.

2) Equivalent Features Enhancement: Most of
existing methods achieve the comprehensive
representation of glaucoma combining CDR,
neuro-retinal rim loss and blood vessels features
directly. However, RT not only inherently inte-
grates these radial variations, but remains more

Fig. 1 The flowchart of the proposed method

Fig. 2 a The main measurements on ONH, b Radon transform at 90°
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structural information. Therefore, the features en-
hancement for glaucoma detection can be done
through RT.

3) Dimensionality Reduction: RT is a projection
algorithm which can effectively avoid information
loss and reduce data dimensions at the same time.
For a given image with the size of 300 × 400 pixels,
the feature dimension is only about 500 after RT.

Preprocessing
The goal of preprocessing is to enhance the contrast and
correct the non-uniform illumination of the images. Color
fundus images are firstly converted into gray-scale images.
Then, the Contrast Limited Adaptive Histogram
Equalization (CLAHE) [43] algorithm is followed on these
gray images. CLAHE calculates the local histogram of im-
ages, and redistributes the intensity of pixels to reinforce
image contrast. Figure 3 gives the comparison between com-
mon histogram equalization and CLAHE. Figure 3a is the
original color fundus image. Figure 3b is the gray-scale
image of Fig. 3a. Figure 3c and d are the results of histogram
equalization and CLAHE from Fig. 3b, respectively. Com-
pared with the common histogram equalization, CLAHE
can enhance the local contrast and retain more information.

RT for feature projection
In fundus images, the glaucoma is characterized by the sig-
nificant individual differences and complex symptoms. RT is
the projection of the image intensity along a radial line ori-
ented at a specific angle, in which the radial variation of the
glaucoma can be well captured. In addition, combining the
multi-angles projection may convert the complex visual pat-
tern into discrete signals with high recognition. It also en-
sures that the transform can represent the original data as
much as possible.
For a given image I, RT is described as follows [44]:

R ρ; θð Þ ¼ ∬
D
f x; yð Þδ ρ−x cosθ−y sinθð Þdxdy

s:t: δ tð Þ ¼ f 1; t ¼ 0
0; t≠0

where R(ρ, θ) is the result of RT, f(x, y) is the image in-
tensity at the point (x, y), δ(▪) is the Kronecker delta
function limiting the projection along a straight line, D
stands for the whole image, ρ is the distance of the
straight line to the origin and θ describes as the angle
from the horizontal.
R(ρ, θ) varies with the changes of ρ and θ, which can

effectively capture the differences in fundus images.
Figure 4 shows the projection results in Radon domain
for fundus images. It can conclude that the original in-
formation is perfectly preserved by RT from the recon-
structed image. It also can be seen that the results reveal
high recognition in some area (as shown in red box),
which demonstrates that the transform in some specific
angles is more distinguishable and superior to character-
izing the properties of the original data. Combined with
these angles, the complex glaucoma features will be ac-
curately captured, forming an effective descriptor to rep-
resent the fundus images. In this research, the
combination of nine angles (θ = n × 20°, n = 1~9) yields
the best performances.

Features representation with DWT
Because of the individual differences and the complex
visual pattern on glaucoma, results of RT varies heavily
due to the different angles, which is shown in Fig. 5.
Effectively capturing these differences and quantitative
representation are the main interest in this section.
DWT is an ideal approach for signal processing, and
inherits the advantages of the short-time Fourier
transform. It has good performance in local analysis of
time-frequency domain, and realizes the multi-scale re-
finement of signal by stretching and translation. There-
fore, DWT is employed for feature representation.
DWT can convert the results of RT into coefficients

and quantify them accurately. For a given discrete signal,
DWT is consisted of two sets of coefficients: approxima-
tion coefficients and detail coefficients. These coeffi-
cients are acquired by convolving the signal with the
low-pass filter for approximation and the high-pass filter
for detail, and then by down-sampling. Figure 6 shows

Fig. 3 Comparison between common histogram equalization and CLAHE: a Color fundus image; b Gray-scale image; c Common histogram
equalization from (b); d Contrast limited adaptive histogram equalization from (b)
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Fig. 4 Visualization display in Radon domain and reconstructed image. a Normal, b Preprocessing on (a), c RT of (b), d Reconstructed image of
(c), e Glaucoma, f Preprocessing on (e), g RT of (f), h Reconstructed image of (g)

Fig. 5 The results of RT at specific angles, in which the differences are concentrated on the middle and jump. a Normal, b RT of (a), c Specific
angle transform of (a): left is 40°, right is 140°, d Glaucoma, e RT of (d), f Specific angle transform of (d): left is 40°, right is 140°
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the process of feature representation. We do not have
the coefficients compressed into a single feature such as
energy, mean or entropy. On the contrary, the quantita-
tive features are obtained on the analysis of the whole
coefficients, aiming at better describing the glaucoma.

PCA for dimension reduction
The main area suffered from glaucoma is OD and RT is
conducted on the whole image, so there is a lot of re-
dundant information. The coefficients acquired from
DWT are bound to exist interrelated variables, which
has great influence on the classification accuracy. PCA is
a statistical method, which converts a group of variables
that may be correlated into small number of linear inde-
pendent variables called principal component by orthog-
onal transformation. It will find a linear subspace where
the original information is retained in the projection
data as much as possible. The process of PCA begins
with calculating the data covariance matrix, then com-
putes the Eigen values and Eigen vectors of covariance
matrix, arranges Eigen vectors in the descending order
of Eigen values, and finally projects the original data into
the directions of sorted Eigen vectors for reducing di-
mension and eliminating redundant information [45]. In
our research, 94% of the cumulative contributions pro-
portion is chosen.

Glaucoma detection based on SVM
SVM is developed for detection rather than other classi-
fiers with the following reasons. RT and DWT provide a
feature descriptor with low dimensional, and there are
not many samples in experimental datasets. In addition,
glaucoma lesions are mainly concentrated in OD, so the
characteristic differences are relatively gathered in some
specific parts of features. SVM is suitable for these com-
plex situations, and is an excellent method in small sam-
ple learning. Because of the theory of maximum margin
hyper-plane, it can not only grasp the key samples but
has good robustness. Moreover, SVM effectively utilizes
kernel functions to map the non-linear data into a high
dimensional space for classification. Other classifiers like
RF are also considered in the research.
SVM is a machine learning algorithm of supervised

classification through optimizing the structural risk for
better generalization ability. Benefited from the
minimization of the empirical risk and confidence inter-
val, it holds the excellent performance for small sample
and high dimension learning task. In addition, SVM can
dispose of the nonlinear data with kernel function. The
kernel function can project the linearly inseparable data
into high dimensional space for separating them well. At
the same time, the kernel function can transform the
computation of inner-product in high dimensional space
into kernel function operation, which solves the

Fig. 6 The diagram of feature representation

Table 1 Results of the proposed method with 10-fold validation
in glaucoma detection

Database Classifier Accuracy (%) AUC

RIMONE-r2 SVM 86.154 0.906

RIMONE-r2 RF 77.100 0.769

Drishti-GS SVM 74.000 0.732

Drishti-GS RF 78.000 0.733

Table 2 Comparison with other glaucoma detection algorithms

Method Database Images Accuracy (%) AUC

Bock et al. [32] Private 575 80.000 0.880

RIMONE-r2 455 81.319 0.890

Cheng et al. [47] private 650 – 0.830

Maheshwari et al. [48] RIMONE-r2 455 81.320 –

ours RIMONE-r2 455 86.154 0.906
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dimension disaster and lays a theoretical foundation for
disposing of the complex classification or regression
problem in high dimensional space.

Results
All experiments were implemented using Matlab R2016a
and Libsvm-2.91 [46]. A 10-fold cross-validation ap-
proach is utilized for robust statistical evaluation. The
performance of our method is evaluated through the ac-
curacy and the area under the curve (AUC) on two pub-
lic datasets, RIMONE-r2 and Drishti-GS. Sensitivity and
specificity are defined as sensitivity = TP / (TP + FN) and
specificity = TN / (FP + TN), respectively. TP, TN, FP
and FN means the number of true positives, true nega-
tives, false positives and false negatives, respectively.
Firstly, fundus images are transformed into a discrete

signal through RT for capturing the complex pattern of
glaucoma. Since the database is saved in various resolu-
tions, the bicubic interpolation technique is employed to
unified the dimension of signal. Then, the bior1.1 wave-
let is used to decompose the discrete signal for feature
quantization. After that, all features are subjected to
PCA to reduce the dimensionality. Finally, we adopt the
SVM and RF classification algorithm to find the best
performance. In this research, the best performance is
obtained by using SVM classifier with RBF kernel func-
tion under ten-fold cross validation.
Table 1 shows the results of the proposed method in

glaucoma detection on two different datasets. On the
RIMONE–r2 dataset, SVM achieves the highest per-
formance with the accuracy of 86.154% and the AUC of

0.906. But on Drishti-GS dataset, the performance of
SVM degrades because of the uneven data distribution.
Additionally, RF does not perform well on the condi-
tions of random sampling and inability of data projec-
tion, which are not suitable for glaucoma detection.
Table 2 shows the comparison with other glaucoma

detection algorithms. The features called image intensity,
fast Fourier transform coefficients and B-spline coeffi-
cients are extracted from fundus images. This method
reported respectively the accuracy and AUC of 80% and
0.88 [32]. According to its description, we implement
this method and evaluate it on RIMONE-r2. We get the
accuracy and AUC of 81.319% and 0.89, respectively.
Cheng et al. [47] proposed a method for CDR assess-
ment using sparse dissimilarity-constrained coding. They
obtained the AUC of 0.83. Maheshwari et al. [48] pro-
posed a methodology for an automated glaucoma diag-
nosis using fundus images based on empirical wavelet
transform. The result showed the accuracy of 81.32% on
the RIMONE-r2. In the experiments, we get the results
in glaucoma detection with the accuracy of 86.154% and
the AUC of 0.906 using RT and DWT. The experiment
results show that the proposed method has better per-
formance on glaucoma detection.

Discussion
In order to illustrate the performance of the proposed
method in Radon domain, we adopt different angles and
dimensions to represent color fundus images. Feature di-
mensions after RT are not the same due to the different
image resolutions, as shown in Fig. 7. We choose 6, 9,

Fig. 7 The distribution of frequency in RIMONE-r2
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18 angles and 600, 800, 1000 dimensions in our experi-
ments, and Table 3 shows the results. Obviously, the
most results in accuracy are above 80%, and it means
RT can effectively capture and represent the characteris-
tics of glaucoma. Moreover, it arises first and decreases
later, which manifests that some of combinations do not
contribute to the classification, or even hamper the per-
formance. Among the experiments, the combination of 9
even angles and 690 dimensions is superior to other op-
tions in representation for fundus images and obtains
the best accuracy.
Additionally, the classification performances with and

without DWT are compared, as shown in Table 4. Then,
the performances using different biorthogonal wavelets
in DWT are compared as well, which is shown in
Table 5. From Table 4, the accuracy of the method with-
out DWT is lower than the proposed method. From
Table 5, it gets the highest accuracy of 86.154% when
the ‘bior1.5’ wavelet is selected. Table 6 gives the com-
parison results of classification performances with differ-
ent dimension reduction methods among PCA,
Multidimensional Scaling (MDS) [49] and Laplacian
Eigenmaps (LE) [50]. Each of dimension reduction
methods compresses the extracted features into the
same dimension. It is noted that PCA has greater classi-
fication performance than the other dimension reduc-
tion methods.

Finally, we also compare the results with the different
kernel functions of SVM in classification. Common ker-
nel functions are adopted in the experiments such as lin-
ear, polynomial and radial basis functions. The results
are shown in Table 7. RBF has the best classification
performance for the reason of its strong capability in
data processing and nonlinear projection. Additionally,
SVM classification model appends the penalty coefficient
c and RBF needs to specify the width parameter of the
function σ. In this research, the grid search method is
used to find the best combination of c and g in the scope
of 2− 10~210 with the step of 20.5. The combination (c =
11.313 and σ = 6.727) is optimal. Moreover, the accuracy
increases from 85.274 to 86.154% after utilizing CLAHE,
and AUC approximately remains the same. Feature di-
mensions drop from 6210 to 244 by PCA with 94% of
the cumulative contributions proportion, and the accur-
acy also increases 0.88%. It means PCA removes redun-
dant information and improves the performance of
the method.

Conclusion
In this paper, a novel glaucomatous representation
method based on Radon and Wavelet transform is pro-
posed. This method extracts the features of fundus im-
ages, which can well describe the complex visual
patterns. Due to the effective dimension reduction of
RT, the proposed method is very quick and efficient and
provides strong conditions for the large-scale glaucoma
screening. Moreover, AUC of the proposed method is

Table 4 Results with and without DWT on RIMONE-r2

Method Accuracy (%)

RT 84.396

RT + DWT 86.154

Table 3 Results of different angles and dimensions on RIMONE-
r2

Angles Dimension Accuracy (%)

6 600 81.198

800 81.978

1000 83.736

9 odd 600 81.758

800 81.539

1000 79.780

9 even 600 84.396

800 84.176

1000 84.176

18 600 82.396

800 79.341

1000 83.077

9 even 690 86.154

Table 5 Results of different biorthogonal wavelets on RIMONE-
r2

Wavelets Accuracy (%)

bior1.1 85.934

bior1.3 85.934

bior1.5 86.154

bior2.2 76.703

bior2.4 76.484

bior2.6 76.703

bior3.3 76.923

bior3.5 76.703

bior3.7 76.923

Table 6 Results with different dimension reduction methods on
RIMONE-r2

Method Accuracy (%)

PCA 86.154

MDS 80.879

LE 70.989
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up to 0.906 so that it can provide a reference for the
clinical diagnosis on glaucoma.
In the future, we will improve our method on dealing

with images in different resolutions, and ensure the
method perform well in clinical applications. Addition-
ally, we will study the effect of RT with more exquisite
angles, and try to establish a theory for intra-class and
inter-class distance in Radon domain, which is aim to
promote the performance in glaucoma detection.
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