
Genome‑wide detection of short tandem 
repeat expansions by long‑read sequencing
Qian Liu1†, Yao Tong1† and Kai Wang1,2* 

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2020 Virtual. 9-10 
August 2020

Abstract 

Background:  Short tandem repeat (STR), or “microsatellite”, is a tract of DNA in which 
a specific motif (typically < 10 base pairs) is repeated multiple times. STRs are abun-
dant throughout the human genome, and specific repeat expansions may be associ-
ated with human diseases. Long-read sequencing coupled with bioinformatics tools 
enables the estimation of repeat counts for STRs. However, with the exception of a few 
well-known disease-relevant STRs, normal ranges of repeat counts for most STRs in 
human populations are not well known, preventing the prioritization of STRs that may 
be associated with human diseases.

Results:  In this study, we extend a computational tool RepeatHMM to infer normal 
ranges of 432,604 STRs using 21 long-read sequencing datasets on human genomes, 
and build a genomic-scale database called RepeatHMM-DB with normal repeat 
ranges for these STRs. Evaluation on 13 well-known repeats show that the inferred 
repeat ranges provide good estimation to repeat ranges reported in literature from 
population-scale studies. This database, together with a repeat expansion estimation 
tool such as RepeatHMM, enables genomic-scale scanning of repeat regions in newly 
sequenced genomes to identify disease-relevant repeat expansions. As a case study 
of using RepeatHMM-DB, we evaluate the CAG repeats of ATXN3 for 20 patients with 
spinocerebellar ataxia type 3 (SCA3) and 5 unaffected individuals, and correctly classify 
each individual.

Conclusions:  In summary, RepeatHMM-DB can facilitate prioritization and identifi-
cation of disease-relevant STRs from whole-genome long-read sequencing data on 
patients with undiagnosed diseases. RepeatHMM-DB is incorporated into RepeatHMM 
and is available at https​://githu​b.com/WGLab​/Repea​tHMM.
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Repeat database
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Background
Short tandem repeat (STR) represents a consecutive repetition of a repeat motif with 
several (typically < 10) nucleotides. One example of STRs is a trinucleotide repeat, CTG​
CTG​CTG​CTG​CTG​CTG​CTG with three nucleotides in the repeat unit (i.e., CTG). 
Many STRs have variable repeat counts between different individuals. For example, 
CAG in the ATXN3 gene may be repeated 14 times in one allele in a human genome, 
but 20 times in the other allele in the same human genome. Excessive repetition of spe-
cific STRs (i.e., repeat expansion) beyond normal ranges of repeat counts in control 
populations may lead to human diseases, such as Huntington’s diseases [1], spinocer-
ebellar ataxia [2], fragile X syndrome [3], Friedreich’s ataxia [4], and others [5–7]. With 
the development and utilization of long-read sequencing techniques, more human dis-
eases which are caused by repeat expansions have also been found in several recently 
published studies [8–11]. However, the normal ranges of different STRs may vary sig-
nificantly. For example, repeats of CAG in CACNA1A in unaffected individuals typically 
range from 4 to 18 with a repeat count more than 21 considered as pathogenic, while 
repeats of CGG in FMR1 in unaffected individuals typically range from 6 to 53. Thus, 
the knowledge of the normal repeat ranges of STRs is critically important to determine 
pathogenicity of observed repeats in known STRs or to discover novel disease-relevant 
repeat expansions, if repeat counts can be accurately quantified from long-read whole-
genome sequencing data on a patient with undiagnosed diseases.

In existing studies, normal repeat range for a single STR is commonly inferred by 
experimental approaches on tens or more healthy individuals, and these experimental 
methods include capillary electrophoresis [12], gel electrophoresis [13], Southern blot 
analysis [14], electrochemical detection [15], melting curve analysis [16], mass spec-
trometry [17], and small-molecule biosensors [18]. However, it is too expensive and 
time/resource consuming to use these methods for determining normal repeat ranges 
for thousands of STRs at a genomic scale. As a result, we have knowledge on the nor-
mal ranges of repeat counts for only tens of well-studied repeats that are already known 
to cause diseases, which may delay the discovery of novel disease-causal repeats. Sev-
eral recent studies have used short-read sequencing to infer repeat counts for STRs, 
such as lobSTR [19], RepeatSeq [20], STRviper [21], TREDPARSE [22], HipSTR [23], 
ExpansionHunter [24], and STRetch [25]; however, the intrinsic limitations of short-
read sequencing prevent comprehensive characterization of all STRs or the discovery 
of novel disease-relevant repeat expansions that are longer than read length. Long-read 
sequencing techniques, such as PacBio sequencing and Oxford Nanopore sequencing, 
can be used to address these limitations; however, even when repeat counts for all STRs 
are determined, there is a general lack of reference databases to determine or prioritize 
which STRs have abnormally high number of repeats.

To overcome these limitations, in the current study, we design a framework to enable 
the discovery of abnormal repeat expansion of STRs from the increasing amounts of 
whole-genome long-read sequencing data. Long-read sequencing technologies produce 
reads longer than 10  kb which can span long STRs [26], and provide better coverage 
for longer repeat regions (> 300  bp). Thus, in this framework, we first extend Repeat-
HMM to enable the determination of repeat counts for genome-scale STRs, and name 
this module RepeatHMM-scan. Then, we use RepeatHMM-scan to detect repeat counts 
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for all available STRs in human reference genome with 21 available long-read sequenc-
ing datasets, and summarize the results to build a reference database (RepeatHMM-DB) 
of normal repeat ranges of all annotated STRs in the human genome (with GRCh38 
coordinates). After that, given a test long-read sequencing data, we use RepeatHMM 
or RepeatHMM-scan to determine repeat counts for an STR or a group of STRs, and 
compare the repeat counts against the corresponding STRs in RepeatHMM-DB to infer 
whether a repeat has excessive expansions outside normal repeat ranges. We stress here 
that in addition to RepeatHMM-scan, the RepeatHMM-DB can be also used in conjunc-
tion with other computational tools that infer repeat counts from long-read sequencing 
data. To demonstrate the usefulness of RepeatHMM-DB, (1) we compare the estimated 
repeat ranges against normal repeat ranges determined in existing works for 13 well-
known repeats, and find that the inferred repeat ranges provide good estimation of 
repeat count ranges based on prior knowledge; (2) we compare the repeat counts of 5 
unaffected individuals and 20 patients with Spinocerebellar ataxia type 3 (SCA3) against 
RepeatHMM-DB, and demonstrate the usefulness of the database in identifying patho-
genic repeat expansions; and (3) we evaluate inferred repeat counts by RepeatHMM-
scan from a test genome against RepeatHMM-DB, and find that our tool provides an 
efficient way for narrowing down candidate repeats from whole-genome repeats for de 
novo detection of pathogenic repeats. Thus, the RepeatHMM-DB database and the new 
RepeatHMM-scan module are expected to substantially facilitate analysis of STRs at a 
whole-genome scale. The new RepeatHMM-DB database and the RepeatHMM-scan 
module are incorporated into the latest version of RepeatHMM and are publicly acces-
sible at https​://githu​b.com/WGLab​/Repea​tHMM.

Methods
The whole framework (Fig.  1a) proposed in this study has two main components: 
RepeatHMM-scan and RepeatHMM-DB. RepeatHMM-scan is extended from Repeat-
HMM [27]. RepeatHMM is an algorithm to estimate repeat counts from long-read 

Fig. 1  Overview of the computational framework. a The procedure for constructing RepeatHMM-DB. b 
The workflow of RepeatHMM-scan, which runs RepeatHMM on each STR set. Boxes in dots: inputs; Boxes in 
dashes: outputs; Lines and boxes in green: testing process; STR: short tandem repeats

https://github.com/WGLab/RepeatHMM
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sequencing data after taking high base calling error rate into consideration: it takes a set 
of reads (from which RepeatHMM generates a BAM file) or a BAM file as input, uses a 
split-and-align strategy to improve alignments, performs error correction, and leverages 
a hidden Markov model and Gaussian mixture model for peaking calling to infer repeat 
counts. Evaluation on both real SCA3 and SCA10 data sets [27] generated by the PacBio 
sequencer and various simulation data suggests the superior performance of Repeat-
HMM to infer repeat counts. Here, we extend RepeatHMM to achieve additional ben-
efits from more and more available whole-genome long-read sequencing datasets.

RepeatHMM‑scan: scan whole‑genome long‑read sequencing data

It can be time-consuming to scan a long-read whole-genome sequencing data to deter-
mine repeat counts of tens of thousands of STRs. To speed up this step, we design a par-
allel scanning process called RepeatHMM-scan, which quickly determines repeat counts 
for all available STRs in a sequencing dataset. The framework of RepeatHMM-scan is 
shown in Fig. 1b.

The inputs of RepeatHMM-scan are a BAM file of a long-read whole-genome 
sequencing dataset and a set of STRs whose locus and repeat units are known. The 
information of those STRs is downloaded from UCSC genome browser [28] where 
tandem repeat finder [29] was used to detect all STRs in a reference genome. In this 
study, 432,604 STRs are downloaded from UCSC genome browser for the GRCh38/
hg38 human reference genome. These STRs have different lengths of STR motifs. 
The distribution of these repeat motifs can be found in Fig. 2a where the length of 
the majority of repeat motifs ranges from 1 to 12, and dinucleotide and tetranucleo-
tide repeats have more repeat instances.

Then, we use a divide-and-conquer strategy to group STRs into smaller sets, and 
run RepeatHMM on each set. We use a cluster system (i.e., Sun Grid Engine) to run 
multiple RepeatHMM jobs at the same time to speed up the process. But for some 
sets, the detection of an STR might take much more time to be done and might not 
be useful. We thus record running times for all finished RepeatHMM jobs, and kill 
those running jobs if they had been running for too long time (over a user-specified 
threshold). Then, STRs in the killed jobs are ignored or grouped into a much smaller 
set (based on users’ decision when scanning a new genome) on which a new Repeat-
HMM job runs until the final jobs only had one STR to be analyzed. Users can spec-
ify a threshold to filter the longest repeat regions to alter the job killing behavior. 
After that, repeat counts of all STRs whose repeat counts are successfully detected 
are combined in a single output file. Please note that this is an extended module 
in RepeatHMM, and takes the advantages of RepeatHMM to automatically scan a 
whole genome data for STR estimation and prioritization.

RepeatHMM‑DB

To build the first version of RepeatHMM-DB, we run RepeatHMM-scan on 21 long-
read sequencing data for human genomes [30–35] (Table 1). Then, each repeat in the 
reference genome has 20 pairs (two genomes are haploid) of alleles of repeat counts. 
We assume the 21 sequencing datasets were generated from individuals unaffected 
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by repeat expansion disorders, and then summarize the 40 repeat counts as normal 
repeat range for the repeats. After sorting the 40 repeat counts for a repeat locus, we 
obtain repeat counts at the minimum value and 95% percentile value to represent 
a  robust normal repeat range so that maximum outliers are excluded. We summa-
rize repeat counts for all STRs in a reference genome and build a database of normal 
repeat range for all available STRs, and name it RepeatHMM-DB.

Please note that RepeatHMM-DB is based on a data-driven construction benefiting 
from available sequencing data. As an increasing number of long-read sequencing 
datasets are available, RepeatHMM-DB could be significantly enhanced. Currently, 
RepeatHMM-DB does not document repeat ranges for pathogenic repeats. However, 
we provide options for users to improve RepeatHMM-DB by constructing repeat 
ranges of pathogenic or likely pathogenic STRs. There are several ways to achieve 
this goal. One is to use RepeatHMM to detect repeat counts of an STR on long-read 
data of patients with repeat expansion disorders, and the other is to manually con-
struct pathogenic repeat ranges for those STRs if they can be compiled from existing 
studies in literature.

Fig. 2  Whole genome STR analysis. a The numbers of STR with different motif sizes. b Distribution of the 
maximum repeat counts of STR repeats with different motif sizes. c Distribution of the maximum repeat 
counts along different chromosomes. STRs with large repeat counts (> 40) are not shown in b and c. 
Maximum repeat count is the maximum number of repeat occurrences among 21 long-read sequencing 
datasets for a motif at a locus. d The distribution of the motif sizes located in different regions in genomes. e 
The distribution of the maximum repeat counts of STR repeats located in different regions in genomes
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Prioritization of STRs by RepeatHMM‑DB

Given a test sequencing dataset, we use RepeatHMM or RepeatHMM-scan to determine 
repeat counts for a set of STRs of interest, and then compare those repeat counts with 
the corresponding normal repeat ranges in RepeatHMM-DB to see whether those STRs 
have much longer repeats. If so, the STR will be a good candidate for further investiga-
tion by experts or for functional annotation. If users already have the repeat count of 
a specific STR, they can simply extract normal repeat range information from Repeat-
HMM-DB to determine whether the STR has a repeat count within normal ranges.

Long‑read sequencing data for testing RepeatHMM‑DB

To test whether the estimated normal repeat ranges are useful, we compare CAG repeat 
counts in the ATXN3 gene (located on chromosome 14q [36, 37]) on 25 subjects against 
RepeatHMM-DB to infer the pathogenic status of the alleles and the subjects. These 
25 subjects consisted of 20 patients affected with SCA3 [36, 37] and 5 control subjects: 
CAG repeat counts in the ATXN3 gene for 20 patients were determined by capillary 
electrophoresis, and repeat counts for 5 control subjects were determined by Sanger 
sequencing. SCA3 is a rare autosomal dominant disease caused by abnormally extensive 
duplication of CAG repeats in the ATXN3 gene. In healthy human subjects, the ATXN3 
gene usually contains 13 to 39 CAG repeats [38]. Extensive repeats with more than 55 
CAG repeats in exons of ATXN3 would affect pons and striatum, causing progressive 

Table 1  Whole-genome long-read sequencing datasets used in  the  current version 
of RepeatHMM-scan

Reference assembly is GRCh38/hg38. All samples except HX1 were sequenced by the PacBio SMRT technology, while HX1 
was sequenced by the Oxford Nanopore technology. CHM1 and CHM13 are haploid human genomes

Genome name #Long reads Mapped 
coverage

NA12878 [33] 68,064,542 54X

NA24385 [33] 26,325,971 55X

NA24149 [33] 12,927,769 26X

NA24143 [33] 12,655,875 26X

NA24631 [33] 20,640,162 56X

NA24694 [43] 10,211,241 28X

NA24695 [43] 10,075,227 28X

AK1 [32] 1,082,595,779 297X

CHM1 [35] 49,203,975 100X

CHM13 [44] 69,236,262 176X

HG00268 [34] 18,556,018 81X

HG00514 [34] 51,979,497 213X

HG00733 [34] 38,400,667 143X

HG01352 [34] 33,512,701 144X

HG02059 [34] 43,154,257 155X

HG02106 [34] 20,165,840 71X

HG02818 [34] 51,357,293 224X

HG04217 [34] 68,629,541 203X

NA19240 [34] 48,378,501 125X

NA19434 [34] 32,040,706 147X

HX1 [30] 27,541,832 84X
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cerebellar ataxia and even paralysis [39]. Amplicon sequencing data of CAG repeats in 
the ATXN3 gene on 25 subjects was generated using the PacBio Sequel sequencer as 
previously published [27]. In the test, we use normal repeat ranges in RepeatHMM-DB 
to infer whether the subjects had SCA3 and do not use any prior normal and pathogenic 
repeat range knowledge in existing studies.

Results
Overview

In this study, based on the previous development of RepeatHMM, we design Repeat-
HMM-scan for the detection of repeat counts for whole-genome STRs. After running 
RepeatHMM-scan on 21 long-read sequencing data for human genomes, we build 
RepeatHMM-DB for normal repeat ranges for genome-wide STRs. Based on Repeat-
HMM-DB, we define a score to indicate whether a repeat count in a specific locus is 
abnormally high. Below, we discuss the utility of RepeatHMM-DB by comparing nor-
mal repeat ranges in RepeatHMM-DB for 13 well-known repeats, and by testing Repeat-
HMM-DB on the ATXN3 gene to infer pathogenic repeats. We also demonstrate how to 
use RepeatHMM-DB for filtering whole-genome STRs for de novo detection of abnor-
mal repeats that may be disease relevant.

Inference of the ranges of the repeat counts for whole‑genome STRs

We use RepeatHMM-scan in Fig.  1 to quantify the repeat counts for all STRs in the 
human genome on 21 long-read sequencing data sets for human genomes (Table  1), 
and summarize the repeat counts to construct RepeatHMM-DB. In RepeatHMM-DB, 
each row is for a repeat with several fields: the chromosome, the starting position of the 
repeat, the end position of the repeat, the minimum and 95% percentile of the repeat 
counts, the repeat counts in 21 available long-read sequencing data.

Right now, RepeatHMM-DB contains 432,604 STRs on the GRCh38/hg38 coordinate 
in total. The upper bounds of their normal repeat counts vary greatly. ~ 96% of maximum 
normal repeat counts are less than 60, but there are 5920 patterns that repeat more than 
100 times. The lengths of the effective repeat patterns range from 1 to 16 bp (Fig. 2b). 
In general, average repeat counts decrease as repeat units get longer. Repeats located in 
most chromosomes have similar average counts, although some chromosomes (chr5 and 
chr15) have slightly higher average repeat counts and some are lower (chr19 and chrX) 
(Fig. 2c). We further run ANNOVAR [40] to obtain the locations of repeat loci, and we 
find there are 1060, 235,278, 144,912, 2716, 591, 24,379, 3190, 2058 and 714 repeat loci 
in exonic, intergenic, intronic, downstream, ncRNA_exonic, ncRNA_intronic, upstream, 
UTR3 and UTR5 regions, respectively. We then illustrate the distribution of motif sizes 
and of repeat counts in Fig. 2d, e. According to the box plots in Fig. 2, the differences 
of the length of motifs for repeat loci among different regions are significant, while 
repeat counts in exonic regions are usually smaller than those in intergenic and intronic 
regions, indicating that exonic regions are less tolerated with longer repeats than other 
regions.

To check the accuracy of the normal ranges of STR repeats in RepeatHMM-DB, we 
compare the normal repeat ranges of 13 well-known disease-causal trinucleotide repeats 
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in RepeatHMM-DB against prior knowledge extracted from existing literature, as shown 
in Table  2. It can be seen that RepeatHMM-DB closely resembles prior knowledge 
and provides a much richer set of information on the distribution of repeat counts for 
these well-studied STRs (Fig. 3a). Please note that (1) RepeatHMM-DB is constructed 
from 21 long-read sequencing datasets for human genomes, and it can be improved in 
the future when more long-read whole-genome sequencing datasets are available, (2) 
RepeatHMM-DB provides normal repeat ranges of many other repeats which are not 
available before (not shown in Table  2 but available together with the tool), and thus 
could facilitate the discovery of novel repeat expansion in STRs that are associated with 

Table 2  The normal repeat ranges for  13 genes estimated by  RepeatHMM-DB, 
in  comparison to  normal/pathogenic repeat ranges based on  prior knowledge 
from literature

Est.: the estimated normal repeat ranges in RepeatHMM-DB; Ref.: the repeat counts from the reference genome GRCh38/
hg38; Normal: the normal repeat ranges from prior knowledge

Type Gene Codon Normal Est. Ref. Pathogenic

DRPLA (Dentatorubral-pallidoluysian 
atrophy)

ATN1 or DRPLA CAG​ 6–35 11–22 19 49–88

HD (Huntington’s disease) HTT CAG​ 6–35 17–30 21 36–250

SBMA (Spinal-bulbar muscular atrophy) AR CAG​ 9–36 18–27 23 38–62

SCA1 (Spinocerebellar ataxia Type 1) ATXN1 CAG​ 6–35 23–32 29 49–88

SCA2 (Spinocerebellar ataxia Type 2) ATXN2 CAG​ 14–32 15–22 23 33–77

SCA3 (Spinocerebellar ataxia Type 3) ATXN3 CAG​ 12–39 11–28 14 55–86

SCA6 (Spinocerebellar ataxia Type 6) CACNA1A CAG​ 4–18 7–14 13 21–30

SCA7 (Spinocerebellar ataxia Type 7) ATXN7 CAG​ 7–17 9–12 10 38–120

FRAXA (Fragile X syndrome) FMR1, on the X-chr CGG​ 6–53 20–30 20 230+/55–200

FRAXE (Fragile XE mental retardation) AFF2, on the X-chr CCG​ 6–35 25–35 29 200+
FRDA (Friedreich’s ataxia) FXN or X25 GAA​ 7–34 7–10 6 100+
DM (Myotonic dystrophy) DMPK CTG​ 5–34 5–16 20 50+
SCA8 (Spinocerebellar ataxia Type 8) ATXN8 or SCA8 CTG​ 16–37 8–21 26 110–250

Fig. 3  Inferred maximum normal repeat counts and its application on the ATXN3 data. a Comparison of 
inferred maximum normal counts of 13 genes with the maximum normal counts in prior knowledge from 
published literature. b Comparison of the scores of pathogenic alleles against normal alleles of ATXN3 genes 
in 20 patients with SCA3 and 5 control subjects. The red line represents a Z-score of 2
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human disorders, and (3) the sequencing data were not generated for the purpose of 
constructing RepeatHMM-DB, and we extract the population-wide repeat count infor-
mation through re-using existing data.

Prediction of disease status using RepeatHMM‑DB

We further test RepeatHMM-DB by using its normal range of CAG repeat of the ATXN3 
gene in RepeatHMM-DB to infer pathogenic alleles. The amplicon-based long-read 
sequencing data were sequenced for the ATXN3 genes on 20 patients with SCA3 and 5 
unaffected subjects, with their CAG repeat counts determined by capillary electropho-
resis or Sanger sequencing techniques (Table 3). The amplicon data set was previously 
published to evaluate RepeatHMM on SCA3 [27]. We use the normal range of CAG 
repeat in ATXN3 to determine which alleles are pathogenic or which patients have SCA3 
by comparing the wet-lab determined repeat counts with the normal repeat range in 

Table 3  The estimation of  the  normal/abnormal repeat status of  CAG repeats in  ATXN3 
according to  RepeatHMM-DB compared with  the  determination by  prior literature 
knowledge of normal repeat range

The true repeat counts for 20 patients with SCA3 and 5 control subjects were determined by capillary electrophoresis or 
Sanger sequencing. The estimated normal repeat range of CAG repeat is 11–28. The ‘Allele’ column shows the pathogenic 
inference for each allele, while the ‘Subject” column shows the disease status prediction for each subject. ‘N’: normal, ‘P’: 
pathogenic/patient

Subject True counts Prior knowledge RepeatHMM-DB

Allele Subject Score Allele Subject

SRR5363334 14, 77 N, P P  − 2.2, 8.4 N, P P

SRR5363452 30, 66 N, P P 0.5, 6.6 N, P P

SRR5363453 14, 69 N, P P  − 2.2, 7.1 N, P P

SRR5363454 14, 71 N, P P  − 2.2, 7.4 N, P P

SRR5363455 21, 72 N, P P  − 1.0, 7.6 N, P P

SRR5363456 14, 77 N, P P  − 2.2, 8.4 N, P P

SRR5363457 26, 71 N, P P  − 0.2, 7.4 N, P P

SRR5363458 14, 63 N, P P  − 2.2, 6.1 N, P P

SRR5363459 29, 70 N, P P 0.3, 7.2 N, P P

SRR5363460 27, 71 N, P P 0.0, 7.4 N, P P

SRR5363461 34, 75 N, P P 1.2, 8.1 N, P P

SRR5363462 28, 89 N, P P 0.2, 10.4 N, P P

SRR5363463 61, 61 P, P P 5.7, 5.7 P, P P

SRR5363464 26, 65 N, P P  − 0.2, 6.4 N, P P

SRR5363465 14, 89 N, P P  − 2.2, 10.4 N, P P

SRR5363466 40, 67 P, P P 2.2, 6.7 P, P P

SRR5363467 37, 68 N, P P 1.7, 6.9 N, P P

SRR5363468 28, 40 N, P P 0.2, 2.2 N, P P

SRR5363469 14, 82 N, P P  − 2.2, 9.2 N, P P

SRR5363470 14, 68 N, P P  − 2.2, 6.9 N, P P

SRR5363471 14, 14 N, N N  − 2.2, − 2.2 N, N N

SRR5363472 27, 35 N, N N 0.0, 1.3 N, N N

SRR5363473 28, 28 N, N N 0.2, 0.2 N, N N

SRR5363480 14, 14 N, N N  − 2.2, − 2.2 N, N N

SRR5363632 14, 19 N, N N  − 2.2, − 1.3 N, N N
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ATXN3 in RepeatHMM-DB. The results are shown in Table 3. In Table 2, RepeatHMM-
DB suggests the normal repeats of ATXN3 between 11 and 28 with a standard deviation 
5.9. The deviation is calculated using 

√

∑

N

i
(ci − Ec)2/(N − 1) where ci is a repeat count 

in N  repeat counts and E is the mean of the N  repeat counts; the deviation thus is an 
estimation of how repeat counts for an STR are deviated from each other. Given a repeat 
count c , we use (c − 28)/5.9 to calculate a score to show how this repeat count is differ-
ent from the maximum repeat count in RepeatHMM-DB for this STR. If this score is 
larger than a threshold, we consider this repeat count to be a pathogenic allele (Fig. 3b); 
otherwise, a normal allele. With a threshold of the score > 2.0, we can have the results in 
Table  3. Please note that the threshold of 2.0 is used due to that the CAG repeat is 
located in the coding region of ATXN3. The score threshold for non-coding STRs should 
be larger.

Based on the inference in Table  3, we summarize the performance of inferring  the 
pathogenic status of alleles. In the test data, the 25 subjects have 50 alleles (two alleles 
in a subject may have the same repeat counts if they are homozygous). With the score 
threshold > 2.0, all 22 pathogenic and 28 normal alleles are correctly classified, indicat-
ing that our tool can detect pathogenic allele as accurate as prior knowledge obtained by 
expensive and extensive wet-lab studies.

We then summarize the performance of identifying whether an individual is affected 
by SCA3. Each subject has 2 ATXN3 alleles in autosomes, and if one of them is patho-
genic, the subject is affected by SCA3 as it is an autosomal dominant disease. With the 
inference in Table 3, none of 20 SCA3 patients are misclassified as unaffected, and none 
of the unaffected subjects is incorrectly classified as being affected. This analysis demon-
strates a perfect performance when using RepeatHMM-DB to detect affected patients 
without prior knowledge. Although this long-read dataset clearly shows that Repeat-
HMM-DB is able to precisely identify the pathogenic status of individuals, we also stress 
that it represents a specific case study and the approach requires further evaluation in 
future large-scale studies.

A demonstration on the use of RepeatHMM‑DB for whole‑genome STR analysis

We next demonstrate how to use RepeatHMM-scan and RepeatHMM-DB for whole-
genome STR analysis. To do that, we randomly choose a genome (HG02059) from the 21 
long-read data, and infer normal repeat ranges of whole genome STRs on the remaining 
20 long-read datasets. Please note that this analysis is solely for demonstration purpose, 
and no repeat expansion disorders are known for the human individuals from the 21 
long-read datasets. In this analysis, we run RepeatHMM-scan on long-read sequencing 
data on HG02059, and calculate the scores for 400,046 STR based on the inferred nor-
mal repeat ranges from the 20 long-read datasets. To avoid the strong bias of the scores 
by small deviations, we set the minimum deviation to 5. Additionally, we also require 
that the STR score > 2.0, the detected repeat counts available in at least 10 of 20 genomes 
and we skip poly-A and poly-T repeats. As a result, we decrease the number of whole-
genome STR repeats from 400,046 to 603 for further analysis, as shown in Fig. 4. That is, 
the majority of STRs are filtered out as expected.

We next run wANNOVAR [41] on the 603 repeats, and find 357 STRs in inter-
genic regions, 190 in intronic regions, 27 in non-coding RNA intronic regions, 5 in 
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downstream regions, 4 in upstream regions, 3 in UTR 5′ and 2 in UTR 3′, as shown in 
Fig. 4. Since none of them are in coding regions, we use the score threshold > 10.0, as 
non-coding regions contain more variable STRs than coding regions (Fig. 2d) [42]. As a 
result, we find only 18 STRs left for further analysis with 0.004% false positive rate from 
400,046 STRs. In particular, no coding STRs are identified with larger repeat counts. 
This case study demonstrates how to use RepeatHMM-DB in real-world settings when 
there is no prior knowledge on whether there is a repeat expansion in a genome, by 
focusing on a small subset of most likely expansions for downstream analysis and man-
ual examination.

Discussions
STRs are abundant throughout human genome, and specific repeat expansions may be 
associated with human diseases. Existing works have detected normal repeat ranges 
and minimum pathogenic repeats for tens of repeat loci using time-consuming and 
labor-intensive wet-lab techniques. The pathogenic status of repeat counts of a test 
individual can be easily detected by comparing them against normal repeat ranges or 
against the minimum pathogenic repeat counts, which is an efficient way to analyze 
tens of well-studied repeat loci. However, the information on normal repeat ranges 
for tens of thousands of STR loci are not available in population-scale data, creat-
ing a challenge for the inference of pathogenic alleles that are potentially associated 
with human diseases. This situation becomes much worse for whole-genome analysis 
from long-read sequencing data to identify potential disease-associated repeat loci, 
because there is no database on the normal ranges of repeat counts for all STRs and 
normal repeat ranges of different repeat loci can vary greatly.

Therefore, in this study, we use RepeatHMM-scan to build the first database 
(RepeatHMM-DB) of repeat counts for all STRs in human genome from long-read 
whole-genome sequencing data. That is, with the help of RepeatHMM-DB, a repeat 

Fig. 4  The distribution of repeat scores of whole-genome STRs in HG02059. The repeats with score ≥ 2 are 
annotated by wANNOVAR [41] to assess their functional impacts
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count from documented repeat loci in GRCh38/hg38 can be evaluated to see whether 
the repeat count is abnormal or not. For example, we evaluate repeat counts of CAG 
repeat in ATXN3 to infer their pathogenic status and find that RepeatHMM-DB yields 
high accuracy in its inference. One can extend this study by using RepeatHMM-DB 
to check repeat loci whose prior knowledge of normal repeat ranges is not available. 
Additionally, a user can run RepeatHMM-scan to generate repeat counts of genome-
wide STRs for a testing genome, and check whether abnormal repeat counts exist; 
abnormal repeat counts are excellent candidates for further analysis to identify dis-
ease-relevant repeat expansions. Furthermore, using the identical procedure, this 
study can also be extended on long-read data of other species. Thus, our tools are 
expected to facilitate the discovery of novel disease-relevant repeat expansions, when 
more and more long-read whole-genome sequencing datasets are available for disease 
variant discovery. Please note that our study is different from many existing works 
on repeat detection. In a repeat detection work, a tool is developed to detect repeat 
counts for a specific repeat loci or several repeat loci on sequencing data. In this 
study, we do not endeavor to improve the performance of repeat count estimation, 
but to build a framework for efficient and effective analysis for whole-genome STRs to 
pinpoint abnormal repeat counts for human disease studies.

There are several limitations which need to be overcome in the future. First, STR 
regions are downloaded from UCSC genome browser through the TRF (tandem 
repeat finder) [29] track and used as input of RepeatHMM directly. However, some of 
STRs do not have well-defined repeat motifs with either imperfect repeats or with > 1 
available repeat motif for a complicated repeat region. We will overcome this issue in 
the future version of RepeatHMM-DB by using careful curation of STR regions. Sec-
ond, RepeatHMM-DB is built with 21 long-read sequencing data (40 sets of alleles), 
so larger normal repeat counts that are rare may not be detected in these genomes. 
This issue can be addressed when more and more long-read sequencing data become 
available in future. Third, currently the repeat loci in RepeatHMM-DB is built on the 
GRCh38/hg38 coordinate, and we will also provide repeat loci information for the 
GRCh37/hg19 coordinate in future. Fourth, we use alignment files to infer repeat 
counts, and thus, the quality of alignments generated by different aligner might affect 
the results. Similarly, we used RepeatHMM-scan to generate RepeatHMM-DB, yet 
other repeat estimation tools that are available may have slightly different estimations 
of repeats than RepeatHMM-scan, which need to be considered when using Repeat-
HMM-DB for the  discovery of abnormal repeat expansions. Finally, our tool and 
database may not handle repeats in highly complex genomic regions (such as sub-
telomeric regions), as the repeat motifs and lengths in those regions in a reference 
genome cannot be reliably assayed even by long-read sequencing techniques.

Conclusions
In conclusion, the extended RepeatHMM (RepeatHMM-scan) together with Repeat-
HMM-DB provides an effective way to detect potentially pathogenic repeat expansions 
at a genomic scale. With the wider application of long-read sequencing techniques in 
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whole-genome sequencing studies, we expect that RepeatHMM-DB can speed up the 
discovery of pathogenic repeat expansions on undiagnosed diseases in the future.

Abbreviations
RepeatHMM: Repeat detection by hidden Markov model; RepeatHMM-DB: The database of genome-wide normal 
repeats generated by RepeatHMM; RepeatHMM-scan: Genome scan module in RepeatHMM; STR: Short tandem repeat; 
SCA3: Spinocerebellar ataxia type 3.
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