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Abstract 

Background: With the development of the technology of single‑cell sequence, 
revealing homogeneity and heterogeneity between cells has become a new area 
of computational systems biology research. However, the clustering of cell types 
becomes more complex with the mutual penetration between different types of 
cells and the instability of gene expression. One way of overcoming this problem is to 
group similar, related single cells together by the means of various clustering analy‑
sis methods. Although some methods such as spectral clustering can do well in the 
identification of cell types, they only consider the similarities between cells and ignore 
the influence of dissimilarities on clustering results. This methodology may limit the 
performance of most of the conventional clustering algorithms for the identification of 
clusters, it needs to develop special methods for high‑dimensional sparse categorical 
data.

Results: Inspired by the phenomenon that same type cells have similar gene expres‑
sion patterns, but different types of cells evoke dissimilar gene expression patterns, we 
improve the existing spectral clustering method for clustering single‑cell data that is 
based on both similarities and dissimilarities between cells. The method first measures 
the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing 
similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the inci‑
dence matrix to perform dimensionality reduction and employs the K‑means algorithm 
in the low dimensional space to achieve clustering. The proposed improved spectral 
clustering method is compared with the conventional spectral clustering method in 
recognizing cell types on several real single‑cell RNA‑seq datasets.

Conclusions: In summary, we show that adding intercellular dissimilarity can effec‑
tively improve accuracy and achieve robustness and that improved spectral clustering 
method outperforms the traditional spectral clustering method in grouping cells.

Keywords: Single‑cell data, Spectral clustering, Similarity/dissimilarity matrix, Cell 
types identification
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Background
In recent years the development of single-cell sequencing technologies opens a new 
point of view on a series of complex biological phenomena at the single-cell level  [1]. 
Rich datasets produced with these technologies can be utilized to investigate differences 
in gene expression between individual cells, characterize cell types, and study heteroge-
neity in cell line [2]. Nevertheless, different types of cells are often infiltrated into each 
other in the traditional biological experiments [3]. An effective way of solving this prob-
lem would be to group individual cells by using the method of clustering so that cells 
within the same cluster establish extremely similar patterns of gene expression.

The process of grouping cells based on single-cell data is an unsupervised clustering 
problem, and a collection of computational methods have been presented to sort out 
this problem such as hierarchical analysis [4], K-means [5], principal component analysis 
(PCA) [6] and spectral clustering [7]. However, potential technical and biological issues 
bring great challenges such as much noise, many missing values, high gene expression 
variability and so on  [8]. In addition, the number of genes assayed in scRNA-seq is 
much larger than the number of cells for classification, which may lead to the distances 
between cells become similar. Accordingly, most of traditional clustering algorithms lose 
their action in partitioning the cells into well-separated groups.

Many people have worked hard to circumvent these problems in recent years, they 
have tried their best to define cell types on the basis of single-cell gene expression pat-
terns. For example, Buettner et al.   [9] presented a single-cell latent variable model to 
identify otherwise undetectable subpopulations of cells. Xu and Su used the conception 
of shared nearest neighbor and proposed a novel algorithm named shared nearest neigh-
bor (SNN)-Cliq that groups cells, which could generate desirable solutions with high 
accuracy and sensitivity [10]. Höfer and Shao adapted Nonnegative Matrix Factorization 
(NMF) [11, 12] to study the problem of the unsupervised learning of cell subtypes from 
single-cell gene expression data [13]. Kiselev et al. [14] put forward single-cell consensus 
clustering (SC3), which combined all the different clustering outcomes into a consen-
sus matrix and determined the final results by complete-linkage hierarchical cluster-
ing of the consensus matrix. Lin et al.  [15] incorporated prior biological knowledge to 
test various neural networks architectures and used these to obtain a reduced dimen-
sion representation of the single-cell expression data for identifying a unique group of 
cells. Gao et al. [16] adopted a likelihood-based strategy using the two-state model of the 
stochastic gene transcription process and developed Clustering And Lineage Inference 
in Single Cell Transcriptional Analysis (CALISTA) for clustering and lineage inference 
analysis. Zheng et al. [17] drew inspiration from the self-expression of the cells with the 
same group, imposed the non-negative and low rank structure on the similarity matrix, 
and then proposed a SinNLRR method for scRNA-seq cell type detection. Zhu et al. [18] 
explored a method by combining structure entropy and k nearest neighbor to identify 
cell subpopulations in scRNA-seq data. Jiang et al.  [19] proposed a new cell similarity 
measure based on cell-pair differentiability correlation and further developed a variance 
analysis based clustering algorithm that can identify cell types accurately. For identify-
ing cell subtypes, most of these approaches do reasonably well for some situations by 
employing feature selection or dimensionality reduction to reduce the noise of original 
data and speed up the calculation processes [20].
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Spectral clustering (SC), as one of the most popular modern clustering algorithms, uses 
the first k eigenvectors of the Laplacian matrix derived from the similarity matrix to carry 
out dimensionality reduction for clustering. SC is very easy to implement and can be real-
ized efficiently by using standard linear algebra methods  [21]. Generally speaking, there 
are three methods for constructing a similarity matrix: ǫ-neighborhood, k-nearest neigh-
bor, or fully connected. All methods are based on using distance measurement by several 
different choices available, including Euclidean distance, Pearson’s correlation, Spearman’s 
correlation, Gaussian similarity function and so on. In general, the performance of cluster-
ing is quite sensitive to the choice of similarity measurement. Lately, there are several com-
putational analysis methods available to improve the clustering effect of SC. For instance, 
Lu et al. [22] proposed a convex Sparse Spectral Clustering (SSC) model which extended 
the traditional spectral clustering method with a sparse regularization and proposed the 
Pairwise Sparse Spectral Clustering (PSSC) method which seeks to improve the clustering 
performance by leveraging the multi-view information. Wang et al. [23] combined multiple 
kernels to fit the structure of the data best and employed a rank constraint in the learned 
cell-to-cell similarity and graph diffusion in order to perform dimension reduction, cluster-
ing, and visualization. Park and Zhao utilized multiple doubly stochastic similarity matrices 
to learn a similarity matrix and imposed a sparse structure on the target matrix followed by 
shrinking pairwise differences of the rows in the target matrix to extend spectral clustering 
algorithm [24].

Although these methods can get promising effect in identifying cell types, they only con-
sider the impact of the positive similarities between cells on the clustering result and not 
consider the impact of negative similarities. That is to say, only the similarities are consid-
ered, but the dissimilarities are overlooked. This methodology may have limitation on the 
effectiveness of those clustering algorithms based on spectral analysis for grouping cells 
that belong to the same cell types. However, the intuitive goal of SC is to divide the data 
points (representing single cells) into several groups such that points in the same group 
are similar and points in different groups are dissimilar to each other [21]. Hence, dissimi-
larities between single cells should not be ignored. In this study, we build a suitable inci-
dence matrix considering similarities as well as dissimilarities between cells meanwhile 
and improve spectral clustering method for partition cells. In the process of our improved 
algorithm, we adopt the dissimilarity matrix to stress the dissimilarities between the natural 
groupings, and a parameter is adjusted to balance the similarity matrix and dissimilarity 
matrix.

To investigate the performance of the improved method, we first apply it in breast 
cancer data to distinguish tumor cells, stromal cells, and immune cells and compare the 
results with the conventional SC. Then we apply it to other four scRNA-seq datasets which 
are characterized as highly confident in the cell labels. Our result shows that taking into 
account similarities as well as dissimilarities increase performance. Moreover, the cluster-
ing results indicate that the improved method gets higher accuracy and strong robustness 
in identifying cell subpopulations.
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Results
We applied the improved spectral clustering (ISC) method to several published single 
cell datasets. The results were compared with conventional spectral clustering by Purity, 
Rand Index (RI), Adjusted Rand Index (ARI) and Normalized Mutual Information 
(NMI).

Breast cancer data

The first biological dataset we tested had RNA-seq data of 549 single cells. After the 
filtering steps as described in the method session, 34 single cells with low sequencing 
quality were discarded. Among the remaining 515 single cells, it has been testified that 
there were 317 epithelial breast cancer cells, 175 tumor-associated immune cells and 23 
non-carcinoma stromal cells, that can be considered gold standards. 11986 genes were 
selected by strict quality control and the gene normalizations were implemented before 
they were capable of clustering the cells into distinct groups.

The parameter ω is provided to trade off the weight between similarity and dissimilar-
ity on the incidence matrix. The value of ω has to be between 0 and 1. As the value of ω 
gets smaller, the more emphasis is put on the similarity inside a cluster, especially, when 
ω equals zero, the improved spectral clustering is the conventional spectral cluster-
ing. The closer that the value of ω is to 1, the more attention is paid to the dissimilarity 
between clusters. When h and q are fixed to 80, the performance of improved spectral 
clustering with the change of parameter ω is shown in Fig. 1. As can be seen from Fig. 1, 
with the parameter ω grows, Purity, RI, ARI and NMI values all maintain steady in the 
beginning, then increase drastically and all reach their maximum values when ω is equal 

Fig. 1 The performance of the improved spectral clustering with the variation of parameter ω when the 
values of h and q are fixed to 80. Purity, RI, ARI and NMI all reach their maximum values when ω is equal to 0.4
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to 0.4, and then these indices fall back quickly, lastly they rise to become stable. It can be 
obtained that the clustering results of improved spectral clustering (when ω is equal to 
0.4) are better than the performance of conventional spectral clustering (when ω is equal 
to 0). This demonstrates that when using spectral clustering algorithm taking both the 
similarity within the cluster and the dissimilarity between clusters into account can’t be 
worse than only considering similarity within the cluster.

In the implementation process of the improved spectral clustering, there are other 
two required parameters, h and q, which represent the width of similar neighborhoods 
and dissimilar neighborhoods, respectively. In this study, the effects of each parameter 
to clustering results are discussed. If the number of cells is ns and the number of cell 
types is nt, we first round ns up to the nearest hundreds and divide it by 100 as step-size 
ss, then we increase the h from ss to 0.5× ns/nt with interval ss for studying the influ-
ence of the parameter h. For example, there are 3 cell types of 515 cells in breast cancer 
dataset, we consider h ∈ {5, 10, 15, 20, . . . , 80, 85} , and when the value of h is given, q is 
set equal to h, or equal to h/2. Thus, the incidence matrix can be obtained by 32 different 
parameter combinations. The best performance of improved spectral clustering with dif-
ferent parameter combinations of h and q is listed in Table 1. When only the similarity is 
considered, ω is set to zero, the improved spectral clustering is the conventional spectral 
clustering. When in consideration of similarity and dissimilarity, ω is set to a non-zero 
value. It can be drawn from Table 1 that improved spectral clustering performs better 
with various combinations of h and q settings in breast cancer dataset. Although ω is 
different when improved spectral clustering is in the best performance according to dif-
ferent combinations of h and q, the results show the better robustness and our improved 
algorithm is also insensitive to the values of parameter h and q.

As the value of h increases, the conventional spectral clustering is getting better 
and better. when h = 85 , q = 0 , the conventional spectral clustering has the best per-
formance, the Purity, RI, ARI and NMI values are 0.7417, 0.5544, 0.1077 and 0.2915, 
respectively. But no matter what the values of h and q are, improved spectral cluster-
ing shows stable performance. When h = 15 , q = 7 and ω = 0.2 , the improved spectral 
clustering gains the best clustering results in terms of Purity and NMI, which are 0.9281 
and 0.5784, respectively. When h = 80 , q = 80 and ω = 0.4 , the improved spectral 
clustering performs best in terms of RI and ARI, which are 0.7633 and 0.5252, respec-
tively. Although, the clustering results of improved spectral clustering are pretty good, 
the ARI value and NMI value are not so satisfactory, they are still less than 0.6. Maybe 
it is because, among three types of cells isolated from individual tumor tissues, tumor 
cells have distinct chromosomal expression patterns, recapitulating tumor-specific copy 
number variations while immune cells and stromal cells have no apparent copy number 
variation patterns [3]. The separation of the latter two types of cells become a little dif-
ficult by the clustering method based on gene expression pattern.

Moreover, to determine whether the improved spectral clustering is significantly bet-
ter than the conventional spectral clustering, we use the non-parametric one-tailed Wil-
coxon rank sum test. We calculate the P-value of the test, as shown in Fig. 2, and take 
it as the significant levels of difference between the improved spectral clustering and 
the conventional spectral clustering. To test for a difference in the evaluation metrics of 
improved spectral clustering and conventional spectral clustering, we use the following 
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Table 1 The best performance of improved spectral clustering with different parameter 
combinations of h and q 

h q ω Purity RI ARI NMI

5 0 0 0.6155 0.4668 − 0.0627 0.1506

5 2 0.5 0.8446 0.6938 0.3861 0.3934

5 5 0.1 0.9223 0.7545 0.5076 0.5556

10 0 0 0.6155 0.467 − 0.0626 0.1593

10 5 0.4 0.8582 0.6987 0.3958 0.3993

10 10 0.4 0.8718 0.7098 0.4181 0.4203

15 0 0 0.6155 0.4669 − 0.062 0.1582

15 7 0.2 0.9281 0.7588 0.5161 0.5784

15 15 0.2 0.9262 0.7449 0.4883 0.5565

20 0 0 0.6155 0.4682 − 0.0607 0.1686

20 10 0.7 0.866 0.7023 0.4031 0.3968

20 20 0.9 0.8718 0.7091 0.4168 0.4045

25 0 0 0.6155 0.4873 − 0.0239 0.2107

25 12 0.1 0.864 0.678 0.3545 0.422

25 25 0.3 0.9281 0.7463 0.4912 0.5621

30 0 0 0.6252 0.4925 − 0.0139 0.202

30 15 0.3 0.9262 0.7457 0.4898 0.5656

30 30 0.3 0.9242 0.7587 0.516 0.5574

35 0 0 0.6291 0.4941 − 0.0109 0.2049

35 17 1 0.866 0.706 0.4105 0.3899

35 35 0.3 0.9262 0.7623 0.5232 0.566

40 0 0 0.631 0.4926 − 0.0137 0.212

40 20 0.4 0.9242 0.7442 0.487 0.5505

40 40 0.4 0.92233 0.7437 0.4859 0.5508

45 0 0 0.631 0.4926 − 0.0137 0.212

45 22 0.4 0.9184 0.7345 0.4674 0.5417

45 45 0.4 0.9203 0.7495 0.4975 0.5513

50 0 0 0.6951 0.523 0.0455 0.256

50 25 0.1 0.9242 0.7526 0.5037 0.5498

50 50 1 0.8699 0.6973 0.3928 0.3924

55 0 0 0.7029 0.5275 0.0544 0.2627

55 27 0.9 0.8737 0.7185 0.4355 0.4164

55 55 0.1 0.9203 0.7479 0.4944 0.5393

60 0 0 0.7067 0.5299 0.0592 0.2662

60 30 0.4 0.8834 0.7169 0.432 0.4735

60 60 1 0.8796 0.7015 0.4014 0.4082

65 0 0 0.7165 0.5363 0.0718 0.2751

65 32 0.9 0.8757 0.7153 0.4292 0.4188

65 65 1 0.8776 0.6998 0.398 0.4044

70 0 0 0.7242 0.5415 0.0822 0.2823

70 35 0.4 0.9126 0.7498 0.4982 0.5474

70 70 1 0.8776 0.6993 0.3969 0.4041

75 0 0 0.73 0.5457 0.0906 0.2879

75 37 0.6 0.8854 0.7103 0.419 0.4286

75 75 0.4 0.9203 0.7607 0.5199 0.5715

80 0 0 0.7339 0.5488 0.0967 0.2849

80 40 0.9 0.8815 0.713 0.4245 0.4229

80 80 0.4 0.9203 0.7633 0.5252 0.5735
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procedures. We first calculate the evaluation metrics of improved spectral clustering and 
conventional spectral clustering with various ω value for given values of h and q and 
record the best performance of improved spectral clustering and conventional spectral 
clustering. This process was repeated when h and q are changed at the same time. The 
significance level of the tests is then calculated by the proportion of the evaluation met-
rics of the conventional spectral clustering that exceeds the evaluation metrics of the 
improved spectral clustering. Calculation and comparisons show that the evaluation 
metrics of improved spectral clustering is significantly greater than those of conven-
tional spectral clustering and there is remarkable differences between them.

Other real data

we then compare our proposed improved spectral clustering with the conventional 
spectral clustering on other four single-cell RNA sequence datasets featuring high-
confidence cell labels. These datasets are derived from different single-cell RNA-seq 
techniques and are collected from human or mouse. Some cells involve in different bio-
logical process, some are original from different tissues, and some are generated from 
different lines  [25–28]. All the original expressions have been pre-processed in previ-
ous study [23, 24]. Dendritic cells (DCs) dataset consists of 251 cells at three different 
progenitor stages and 11834 genes which pass the gene filter step. A mixture of diverse 
single cells (MCs) dataset consists of 249 single cells were captured from a mixture of 11 
cell populations. After initial filtering steps similar to DCs dataset above, 14805 genes 

Table 1 (continued)

h q ω Purity RI ARI NMI

85 0 0 0.7417 0.5544 0.1076 0.2925

85 42 0.6 0.8893 0.7065 0.4113 0.4311

85 85 0.4 0.9184 0.7603 0.5192 0.5552

Fig. 2 Comparison of the best performance between spectral clustering and improved spectral clustering 
using the same values for parameters h and q. SC denotes conventional spectral clustering and ISC denotes 
improved spectral clustering. P‑values are from a one‑tailed Wilcoxon rank sum test. Evaluation metrics in the 
ISC exhibit significantly higher values than those in the SC
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remained for further analysis. Embryonic stem cells (ESCs) dataset consists of 704 cells 
grown in three different conditions. There are 10685 genes which passed the quality con-
trol. Neuronal cells (NCs) dataset consists of 622 individual cells, after quality control 
analysis on each individual cell, 17772 genes were selected for downstream analysis. we 
use the true cluster number to obtain the clustering results.

According the way to determine the value of h in the breast cancer data. The value of h 
is from {3, 6, 9, 12, . . . , 39, 42} in DCs dataset, is from {2, 4, 6, 8, . . . , 10, 12} in MCs dataset, 
is from {7, 14, 21, 28, . . . , 112, 119} in ESCs dataset and is from {6, 12, 18, 24, . . . , 72, 78} in 
NCs. when h is given a fixed value, q is set equal to h, or equal to h/2. Then improved 
spectral clustering method with different combinations of parameters are applied to 
clustering cells in these datasets. Table 2 shows the best performance of traditional spec-
tral clustering ( ω = 0 ) and improved spectral clustering ( ω  = 0 ). From the four index 
values given in the Table 2, it can be seen that the improved spectral clustering is a notch 
above the conventional spectral clustering. By improved spectral clustering, Purity, RI, 
ARI and NMI are all increased in some degree, the biggest rise with a 23.3% increase. 
Furthermore, we can see that in MCs dataset, although the clustering results of conven-
tional spectral clustering have been proved to be satisfactory, improved spectral cluster-
ing can get better results. Although ARI and NMI are increasing in DCs dataset, they 
are still low, perhaps this is because although progenitor populations retained expression 
of surface markers at the protein level associated with the respective specific progeni-
tor stages, individual cells had already shifted transcriptionally toward the next step in 
differentiation, there existed a significant overlap in gene-expression profiles among the 
development of dendritic cell subsets [25].

Discussion
Large volume of single cell data have emerged in response to the progress of next-gener-
ation sequencing technology, how to take full advantage of these rich data is very impor-
tant. One of the most powerful applications of single-cell data is to define cell types by 
clustering analyse on the basis of gene expression patterns. The clustering qualities have 
an effect on the outcome of downstream analysis. Up to now, many clustering algorithms 
for identifying subtypes of cells have been proposed.

Owing to the high dimensionality of the single-cell data, the gaps among the dis-
tances between cells narrow. Thus, it is unreliable to define cell types on the basis of 

Table 2 The best performance of spectral clustering and improved spectral clustering on other real 
data

Datasets h q ω Purity RI ARI NMI

DCs 39 0 0 0.6653 0.6611 0.3151 0.3706

36 36 0.2 0.6813 0.7108 0.38 0.4451

MCs 12 0 0 0.9598 0.9852 0.9208 0.955

12 12 0.1 0.9638 0.9889 0.9413 0.9604

ESCs 63 0 0 0.8807 0.8741 0.7207 0.7701

14 14 0.3 0.9318 0.9212 0.8275 0.7942

NCs 72 0 0 0.7894 0.8233 0.5495 0.6421

30 30 0.3 0.8328 0.8719 0.6731 0.6792
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these high-dimensional data directly. Effective dimensionality reduction could make the 
measure of the distance between cells more accurate in cells clustering. For example, 
spectral clustering projects data into a lower-dimensional space based on the eigen-
vectors corresponding to the k smallest eigenvalues of the Laplace matrix, and Laplace 
matrix is deduced according to the incidence matrix. However, the general method for 
constructing the incidence matrix only attaches importance to similarities between cells 
and overlooks the dissimilarities between cells. The dissimilarities between cells contain 
the discrepancy in expression pattern between different cell types and have very influ-
ential consequences in identifying clusters. We expect that imposing the dissimilarities 
between cells can help to achieve better clustering results.

In this study, the conventional spectral clustering method has been improved for clus-
tering single cells by the combination of similarities and dissimilarities between cells. 
Furthermore, we apply this improved method to five published single-cell datasets 
including cells from different tissues, stages, cell lines and so on. The results show that it 
performs better than conventional spectral clustering based on several metrics. Through 
the integration of similarities and dissimilarities, the classification accuracy is improved. 
The performance of the proposed method with various parameter combinations also 
shows the better robustness of the improved method.

Although improved spectral clustering makes some progress in identifying cell types, 
the ability to detect cell types still could be developed the most. Several problems are 
really challenges, which include what measurements are used to reflect the distance 
between cells, how to reasonably measure the similarities and dissimilarities, how many 
similar cells and dissimilar cells are to choose for constructing similarity matrix and dis-
similarity matrix and how to balance similarity matrix and dissimilarity matrix to con-
struct incidence matrix. The answers to these questions depend on specific data and 
solving these problems will require data-driven approaches. In addition, the prediction 
of the number of clusters is a challenge. In the future, it would be interesting to develop 
a more effective clustering method by integrating improved spectral clustering and other 
computational analysis methods.

Conclusion
In this study, we have improved conventional spectral clustering algorithm for separat-
ing single cells into distinct groups by incorporating dissimilarities between cells with 
similarities. We have shown that its performance is superior to conventional spectral 
clustering method on several published single cell datasets.

Methods
Data sources

In this study, we used five published single-cell datasets. At first, we put emphasis on the 
analysis of primary breast cancer cells (BCCs). The original single-cell RNA sequencing 
was downloaded from the NCBI GEO database under the accession code GSE75688 [3]. 
Eleven primary tumor specimens and two metastatic lymph nodes were collected and 
processed for single-cell RNA sequencing. In total, 549 single-cell cDNAs were sub-
jected to RNA sequencing.
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Then, we directly applied the improved algorithm to other processed single-cell gene 
expression datasets from previously published papers [23, 24]. DCs arise from a cascade 
of progenitors that gradually differentiate in the bone marrow [25]. Schlitzer et al. used 
mRNA sequencings of 251 dendritic cell progenitors to investigate the transcriptomic 
relationships. Those dendritic cell progenitors had been in one of the following three 
cellular states: macrophage dendritic cell progenitor, common dendritic cell progenitor, 
and pre-dendritic cell. Pollen et al.  [26] made an unbiased analysis and comparison of 
249 MCs with greater than 500,000 reads from 11 populations by microfluidic single-cell 
capture and low-coverage sequencing of many cells. Kolodziejczyk et al.  [27] collected 
704 single-cell transcriptomes of ESCs cultured in three different conditions: serum, 
2i, and the alternative ground state a2i and studied on how different culture conditions 
influence pluripotent states of ESCs. Usoskin et al. [28] used comprehensive transcrip-
tome analysis of 622 single mouse NCs for identification of four neuronal groups, which 
reveals the diversity and complexity of primary sensory system underlying somatic sen-
sation. The basic information for the above-mentioned single-cell datasets is listed in 
Table 3.

Data preprocessing

To eliminate noises or missing data that are contained in the dataset, a data preprocess-
ing procedure is carried out first. As shown in Fig. 3, it consists of the following steps.

Table 3 Basic information for five single‑cell datasets

Datasets Number of cells Number of cell types Reference

BCCs 549 3  [3]

DCs 251 3  [25]

MCs 249 11  [26]

ESCs 704 3  [27]

NCs 622 4  [28]

Fig. 3 Single cell data preprocessing steps. Overview of the workflow for the data preprocessing. First, 
unreliable cells with low quality were removed. Then genes with low expression values were filtered out. 
Finally, the cleaned data set was normalized for downstream analysis
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Step 1: removing cells with low sequencing quality

RNA-SeQC tool is used to remove cells with low-quality sequencing values [29], if the 
number of total reads is less than 3,000,00 or the mapping rate is less than 50% or the 
number of detected genes is less than 2000 or the portion of intergenic region is more 
than 30% , the cells are identified as outlier cells, which are excluded for further analysis.

Step 2: filtering out genes with low expression values

First, genes with a transcript per million (TPM) value less than 1 are considered unre-
liable and replaced with 0; second, TPM values are log2-transformed after adding a 
value of 1 (log2(TMP+1)) in order to reduce the effect of highly expressed genes; and 
third, genes expressed in < 10% of the bulk groups are discarded.

Step 3: normalizing gene expression data

For removing systematic variation in an experiment which affects the measured gene 
expression levels and examining relative expression levels, the gene expression data 
are first centered by subtracting the average expression of each gene from all cells, 
and then are divided by the variance of each gene from all cells.

Improvement of spectral clustering

Let P = {p1, p2, . . . , pn} denote a given set of data points, where each data point pi is a 
r dimensional column vector, S = (sij) ∈ Rn×n is a symmetric similarity matrix, where 
sij ≥ 0 is a measure of the similarity between data points pi and pj , a greater value of 
sij indicates data points pi and pj are more similar. In conventional spectral cluster-
ing, we are trying our best to construct a k dimensional column feature vector xi for 
each data point pi , where k is far less than r. Intuitively, if two data points are more 
similar, their feature vectors should be closer to each other in the feature space. Then 
each data point can be represented by a k dimensional feature vector. Therefore, the 
problem of finding k dimensional feature vectors can be converted into the following 
optimization problem:

where Ik is a unit matrix. Let D be a diagonal matrix that has its lth diagonal entry equals 
to the sum of all elements in the lth row of the similarity matrix, then one can calculate 
the Laplacian matrix as L = D − S . Define a feature n× k matrix M = [m1,m2, . . . ,mk ] , 
where mj is the unit eigenvector corresponding to the jth minimum eigenvalue of 
the Laplacian matrix L. Let xi be the ith row of matrix M. Then it can be proved that 
xi(i = 1, 2, . . . , n) is the solution of the above optimization problem (1). With these k 
dimensional features of all data points, any feature-based clustering method can be used 
to perform cluster analysis.

(1)

minimize
xi∈Rk ,i=1,2,...,n

1

2

n
∑

i,j=1

sij||xi − xj||
2

subject to

n
∑

i=1

xix
T
i = Ik
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We improve the conventional spectral clustering by taking much account of the dis-
similarities between data points. A symmetric dissimilarity matrix DS = (dsij) ∈ Rn×n 
is used to define the dissimilarities between data points, where dsij ≤ 0 , the smaller 
this value, the more dissimilar between data points pi and pj . We are also trying to 
get a k dimensional column feature vector yi for each data point pi , where k is far 
less than r. Analogously, if two data points are more dissimilar, their feature vectors 
should be more distant to each other in the feature space. So the optimization prob-
lem can be formulated as follows:

Considering similar and dissimilar representation problems meanwhile, we are attempt-
ing to find a k dimensional column feature vector zi for each data point pi , where k is 
far less than r. If two data points are more similar, their feature vectors should be closer 
to each other while if two data points are more dissimilar, their feature vectors should 
be more distant to each other in the feature space. Therefore, by some simple algebraic 
manipulation we can join optimization problem (1) and (2) to obtain the following 
equivalent expression:

where 0 ≤ ω ≤ 1 is a parameter that is used to balance the similarity and dissimilarity 
described by feature vectors. Obviously, when ω = 0 , problem (3) is transformed into 
optimization problem (1), while when ω = 1 , problem (3) is transformed into optimiza-
tion problem (2). W = (1− ω)S + ωDS = (wij) ∈ Rn×n is a weighted symmetric inci-
dence matrix that defines the relationship between data points, if wij > 0 this indicates 
that the data points pi and pj are similar, if wij < 0 this shows that the data points pi and 
pj are distant, if ωij = 0 this means that data points pi and pj are irrelevant. Let 
D′ = diag(d′11, d

′
11, . . . , d

′
nn) is a diagonal matrix with d′

ii =
n
∑

j=1

wij , a generalized Lapla-

cian matrix L′ is defined as L′ = D′ −W  . Let zi be the ith column of matrix Z. Then it 
can be proved that the problem (3) could be transformed into the following problem:

where Z = [z1, z2, . . . , zn] ∈ Rk×n and tr denotes the matrix trace. This is the standard 
form of a trace minimization problem. It can be proved that Z consists of the eigen-
vectors corresponding to the first k minimum eigenvalues of L′ is the solution to the 

(2)

minimize
yi∈Rk ,i=1,2,...,n

1

2

n
∑

i,j=1

dsij||yi − yj||
2

subject to

n
∑

i=1

yiy
T
i = Ik

(3)

minimize
zi∈Rk ,i=1,2,...,n

1

2

n
∑

i,j=1

[(1− ω) · sij + ω · dsij)]||zi − zj||
2

subject to

n
∑

i=1

ziz
T
i = Ik

(4)
minimize

zi∈Rk ,i=1,2,...,n
tr(ZL′ZT )

subject to ZZT = Ik



Page 13 of 17Li et al. BMC Bioinformatics          (2021) 22:255  

problem (4). Then we can use any feature-based clustering algorithm on the first k eigen-
vectors to cluster data points.

Identifying cell types using improved spectral clustering

After preprocessing the single-cell dataset, constructing an appropriate incidence matrix 
is key to cluster single cells by improved spectral clustering. The detailed steps, depicted 
in Fig. 4, are given as follows.

Quantifying pairwise similarities and dissimilarities

Spearman’s rank correlation coefficient (denoted by the Greek letter ρ ) is a non-para-
metric measure of correlation that assesses the relationship between two variables with-
out making any assumptions, we use it to measure the similarity/dissimilarity between 
cells. The ρ of two cells (i and j) is calculated as:

where m is the number of genes, dt represents the difference between the two numbers 
in tth pair of gene ranks. It can vary between -1 and 1. The similarity s(i, j) and dissimi-
larity ds(i, j) between cell i and cell j can then be calculated as:

If the ρ between cell i and cell j is close to 1, which represents the gene expression levels 
of cell i and cell j tend to be relatively high or low simultaneously, in other words, cell i 
and cell j have semblable gene expression patterns, the higher the ρ is, the greater the 
similarity is. Likewise, if the ρ between cell i and cell j is close to -1, which means the 
gene expression levels of cell i and cell j appear to have an opposite trend, that is to say, 
there is a large dissimilarity between the gene expression patterns of cell i and cell j, the 

(5)ρ(i, j) = 1−









6
m
�

t=1

d2t

m(m2 − 1)









(6)
s(i, j) =

{

ρ(i, j) if ρ(i, j) > 0

0 otherwise
,

ds(i, j) =

{

ρ(i, j) if ρ(i, j) < 0

0 otherwise

Fig. 4 The framework of improved spectral clustering for grouping cells. Cell‑cell similarity/dissimilarity 
networks were construct and then were integrated to build an incidence matrix. Selection features were used 
directly by K‑means algorithms to assign cells to clusters
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lower the ρ is, the stronger the dissimilarity is. Besides Spearman’s rank correlation coef-
ficient, Pearson’s correlation coefficient can be used to calculate the similarity/dissimi-
larity among cells.

Constructing incidence matrix based on similarities and dissimilarities

For each cell i, the similarities between cell i and every other cell are sorted in 
descending order, and the dissimilarities between cell i and every other cell are sorted 
in ascending fashion. The similarity matrix S = (sij) ∈ Rn×n is designed as follows: for 
cell i and cell j, if cell i is among the top h similar cells of cell j, or cell j is among the 
top h similar cells of cell i, then sij = sji = s(i, j) = s(j, i) ; otherwise, sij = sji = 0 . Like-
wise, the dissimilarity matrix DS = (dsij) ∈ Rn×n is built as follows: for cell i and cell 
j, dsij = dsji = ds(i, j) = ds(j, i) if ds(i,  j) is in the top q of the sorted dissimilarity list 
of cell i or ds(j,  i) is in the top q of the sorted dissimilarity list of cell j ; otherwise, 
dsij = dsji = 0.

The incidence matrix W is constructed by incorporating similarity matrix S with 
dissimilarity matrix DS using the following equation:

where ω is selected from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} , ω is used to 
trade off the proportion of similarity and dissimilarity in the incidence matrix.

Extracting feature vectors for K‑means clustering

After constructing a incidence matrix W by the way described above, we can get a 
generalized Laplacian matrix L′ = D′ −W  , where D′ is a diagonal matrix with the 
row-sums of W on the diagonal and zeros in the off-diagonal elements. If the num-
ber of clusters is k, the first k eigenvectors u1,u1, . . . ,uk of the generalized Laplacian 
matrix L′ are calculated. Let u1,u1, . . . ,uk be the columns of matrix U ∈ Rn×k , the ith 
row of U would be the feature vector corresponding to cell i. Then k-means algorithm 
is performed to cluster cells with these feature vectors by using MATLAB’s kmeans 
function.

Evaluation metrics

In this study, four indices are employed to evaluate the performance of improved spectral 
clustering and conventional spectral clustering algorithm, including Purity, RI, ARI and 
NMI. Let the CU-partition U = {U1,U2, . . . ,UCU } be our calculation partition of n data 
points p1 , p2 , · · · , pn , the CV-partition V = {V1,V2, . . . ,VCV } be the genuine partition. 
We can define the contingency table T = (tij) ∈ RCU×CV  , where entry tij is the number of 
data points that are both in cluster Ui and Vj . Each obtained cluster Ui(i = 1, 2, . . . ,CU ) 
is assigned to the cluster Vj(j = 1, 2, . . . ,CV ) which has the largest number in the ith row 
of contingency table, and then the accuracy of this assignment is computed by the sum 
of the entry of the best assigned in the contingency table by the total number of data 
points (N):

(7)W = (1− ω)S + ωDS
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where ti. denotes the elements in the ith row of contingency table, max() is the largest 
element.

RI measures the fraction of pairs of data points that are classified in the same way 
in both clusterings with the number of pairs of all data points. Thus, it is defined by:

where n00 denotes the size of pairs that are in different clusters under U and V, n11 
denotes the size of pairs that are in the same cluster under U and V.

ARI is the normalized difference of the RI and its expected value under the assump-
tion that a generalized hypergeometric distribution as null hypothesis  [30]. Mathe-
matically, it is defined as follows:

where ti. =
∑CV

j=1 tij is the sum of row i in the contingency table T, t.j =
∑CU

i=1 tij is the 
sum of column j in the contingency table T. The ARI ranges from − 1 to 1. the larger 
ARI, the better the quality of clustering.

NMI provides a sound normalized indication to the comparison of clusterings, 
which has its origin in information theory and is based on the notion of entropy [31], 
it is defined as:

where the numerator represents the mutual information between V and U, and the 
denominator denotes the entropy of the clusterings V and U.

We use these external indices to evaluate the agreement between the results of 
improved spectral clustering and the true clusters, and the agreement between the 
results of conventional spectral clustering and the true clusters, respectively. The 
more the agreement, the better the performance of the clustering method.
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