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Abstract

Background: Integrative network methods are commonly used for interpretation of
high-throughput experimental biological data: transcriptomics, proteomics,
metabolomics and others. One of the common approaches is finding a connected
subnetwork of a global interaction network that best encompasses significant
individual changes in the data and represents a so-called active module. Usually
methods implementing this approach find a single subnetwork and thus solve a hard
classification problem for vertices. This subnetwork inherently contains erroneous
vertices, while no instrument is provided to estimate the confidence level of any
particular vertex inclusion. To address this issue, in the current study we consider the
active module problem as a soft classification problem.

Results: We propose a method to estimate probabilities of each vertex to belong to
the active module based on Markov chain Monte Carlo (MCMC) subnetwork sampling.
As an example of the performance of our method on real data, we run it on two gene
expression datasets. For the first many-replicate expression dataset we show that the
proposed approach is consistent with an existing resampling-based method. On the
second dataset the jackknife resampling method is inapplicable due to the small
number of biological replicates, but the MCMC method can be run and shows high
classification performance.

Conclusions: The proposed method allows to estimate the probability that an
individual vertex belongs to the active module as well as the false discovery rate (FDR)
for a given set of vertices. Given the estimated probabilities, it becomes possible to
provide a connected subgraph in a consistent manner for any given FDR level: no
(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03572-9&domain=pdf
http://orcid.org/0000-0003-3415-9565
mailto: alserg@itmo.ru
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Alexeev et al. BMC Bioinformatics 2020, 21(Suppl 6):261 Page 2 of 20

(Continued from previous page)

vertex can disappear when the FDR level is relaxed. We show, on both simulated and
real datasets, that the proposed method has good computational performance and
high classification accuracy.

Keywords: Protein-protein interaction, Active module, Markov chain Monte Carlo,
Gene expression, Soft classification

Background
Integrative network approaches are commonly used for interpretation of high-throughput
data [1]. Such methods are applied in many different contexts: in genome-wide associ-
ation studies [2], for elucidating mechanisms of metabolic regulation [3], for analysis of
somatic mutations in cancer [4], etc. The main idea of these methods is that considering
internal connections (for example, between proteins, metabolites or other entities) can
lead to deeper understanding of the data and the corresponding biological processes.

The connectivity information could be used in multiple ways. The simplest analy-
sis could involve manual exploring of connections between the input signals [5]. More
sophisticated methods include using connections for gene set enrichment analysis [6],
comparing networks [7] and many others.

One of the most well-developed and used approaches consists of selecting a connected
subnetwork that best represents an active or functional module. This concept was initially
suggested by Ideker et al. [8]. The authors proposed a metric to score subnetworks based
on gene expression data with a heuristic method jActiveModules to find the top-scoring
networks. Since then, multiple methods for solving this active module identification prob-
lem were developed. One of the most notable methods, called BioNet, was proposed
by Dittrich et al. [9]. They suggested using a maximum-likelihood-inspired subnetwork
scoring scheme such that finding the best scoring subnetwork corresponds to solving
the Maximum-Weight Connected Subgraph (MWCS) problem. While the problem is
NP-hard, in the same paper a practical exact solver was proposed. Maximum-likelihood
inspired formulation combined with an exact solver for the corresponding problem
allowed to achieve great performance on both simulated and real data, in particular show-
ing much better precision and recall values compared to jActiveModules. According to
the recent review [10] jActiveModules and BioNet remain the two most-used methods
for the active module problem.

A question that is not usually addressed in the existing methods for solving the active
module identification problem is the level of confidence of individual vertex inclusion.
By design, in the resulting networks vertices with high individual significance are con-
nected via less significant vertices. This raises the question whether vertices included in
the module are more important compared to vertices with similar individual significance
that are not included in the module. This is particularly important when an individually
non-significant vertex is included in the module. Uncertainty in this aspect can lead to
misinterpretation of the data either by attributing importance to false vertices or missing
key vertices.

Previously Beisser et al [11] suggested a jackknife resampling approach where the active
module problem is solved multiple times for resampled input data. It allows to introduce
support values: how many times a particular vertex or edge was a part of the solution



Alexeev et al. BMC Bioinformatics 2020, 21(Suppl 6):261 Page 3 of 20

for the resampled data. The calculated support values can be then used to distinguish
robust signals from noise in the resulting module. However, this method is limited to
experiments with a large number of replicates and can not be applied for small-scale
experiments.

The way different module confidence thresholds are handled is another problem of
binary methods like BioNet. For example, a module of higher confidence could contain
vertices not present in a module of lower confidence. Since in a real-case scenario several
confidence thresholds are considered, such inconsistencies impede the interpretation of
the results. To address this issue, previously [12] we considered a problem of connectivity-
preserving vertex ranking – a ranking with the constraints that: 1) each prefix of the
ranking should induce a connected subgraph, and 2) smaller induced subgraphs corre-
spond to more confident modules. In that paper we proposed a semi-heuristic ranking
method that was better (as measured by the area under the ROC curve, AUC ROC) com-
pared to both baseline vertex ranking by individual input significance and ranking from
multiple BioNet runs with different thresholds.

In the current study we consider the active module identification problem as a soft ver-
tex classification problem. In this case, instead of providing a hard classification of vertices
into either being in the module or not, we estimate probabilities of each vertex to belong
to the active module. To estimate these probabilities we propose a method that is based
on Markov chain Monte Carlo (MCMC) module sampling from a posteriori distribution.
First, by producing the vertex probabilities, this approach directly resolves the question
of individual vertex confidence. Moreover, we show that the estimated probabilities can
be used to calculate expected AUC ROC of any ranking and thus the problem of find-
ing the best connectivity-preserving ranking can be defined constructively. We prove that
this problem is NP-complete, but show that in practice it can be solved accurately and
efficiently using a heuristic algorithm. Finally, we show that the method can achieve high
classification accuracy on simulated data and works well on real data.

Formalization of the active module problem in terms of soft classification

For the sake of clarity in this paper we formulate the active module problem in terms
of protein-protein interaction networks together with gene expression data. We formal-
ize the protein-protein interaction network as a graph G, where vertices correspond to
protein-encoding genes, and two vertices are linked by an edge if the corresponding
proteins interact. Gene expression data are given for sets of samples for two biological
conditions of interest (e.g. control and treatment), so that differential expression p-values
can be calculated for each gene. While for some genes the null hypothesis of having zero
expression change between conditions is true, and so the corresponding p-values are uni-
formly distributed on [ 0, 1], p-values for “interesting” genes that exhibit a difference in
expression would tend to be closer to zero. According to [8], those interesting genes form
a connected subgraph in G, which is called an active (or functional) module.

Beta-uniform mixture model

As shown in [9, 13], the distribution of all p-values can be approximated by the so-called
beta-uniform mixture (BUM) distribution, where the beta component corresponds to a
signal in the data, and the uniform component corresponds to noise. Let us recall that the
beta distribution has support [ 0, 1] and is defined by its density



Alexeev et al. BMC Bioinformatics 2020, 21(Suppl 6):261 Page 4 of 20

β(a, b)(x) = 1
B(a, b)

xa−1(1 − x)b−1 ,

where the Beta function. The BUM distribution is a mixture of uniform and beta β(a, 1)

distributions and is defined by its density

λ + (1 − λ) axa−1 ,

where λ is the mixture weight of the uniform component and a is the shape parameter of
the beta distribution.

We assign a weight w(v) to each vertex v of the graph G equal to the p-value assigned
to the corresponding gene. Thus, in our model we have: a connected graph G on n = |G|
vertices, its connected subgraph M, a family of independent random variables Wv, v ∈
V (G) \ V (M) with uniform distribution on [ 0, 1], and a family of independent random
variables Wv, v ∈ V (M) with β(a, 1) distribution.

MCMC approach

Our goal is to find out which vertices are likely to belong to the active module M:

Problem 1 (Soft Classification Active Module Problem, SCAMP) Given a connected
graph G and vertex weights wv ∈[ 0, 1] find the probability P(v ∈ M | W = w) for each
vertex v to belong to the module M.

We solve this problem in the following way. We generate a large sample S of random
subgraphs S from conditional distribution P(S = M | W = w) using the Metropolis–
Hastings algorithm (see “Methods” section). While all the probabilities P(S = M | W =
w) are small and the multiplicity of each subgraph in S is small, the probabilities of each
vertex to belong to the module are cumulative statistics and show robust behavior. The
same holds for the probabilities P(V ⊂ M | W = w), where V are relatively small sets of
vertices.

The benefits of the soft classification approach are:

1 it allows to estimate the level of confidence that a particular gene is expressed
differently, which is the probability that a corresponding vertex belongs to the
active module;

2 it allows to analyze alternative complement pathways by studying probabilities of
the form P((V1 ⊂ M) ∨ (V2 ⊂ M) | W = w);

3 for any set of genes V reported as differently expressed, our method allows to
compute the false discovery rate (FDR) as 1

|V |
∑

v∈V P(v �∈ M | W = w);
4 it provides a vertex ranking that maximizes the area under the ROC curve (AUC

ROC) (see “Features of soft classification solution” section);
5 it allows to heuristically find a vertex connectivity preserving ranking that

maximizes the AUC ROC (see “Connectivity preserving ranking” section).

Methods
Markov chain Monte Carlo based method

We solve Problem 1 in the following way: we sample a set S of random subgraphs S from
conditional distribution P(S = M | W = w) using the Markov chain Monte Carlo
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(MCMC) approach, and estimate P(v ∈ M | W = w) as

P(v ∈ M | W = w) ≈ |{S ∈ S : v ∈ S}|
|S| .

First, we estimate the beta-uniform mixture parameters a and λ = 1 − |M|
|G| with a

maximum-likelihood estimator [14].
For MCMC sampling we implement the Metropolis-Hastings algorithm [15]. It starts

at a random subgraph S0 of order k = |M| = (1 − λ) |G|. On each step i we choose a
candidate subgraph S′ by removing a vertex v− from Si and adding another vertex v+ from
the neighborhood of Si (by neighborhood of a subgraph S we mean the set of all vertices
of G at distance 1 from S). We note that the subgraph S′ always has the same number of
vertices k as S0. The proposal probability Q

(
S′|Si

)
is

Q
(
S′|Si

) = 1
| nei (Si) | · |Si| .

We set the acceptance probability in the Metropolis-Hastings algorithm as

ρ
(
Si, S′) = min

{

1,
P

(
S′ = M | W = w

)

P (Si = M | W = w)

Q
(
Si|S′)

Q (S′|Si)

}

,

where P
(
S′ = M | W = w

) = 0 as soon as S′ is not connected.
For any connected subgraph S of G the value P

(
S′ = M | W = w

)
can be expressed in

terms of probability density p of an absolutely continuous random vector variable W :

P(S = M | W = w) = p(w | S = M)P(S = M)

p(w)
. (1)

So,
P

(
S′ = M | W = w

)

P (Si = M | W = w)
=

p
(
w | S′ = M

)
P

(
S′ = M

)

p(w)

p(w)

p (w | Si = M) P (Si = M)
.

The fraction p(w|S′=M)
p(w|Si=M)

is equal to

p
(
w | S′ = M

)

p (w | Si = M)
= L

(
S′)

L (Si)
, (2)

where L(S) is the likelihood of the subgraph S. In our case

L(S) =
∏

v∈S
awa−1

v ,

so, we have:

p
(
w | S′ = M

)

p (w | Si = M)
=

∏
v∈S′ awa−1

v
∏

u∈Si awa−1
u

= wa−1
v+

wa−1
v−

. (3)

Assuming that the prior distribution of choosing the module P(S = M) is uniform1 on
the set of connected subgraphs S of the same order |M|, we get

ρ
(
Si, S′) = min

{

1,
wa−1

v+
wa−1

v−

| nei (Si) |
| nei (S′) |

}

.

The proposed MCMC algorithm can visit all possible subgraphs S, and so it converges
to the distribution P(S = M | W = w).
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Algorithm 1: Metropolis-Hastings algorithm
Input: a connected graph G and vertex weights wv ∈ R+; k – the number of vertices

in the module M
Output: A random subgraph SN sampled from conditional distribution

P(S = M | W = w)

S0 ← a random connected subgraph on k = |M| vertices;
for i = 0, 1, 2, . . . , N do

Choose v− from V (Si) and v+ from nei (Si) uniformly;
S′ ← induced subgraph on V (Si) \ {v−} ∪ {v+};
if S′ is connected then

Acceptance Probability: ρ
(
Si, S′) = min

{

1,
wa−1

v+
wa−1

v−
| nei(Si)|
| nei(S′)|

}

;

Si+1 ←
{

S′ with probabilityρ
(
Si, S′)

Si with probability1 − ρ
(
Si, S′) ;

else
Si+1 ← Si

end
end
return SN

Heuristic approach to arbitrary module order

Since on the real data the estimated order of an active module has a tendency to be too
large (1 − λ is up to 0.5), we adjust our method in order to allow to change the number
of vertices in the subgraph during the MCMC process. In this approach on each step of
the process one can either add one vertex to the subgraph or remove one vertex from it.
In order to provide subgraphs of biologically relevant size, we penalize each additional
vertex by a factor aτa−1, where τ is some confidence threshold as described in [9]. More
formally, it means that we consider such a prior distribution on subgraphs that P(S=M)

P(S+=M)
=

aτa−1, where S+ is an induced subgraph on the vertices V (S) ∪ {v+} . Thus our heuristic
approach is very similar to Algorithm 1, but

ρ
(
Si, S′) = min

{
1, f

(
Si, S′)} ,

where

f
(
Si, S′) =

⎧
⎪⎪⎨

⎪⎪⎩

wa−1
v+

τa−1
| nei(Si)∪V (Si)|
| nei(S′)∪V (S′)| if V

(
S′) = V (Si) ∪ {v+},

τa−1

wa−1
v−

| nei(Si)∪V (Si)|
| nei(S′)∪V (S′)| if V

(
S′) = V (Si) \ {v−}.

For estimating probabilities P(v ∈ M | W = w) we need to choose a set of subgraph
samples S. Here we consider two ways of doing this. For both ways we need to estimate
the mixing time T of the algorithm: the number of Markov chain iterations such that the
distribution of ST approximates the target distribution well. We note that theoretically the
Markov chain converges to the desired distribution since it is ergodic: it is recurrent (since
the number of states is finite), it is aperiodic (since there is a positive probability that the
process stays at the same state), and it is irreducible since by construction it can reach
any subgraph from any other subgraph. In practice, the mixing time depends on multiple
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Algorithm 2: Metropolis-Hastings algorithm for subgraphs with an arbitrary number
of vertices
Input: a connected graph G and vertex weights wv ∈ R+; threshold τ

Output: A random subgraph SN sampled from conditional distribution
P(S = M | W = w)

S0 ← a random connected subgraph;
for i = 0, 1, 2, . . . , N do

Choose v from V (Si) ∪ nei (Si) uniformly;
if v ∈ V (Si) then

v− ← v;
S′ ← induced subgraph on V (Si) \ {v−};
ρ

(
Si, S′) = min

{

1, τa−1

wa−1
v−

| nei(Si)∪V (Si)|
| nei(S′)∪V (S′)|

}

;

else
v+ ← v;
S′ ← induced subgraph on V (Si) ∪ {v+};
ρ(Si, S′) = min

{

1,
wa−1

v+
τa−1

| nei(Si)∪V (Si)|
| nei(S′)∪V (S′)|

}

;

end
if S′ is connected then

Si+1 ←
{

S′ with probabilityρ
(
Si, S′)

Si with probability1 − ρ
(
Si, S′) ;

else
Si+1 ← Si

end
end
return SN

parameters including the graph G order. The first way to choose S is to do a number of
independent MCMC runs of T iterations and add each ST to S. Here, all samples in S

are independent, which can be used to calculate the accuracy of the vertex probabilities
estimation. Another way consists in doing one long run of MCMC and putting all Si for
i > T into S. Although consecutive samples are not independent, the probabilities that
are estimated this way converge to the true probabilities given sufficiently long series (see
“Experiments on simulated data” section for discussion of the converging time on the
simulated data).

Features of soft classification solution

Having the set S of subgraphs sampled from the conditional distribution

P(S = M | W = w) ,

one can easily answer the following questions. First, one can estimate for each vertex vi
the probability pi that it belongs to the active module. In the case when the module size is
not fixed, we can also estimate the conditional probabilities

p(m)
i = P

(
vi ∈ M

∣
∣ W = w, |M| = m

)
.
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Second, for any boolean-valued function A(M) (for example, A(M) = (v1 ∈ M) ∨
(v2 ∈ M) ∧ ¬(v3 ∈ M)) one can estimate the probability P(A(M) | W = w).

Note, that if each S from S was generated with an independent MCMC run, then each
A(S) can be considered to be a result of a Bernoulli trial. Thus, all such probabilities can
be estimated with a mean square error of the order p(1−p)

|S| , where p = P(A(M)|W = w).
We also show how the probabilities of each vertex to belong to the active module

are related to the expected AUC ROC for some vertex ranking. For a vertex ranking
v1, v2, . . . , vn, where n = |G|, and a module M of order m the ROC curve is a step-curve
in a square [ 0, 1] ×[ 0, 1], which starts at (0, 0), and on the i-th step it goes either up
( 1

m , 0
)

(if vi ∈ M) or right
(

0, 1
n−m

)
(if vi �∈ M). The AUC ROC shows how accurate the

classification is.
We prove the following lemma:

Lemma 1 Let n be the number of vertices in G, m be the number of vertices in the module
M, v1, v2, . . . , vn be some vertex ranking and pi be the probabilities pi = P(vi ∈ M | W =
w). Then the expected value of the AUC ROC is equal to

1 − 1
m(n − m)

( n∑

i=1
ipi − m(m + 1)

2

)

.

Proof See Section S1 in Appendix.

Lemma 1 implies that the vertex ranking with the largest expected value of the
AUC ROC is the ranking according to a descending order on pi (for any particular mod-
ule order m). If the number m of the vertices in the module is not known, the expected
AUC ROC is equal to

1 − 1
E |M| · |G \ M|

( n∑

i=1
ip′

i − E |M|(|M| + 1)

2

)

,

where

p′
i = E (|M| · |G \ M|) ·

n∑

m=1
P

(|M| = m
∣
∣ W = w

) p(m)
i

m(n − m)
,

and E stands for the expected value.
We note that the probabilities p′

i can be estimated based on the sample S or approxi-
mated by pi.

Connectivity preserving ranking

While we provide the best solution for the soft classification problem in terms of the
expected AUC ROC, one can be interested in getting the solution for the hard classi-
fication problem as well. Our method is easily transformable into a hard classification
method. Namely, our goal is to define a module M(q) for any FDR level q in a consistent
manner. That is, we don’t allow the situation when a vertex is included in a module with
a small FDR level, but excluded from a module with a larger FDR (formally speaking, we
demand that M (q1) ⊂ M(q2) as soon as q1 < q2). Any such family of modules M(q)

corresponds to a connectivity preserving ranking.
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Definition 1 For a graph G with vertices vi the connectivity preserving ranking is such a
ranking of vi that for any k-prefix v1, v2, . . . , vk the induced graph on this set of vertices is
connected.

We want to choose the best connectivity preserving ranking in terms of the expected
value of the AUC ROC. Since the expected AUC ROC depends only on pi (or their
modified versions p′

i), we can formulate the following problem:

Problem 2 (Optimal Connectivity Preserving Ranking, OCPR) Given a graph G and the
list of its vertices vi, each equipped with the probability pi, find the connectivity preserving
ranking maximizing the expected AUC ROC.

Lemma 2 OCPR problem is NP-hard.

Proof See Section S2 in Appendix.

As Problem 2 is NP-hard, here we provide a heuristic algorithm to solve it. On the k-th
step of the algorithm we have an integer number rk and Gk – a connected subgraph of G
(where r1 = n and G1 = G), and we define a connected subgraph Gk+1 in the following
way. For each vertex v we define a subgraph G(v)

k+1 as the largest connected component of
Gk \ {v} and H(v)

k+1 as Gk \ G(v)
k+1. Then we choose such a vertex v that maximizes average

FDR in H = H(v)
k+1, which is equal to 1

|H|
∑

u∈H P(u �∈ M | W = w). Then we assign the
rank rk to all vertices in the subgraph H. The next rank rk+1 is then defined as rk − |H|.

Each step requires time O
(
n2), so the performance time is O

(
n3). On our real data

example, the running time was 13 seconds on Intel(R) Core(TM) i5-7200U CPU @
2.50GHz (implemented in C++).

Baseline ranking methods

We compared our approach with three other ranking methods on simulated data in
“Experiments on simulated data” section. The first method ranks vertices by the ascend-
ing order of their input weights wv. In the second method vertices are ranked by the
descending order of the number of occurrences in the modules as found by running the
BioNet method with 20 different significance thresholds. The thresholds are selected to
be distributed at equal intervals between maximum and minimum vertex log-likelihoods.
The third method is a semi-heuristic ranking method from [12] developed for finding a
good connectivity preserving ranking. To describe it briefly, it first finds the maximum-
likelihood connected subgraph and recursively ranks a set of vertices inside and outside of
the subgraph. The recursion step also involves finding a maximum-likelihood connected
subgraph but with constraint on consistent connectivity with already defined ranking.

Note that we do not compare our method with the jackknife resampling method [11] on
simulated data as it requires simulating gene expression data, which can induce artificial
biases in the evaluation. Instead, we compare our results with the results of this method
on real data (see “Experimental results on real data” section).

Results and discussion
Experiments on simulated data

First, in order to show that our implementation is correct, we consider a toy example,
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for which the desired probabilities can be directly computed. We generated a random
graph G on 30 vertices and 65 edges. Then we chose the active module M on 9 vertices
randomly and generated the weights from the beta distribution β(0.2, 1) for the vertices
in M and from the uniform distribution for all other vertices. For such a toy example
we can both compute the probabilities P(v ∈ M|W = w) directly from (1) and esti-
mate them as P̂(v ∈ M|W = w) using our MCMC approach. We run 106 iterations of
the Metropolis-Hastings algorithm. The estimations approximated the actual probabili-
ties very accurately with root-mean-square error equal to 2 · 10−3. We also note that the
ranking of vertices based on estimations P̂(v ∈ M|W = w) was the same as the ranking
based on true probabilities. For both actual and estimated probabilities the AUC ROC is
equal to 0.92.

Second, we considered MCMC convergence on a real-world protein-protein interaction
graph. We used a graph with 2,034 vertices and 8,399 edges as constructed in [9] for a
diffuse large B-cell lymphoma dataset. We chose an active module uniformly at random
from connected subgraphs on 200 vertices. Weights of the vertices in the active module
were generated from the beta distribution β(0.25, 1). We considered the behavior of log-
likelihood values for samples during one MCMC run (Fig. 1, green line). This plot shows
that the log-likelihood value stabilizes after about 25,000 iterations. Thus, we can estimate
the MCMC mixing time T as 25,000 for this case. We also checked that 25,000 iterations is
sufficient for estimating vertex probabilities. For different values of T ′ we calculated AUC
values for rankings based on 1,000 independent runs of MCMC for T ′ iterations (Fig. 1,
red line). The results show that indeed 25,000 iterations is enough to achieve high AUC
values, and the saturation phase begins even earlier. Lastly, we compared ranking for one
long MCMC run and for 1,000 independent samples (Fig. 1, blue line). For one long run
we estimated probabilities using all generated MCMC samples except the first 25,000. It
can be seen that AUC values saturate after about 50,000 total MCMC iterations which
justifies the usage of one long MCMC run. Practically, this means that good probability
estimates can be achieved very fast, given that 100,000 MCMC iterations took about one
minute on a laptop.

Finally, we compared our MCMC-based connectivity preserving ranking method with
three other ranking methods (see “Baseline ranking methods” section) on simulated data.

Fig. 1 Behavior of subgraph log-likelihood values and ranking AUCs depending on the number of MCMC
iterations. A real protein-protein interaction graph of 2,034 vertices is used as G, a module of 200 vertices is
chosen uniformly at random. Green line: log-likelihood values for subgraphs Si generated during one MCMC
run. Red line: AUC values for rankings based on 1,000 independent MCMC samples depending on the chosen
mixing time estimate. Blue line: AUC values for rankings based on one MCMC run calculated on all samples Si

for i > 25,000
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Here we considered random instances of sizes 100, 500 and 2,034, 50 instances of each
size. For the cases with 100 and 500 vertices scale-free graphs were randomly generated
for each instance, for 2,034 vertices the previosly constructed graph from the BioNet
example was used. Then we generated active modules in two steps: 1) the number of the
vertices in a module was uniformly selected from 5% to 25% of the original graph order
and 2) a module was chosen uniformly at random from all connected subgraphs with
the selected order. Vertex p-values were generated from the beta-uniform mixture dis-
tribution with values of the parameter a selected from the [ 0.01, 0.5] interval. The AUC
measures for rankings produced by four tested methods are shown on Fig. 2. For all values
of a our approach shows significantly better performance compared to all three baseline
methods.

Fig. 2 Ranking AUC values for simulated instances for graphs on a 100, 500 and 2,034 vertices with different
parameters of beta-uniform mixture. The proposed MCMC method is compared with the following methods:
ranking by input p-values (left), semi-heuristic ranking from [12] (middle) and BioNet-based ranking (right).
One arrow corresponds to one experiment. The head of each arrow points to the AUC score of the MCMC
method, while the tail indicates the AUC score of the corresponding alternative method. Thus, upward
arrows indicate instances in which the MCMC method has a higher AUC score. Dots indicate the instances for
which the results are equal. Color depends on which method has better AUC
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Experimental results on real data

Similarily to the BioNet paper [9] we applied our method to the diffuse large B-
cell lymphoma dataset and the protein-protein interaction graph constructed there.
The p-values in the diffuse large B-cell lymphoma (DLBCL) dataset were the
result of a differential expression t-test between the two tumor subgroups: ger-
minal center B-cell-like (GCB) DLBCL and activated B-cell-like (ABC) DLBCL.
The estimated BUM distribution parameters were λ = 0.48 and a = 0.18.
As described in Section “Heuristic approach to arbitrary module order” section,
we penalized the addition of a new vertex to the module using the confidence
threshold τ = 10−7.

The obtained module is shown on Fig. 3. The module shows the prefix of the ranking
with FDR = 0.25. Additionally, we highlighted submodules of more strict FDR values: 0.15
and 0.05. Note that, by construction, a more strict module is a subgraph of a less strict one.
The genes in the modules are mostly known to be associated with cancer. For example,
genes BCL2, BMF, CASP3, PTK2 and WEE1 are involved in the cell apoptosis pathway.
Some other genes, like LYN or KCNA3, are associated with proliferation and signalling in
hematopoietic cells. Additionally, we compared our result to one obtained by the jackknife
resampling procedure as described in [11] with 100 resamples and the same threshold of
τ = 10−7. Resampling support values are consistent with MCMC-based probabilities (see
Appendix).

Fig. 3 The module for comparison of GCB and ABC types of diffuse large B-cell lymphoma (red vertices are
up-regulated in ABC type, green ones are up-regulated in GCB). The vertices of the blue subgraph belong to
the active module with very high confidence (FDR is 0.05). The vertices of the light blue subgraph belong to
the active module very likely (FDR is 0.15). The number in each vertex means the frequency of the vertex
presence in a sampled subgraph
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Finally, we applied our method to hypoxia induced gene expression changes in neural
stem cells (GSE80070) [16]. There we calculated differential expression between nor-
moxia and hypoxia conditions in cortex primary cells and used differential expression
p-values as an input to our algorithm. The input graph is a graph of protein-protein inter-
action derived from the InWeb network [17]. After removing proteins with more than
250 connections, selecting only the expressed genes, and selecting the largest connected
component, we obtained a graph of 8,807 vertices and 103,933 edges. As a result of our
method we have obtained a ranking, the top vertices subgraph from which is shown on
Fig. 4. The module includes many known hypoxia-related genes, such as genes from the
glycolysis pathway: TPI1, PGM2, LDHA, and, in particular, HIF1A – a known master
regulator of cellular response to hypoxia, appearing at the core of the module.

For this dataset known hypoxia-related gene sets can be used as an approxima-
tion of the ground truth. Formally, we use a union of REACTOME_CELLULAR_RE-
SPONSE_TO_HYPOXIA and HALLMARK_HYPOXIA gene sets from MSigDB [18] as
our reference hypoxia pathway. With an approximation of the ground truth set known
we were able to calculate quality metrics and compare them to other methods. For the
comparison we used ranking by the nominal differential expression p-value, individual
solutions by the BioNet method for different thresholds (the jackknife extension of BioNet
is not applicable in this case, since the comparison is performed between groups of three
biological replicates each), and individual subgraphs found by jActiveModules [8]. Con-
firming the results from [9] we show that jActiveModules solutions are dominated by
BioNet solutions both in terms of true positive rate vs false positive rate and precision vs
recall (Fig. 5). Our method, BioNet and p-value ranking are showing comparable perfor-
mance, with our method showing marginally better ranking performance in terms of AUC

Fig. 4 The module for hypoxia induced gene expression changes in neural stem cells (red vertices are
up-regulated in hypoxia, green ones are down-regulated). The vertices of the blue subgraph belong to the
active module with an FDR of 0.03, the vertices of the light blue subgraph have an FDR of 0.1, the overall
module has FDR of 0.15. The number in each vertex is the frequency of the vertex presence in a sampled
subgraph. The square vertices correspond to genes from the reference hypoxia pathway
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Fig. 5 Performance comparison of the proposed MCMC ranking and other methods on the hypoxia dataset
with hypoxia-related genes from the MSigDB database used as a ground truth. ROC-curve (true positive rate
vs false positive rate, left) and PR-curve (precision vs recall, right) are shown. p-value ranking corresponds to
ranking based on nominal p-values from the differential expression test. Metrics for individual solutions are
shown for BioNet and jActiveModules methods

PR (0.191 vs 0.187 for p-value ranking) and significantly better performance in terms of
AUC ROC (0.731 vs 0.668 for p-value ranking).

Additionally, we systematically tested our method on a collection of human gene
expression datasets based on [19]. We analyzed 59 datasets, where for each dataset a rele-
vant KEGG disease pathway (“target” pathway) is known, so that AUC ROC and AUC PR
metrics can be calculated. As a baseline we used P-value-based and BioNet-based ranking,
as described previously. For the AUC ROC metric, our method was better than BioNet-
based ranking in 52 cases, and better than P-value based rakning in 55 cases. Similarly,
for the AUC PR metric our method was better in 49 cases compared to BioNet and in 53
cases compared to P-value based ranking. The full results are available in Supplementary
Materials, Table S4. However, we note that these results should be taken with caution,
as all the methods performed poorly in terms of the AUC PR metric (with median value
around 0.01). This means that these target pathways are far from perfect ground truth
approximations, which highlights the importance of developing better benchmarking
datasets.

While jackknife resampling support values [11] are consistent with our MCMC-based
probabilities for the DLBCL dataset, they are not available for the hypoxia dataset and
other datasets with small number or replicates. Thus, our approach has two major advan-
tages compared to the jackknife method. First, our method is more flexible: it starts with
p-values and can be used even for experiments with a small number of replicates, where
resampling is not feasible. Second, calculating individual vertex probabilities does not
involve solving NP-hard problems and can be easily done in practice without dependency
on external solver libraries like IBM ILOG CPLEX. Even the NP-hard problem of finding
the AUC ROC optimal connectivity preserving ranking can be solved well on real data
with the heuristic algorithm.

Conclusion
While the active module identification problem was intensively studied in recent years,
most of the approaches solve it as a hard classification problem. Here we study the
question of assigning confidence values for individual vertices and thus consider a soft
classification problem. All the hard classification methods could only provide a blackbox
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which tells us whether a particular gene belongs to the active module or not, and so, by
design, they all have a flaw: they don’t provide any way to distinguish between more and
less confident inclusions. The soft classification approach addresses this issue.

We propose a method to estimate probabilities of each vertex to belong to the active
module based on Markov chain Monte Carlo sampling. Based on these probabilities, for
any given FDR level we can provide a solution to the hard classification problem in a
consistent manner: a module for a more strict FDR level is a subgraph of any module for
a more relaxed FDR level. Overall, the proposed approach is very flexible: it starts with p-
values, and thus can be used in many different contexts, and does not depend on external
libraries for solving NP-hard problems.

Endnotes
1 Since we do not make any additional assumptions about the module, the uniform
distribution on subgraphs of equal order is the best choice of the prior distribution.

Appendix

S1
In this section we prove Lemma 1.

Proof First of all, we introduce a rotated not-normalized ROC curve (Fig. 6). On the i-th
step this curve goes either up

(√
2

2 ,
√

2
2

)
(if vi ∈ M) or down

(
−

√
2

2 ,
√

2
2

)
(if vi �∈ M).

This linear transformation of the ROC curve is a function, so one can find not only the
expected value of the area under it, but its pointwise expected value as well. Let its height
at the point i

√
2

2 be hi. Then the expected value of hi+1 − hi is 2pi−1√
2 . The area under the

(original) ROC curve (up to the factor m(n − m)) is equal to the area under the rotated
ROC curve plus the area of the quadrilateral AECD. The area of AECD is equal to the area

Fig. 6 Rotated ROC curve



Alexeev et al. BMC Bioinformatics 2020, 21(Suppl 6):261 Page 16 of 20

of ABCD (which is equal to m(n − m)) minus the area of ABF (which is equal to m2

2 ) plus
the area of CEF (which is equal to (n−2m)2
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After normalization we obtain

1 − 1
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i=1
ipi − m(m + 1)

2

)

.

S2
In this section we prove Lemma 2.

Proof To prove that OCPR is NP-complete, we will use a modification of the method for
proving that the Steiner tree problem in graphs is NP-complete. The referenced method
is described in [20].

In decisional form, OCPR is equivalent to:
OCPR (decisional). Given a graph G, the list of its vertices vi, each equipped with the

probability pi, and a real number k, determine if there is a connectivity preserving ranking

v1, v2, . . . , vn such that
n∑

i=1
ipi ≤ k.

First, we need to show that OCPR is in NP. Given an hypothetic positive solution
v1, v2, . . . , vn, it is trivial to check in polynomial time that this ranking is connectivity

preserving and
n∑

i=1
ipi ≤ k holds.

The Exact Cover by 3-Sets problem (X3C) is a well-known NP-complete problem
mentioned in [21]:
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Problem X3C. Given a finite set X with |X| = 3q and a collection C of 3-element subsets
of X (C = {C1, . . . , Cn}, Ci ⊆ X, |Ci| = 3 for 1 ≤ i ≤ n), determine if C contains an exact
cover for X, that is, a subcollection C′ ⊆ C such that every element of X occurs in exactly
one member of C′?

Let us propose a reduction from X3C to OCPR giving a set of rules to build an instance
of OCPR starting from a generic instance of X3C. If we prove that this transformation is
executable in polynomial time, we will also prove that OCPR is NP-complete. Given an
instance of X3C, defined by the set X = {

x1, . . . , x3q
}

and a collection of 3-element sets
C = {C1, . . . , Cn}, we have to build an OCPR instance specifying the graph G = (V , E),
the probabilities pi, and the upper bound on the required sum k.

The vertices of G are defined as:

V (G) = {v} ∪ {c1, . . . , cn} ∪ {
x1, . . . , x3q

}
.

That is, we add a new node v, a node for each member of C, and a node for each element
of X.

The edges of G are defined as:

E(G) = {vc1, . . . , vcn} ∪
⎛

⎝
⋃

xj∈Ci

{
cixj

}
⎞

⎠ .

That is, there is an edge from v to each node ci, and an edge cixj if the element xj belongs
to the set Ci of the X3C instance.

Let ε = 1
12q(q+1)

. The probabilities pi are defined as:

pv = 1, pci = 0, pxj = ε,

and the upper bound on the required sum is defined as k = 3
2 .

The reduction from X3C to OCPR is easy to do in polynomial time.

Proposition There exists a connectivity preserving ranking with
n∑

i=1
ipi ≤ k if and only

if there is an exact cover in the corresponding instance of X3C.

Proof. We split the proof into two parts, one for each implication.

• X3C ⇒ OCPR Suppose there is an exact cover C′ for the X3C problem. Clearly, C′

uses exactly q subsets. Without loss of generality suppose they are C1, . . . , Cq (if it is
not the case, we just have to relabel them). Then a valid connectivity preserving
ranking looks as follows:

v,

c1, xt1 , xt2 , xt3 ,

c2, xt4 , xt5 , xt6 ,

. . . ,

cq, xt3q−2 , xt3q−1 , xt3q ,

cq+1, cq+2, . . . , cn,
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where every Ci consists of elements xt3i−2 , xt3i−1 , xt3i . Then:

n∑

i=1
ipi = 1 + (3 + 4+5 + 7 + 8 + 9 + . . . + (4q − 1) + 4q + (4q + 1))ε =

= 1 + 6q(q + 1)ε = 3
2

= k.

• X3C ⇐ OCPR Suppose there is a connectivity preserving ranking with
n∑

i=1
ipi ≤ k.

Since k < 2 and pv = 1, the first vertex in this ranking must be v. Let xt1 , xt2 , . . . , xt3q

be the order the vertices corresponding to the X3C instance elements appear in this
ranking. For every j, vertex v and at least

⌈
j
3

⌉
vertices corresponding to 3-element

sets of the X3C instance must appear before vertex xtj in the ranking, since every
vertex ci appearing in the ranking opens the way for at most three new vertices xj to
appear afterwards. Hence, the earliest position vertex xtj might appear at in the
ranking is j + 1 +

⌈
j
3

⌉
. But if every xtj does appear at its earliest possible position,

then, like in the former case,

n∑

i=1
ipi = 1 + (3 + 4 + 5+7 + 8 + 9 + . . . + (4q − 1) + 4q + (4q + 1))ε =

= 1 + 6q(q + 1)ε = 3
2

= k.

If any vertex xtj appears at a later position, its index in the ranking will increase, the
sum of ipi will increase and exceed k (since the sum of ipi is already equal to k and
pxtj

> 0). Therefore, every vertex xtj must appear at position j + 1 +
⌈

j
3

⌉
, and the

Fig. 7 The support values and the probabilities of each vertex to belong to the active module are highly
correlated
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ranking looks like in the former case, too:

v,

c1, xt1 , xt2 , xt3 ,

c2, xt4 , xt5 , xt6 ,

. . . ,

cq, xt3q−2 , xt3q−1 , xt3q ,

cq+1, cq+2, . . . , cn.

It’s easy to prove that xt3i−2 , xt3i−1 and xt3i belong to Ci using induction on i from 1 to
q. Hence, C′ = {

C1, C2, . . . , Cq
}

is an exact cover for the X3C instance.

This concludes the proof.

S3
In this section we compare our method and the jackknife resampling method described
in [14]. We apply our method and the jackknife resampling method to the diffuse large B-
cell lymphoma dataset and the protein-protein interaction graph constructed in [9]. The
p-values in the DLBCL dataset are the result of a differential expression t-test between the
two tumor subgroups: germinal center B-cell-like (GCB) DLBCL and activated B-cell-like
(ABC) DLBCL. In our method we penalized adding a new vertex to the module using the
confidence threshold τ = 10−7. For the jackknife method the p-values are recalculated for
each of 100 data resamples and then for each collection of the p-values the active module
identification problem is solved with BioNet (with the same threshold τ = 10−7). As the
result of this procedure, for each vertex the support value (the occurrence frequency of
the vertex in the solution) is computed. As one can see (Fig. 7), the results of these two
methods are consistent.
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