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Abstract 

Background: Although genetic risk factors and network-level neuroimaging abnor-
malities have shown effects on cognitive performance and brain atrophy in Alzheimer’s 
disease (AD), little is understood about how apolipoprotein E (APOE) ε4 allele, the 
best-known genetic risk for AD, affect brain connectivity before the onset of sympto-
matic AD. This study aims to investigate APOE ε4 effects on brain connectivity from the 
perspective of multimodal connectome.

Results: Here, we propose a novel multimodal brain network modeling framework 
and a network quantification method based on persistent homology for identifying 
APOE ε4-related network differences. Specifically, we employ sparse representation to 
integrate multimodal brain network information derived from both the resting state 
functional magnetic resonance imaging (rs-fMRI) data and the diffusion-weighted 
magnetic resonance imaging (dw-MRI) data. Moreover, persistent homology is 
proposed to avoid the ad hoc selection of a specific regularization parameter and 
to capture valuable brain connectivity patterns from the topological perspective. 
The experimental results demonstrate that our method outperforms the competing 
methods, and reasonably yields connectomic patterns specific to APOE ε4 carriers and 
non-carriers.

Conclusions: We have proposed a multimodal framework that integrates structural 
and functional connectivity information for constructing a fused brain network with 
greater discriminative power. Using persistent homology to extract topological features 
from the fused brain network, our method can effectively identify APOE ε4-related 
brain connectomic biomarkers.
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Background
Alzheimer’s disease (AD) is a chronic neurodegenerative brain disease that gradually 
causes cognitive deterioration [1, 2]. Although studies on the specificity of disease stage 
is underway to identify potential biomarkers, early diagnosis of vulnerability to AD—
prior to the onset of clear cognitive symptoms—is still challenging [3, 4]. In past years, 
neuroimaging-based techniques have been used to reveal the neuronal interaction pat-
terns of anatomically segregated brain regions in AD via constructing brain connectome 
[1, 5]. However, traditional network-level neuroimaging approaches have limited ability 
to discriminating normal aging from early AD [6]. Neuroimaging genetics offers a prom-
ising strategy for detecting potential early biomarkers of AD and improving the under-
standing of neurobiological features associated with genetic polymorphisms at risk for 
AD [7]. In particular, apolipoprotein E (APOE) ε4 allele is the uppermost genetic risk 
factor for developing sporadic AD, which is observed in up to 50% of all AD cases [8]. 
We propose here a brain imaging genetics study to examine the effect of the APOE ε4 
genotype on brain connectomic traits. Our goal is to quantify the functional and struc-
tural brain differences from the perspective of genetics in patients, who may be under-
going early neuropathological changes in the pathological cascade leading to disease. 
Currently, an ample number of studies [9, 10] have investigated the brain connectivity 
features of APOE ε4 carriers. These existing studies found specific and consistent alter-
ations in brain network, especially involving decreased functional connectivity within 
default mode network (DMN). Particularly, most of these approaches for characterizing 
APOE-related network differences are based on pairwise correlation such as Pearson’s 
correlation. Nevertheless, some studies [11, 12] have demonstrated that the neurologi-
cal processes involve the interactions of many co-activated brain regions (i.e., more than 
two brain regions) rather than just the pairwise variant-trait associations.

To address this problem, the least absolute shrinkage and selection operator (Lasso) 
and sparse representation have been applied to construct a sparse brain network by 
considering more complex interactions among multiple co-activated brain regions [13]. 
However, the Lasso approaches have their own limitations. For example, most of them 
use a fixed regularization parameter λ that may not be optimal to control the model 
sparsity, which can lead to an uncertainty to quantify the sparse brain networks [14]. 
Moreover, another problem with Lasso is, feature extraction of sparse network needs a 
constructed network with precise connection strengths [15]. However, traditional Lasso 
method has been shown biased, and may not provide reliable estimation for building 
brain networks. Therefore, a subsequent connectivity strength estimation process should 
be performed to eliminate the shrinking effect, which naturally adds the complexity of 
modeling. In order to address the above limitations, a persistent homology (PH) [16–19] 
method is newly proposed in this work. Our novel method constructs the brain net-
work over multiscale regularization parameter space and only focuses on the network 
structure (binary network) rather than connection strength (weight network) between 
regions. Hence, we hypothesize that the combination of PH and SR may yield a potential 
path to identify more sensitive brain network-level biomarkers.

Currently, a lot of brain network modeling methods only consider the neurological 
processes from a single modality [20], while compelling evidences have demonstrated the 
benefit of acquiring and fusing complementary information via different neuroimaging 
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modalities for accurate classification [21, 22]. Specifically, diffusion-weighted MRI (dw-
MRI) has been applied to map white matter tractography that outputs structural con-
nectivity (SC). On the other hand, resting state functional MRI (rs-fMRI) measures 
intrinsic functional connectivity (FC) through spontaneous fluctuations of brain activity. 
Joint investigation of dw-MRI and rs-fMRI data can offer a complete characterization of 
the brain network incorporating both structural and functional connectivity. For exam-
ple, Qi et al. [23] proposed a framework for integrating the multimodal imaging data of 
diffusion-MRI and fMRI. Their results suggested that the multimodal fusion can effec-
tively detect potential imaging biomarkers of working memory deficits in schizophrenia. 
Korthauer et al. [6] integrated rs-fMRI and dw-MRI data in a single network for investi-
gating a functional-structural network difference in apolipoprotein E (APOE) ε4 carriers 
and non-carriers. In their study, integrating multiple neuroimaging modalities was dem-
onstrated to be a more effective method to detect network-level biomarkers compared 
to conventional single modality method. Based on these findings, we hypothesize that 
a multimodal fusion method may further improves the statistical performance between 
APOE ε4 carriers and non-carriers.

In this paper, we focus on identifying APOE ε4 related differences from the perspec-
tive of brain connectome. The main methodological contributions are threefold. First, 
we propose a novel multimodal brain network modeling method for detecting the dif-
ferences of APOE ε4-associated brain connectivity. Our method integrates the multi-
modal information from both rs-fMRI and dw-MRI. Specifically, a generalized fused 
Lasso method is applied to linearly regress rs-fMRI signals (BOLD time series), and is 
guided by SC prior information. Second, we develop a multiscale network quantification 
method using PH for the proposed model. We show that after integrating the brain net-
work information with different sparsity for each subject, PH can effectively characterize 
the multiscale networks via graph filtration, which overcomes the uncertainty of opti-
mal parameter selection. To the best of our knowledge, no previous methods ever fused 
both multimodal brain modeling and PH into a sparse representation, upon which our 
novel framework is built. Third, we design a connectivity pattern identification method 
based on PH features. Different from the existing methods, our method can character-
ize the APOE ε4-related specific loop structures in the brain network, which can reflect 
meaningful biological communication patterns. Finally, we perform our experimental 
study using rs-fMRI and dw-MRI data from the publicly available Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database. We demonstrate the promise of our method 
over the competing methods on both statistical performance and connectivity pattern 
identification.

Methods
Participants

Data used in the preparation of this article were obtained from the ADNI database (adni.
loni.usc.edu). In this study, APOE genotype, rs-fMRI, dw-MRI, and T1 imaging data 
were collected from 63 subjects, and divided into two groups: APOE ε4 carriers (N = 27, 
17 males and 10 females, age 63–89) and APOE ε4 non-carriers (N = 36, 20 males and 16 
females, age 61–87).
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Genotype and neuroimaging data

For genotyping, subjects carrying at least one APOE ε4 allele were defined as APOE ε4 
carriers (genotype ε4/ε4 and ε4/ε3), while subjects with the genotype ε3/ε3 were clas-
sified as APOE ε4 non-carriers. Subjects with the ε2 allele (including genotypes ε2/
ε2, ε2/ε3, and ε2/ε4) were excluded in this study. For neuroimaging data, all MRI data 
were acquired with a Siemens 3 T scanner with the following parameters: (1) rs-fMRI 
data involved that TE (echo time) = 30  ms, TR (repetition time) = 3000  s, FA (filp 
angle) = 90 degree, slice thickness = 3.4 mm, the number of slices = 197; (2) dw-MRI 
data were acquired with gradient directions = 54, TE = 56  ms, TR = 7200  ms, voxel 
size = 2 × 2 × 2mm3, FA = 90 degree; (3) T1 image data were acquired with FA = 9 
degree, acquisition plane = SAGITTAL, slice thickness = 1.2  mm, TE = 2.95  ms, 
T1 = 900 ms, TR = 2300 ms.

Data preprocessing

T1 is a structural MRI (sMRI) modality capturing brain morphometry. T1 is often 
used as a reference image to which dw-MRI and rs-fMRI data can be registered. After 
that, all three modalities are aligned to the same reference so that multimodal data 
analysis can be facilitated.

For rs-fMRI data, we used SPM8 (https ://www.fil.ion.ucl.ac.uk/spm/softw are/
spm8/) and DPABI [24] for preprocessing as follows: removing the first 10 time 
points; slice timing correction; spatial correction for head motion; co-registering the 
individual T1 image to the mean functional image after realignment by using DAR-
TEL (a fast diffeomorphic anatomical registration algorithm to calculate the trans-
formations from individual native space to MNI space); smoothing using Gaussian 
kernel with FWHM (full-width-athalf-maximum) of 4 × 4 × 4mm3; standardization to 
reduce the impact of nuisance covariates including head motion parameters, white 
matter signal and cerebrospinal fluid signal. For quality control, the rs-fMRI data with 
greater 2.5 mm and 2.5 degree in max head motion are excluded.

For dw-MRI data, we used a package called pipeline toolbox for analyzing brain 
diffusion images (PANDA) [25] developed based on the FMRIB Software Library 
(FSL, https ://fsl.fmrib .ox.ac.uk/fsl/). Specifically, it includes estimating a brain mask 
using bet command of FSL based on  b0 image without diffusion weighting; remov-
ing the non-brain spaces by fslroi command; eddy-current correction; calculation for 
diffusion tensor metrics by dtifit command; deterministic white matter tractogra-
phy within brain using dti_recon and dti_tracker commands of the Diffusion Toolkit 
(http://track vis.org/dtk/). We found that the bet command of FSL shows better results 
for brain tissue extraction than PANDA, so T1 image without skull is achieved using 
this approach. Each subject’s FA image is co-registered to its corresponding T1 image 
based on flflirt in FSL for defining network nodes. For quality control, the dw-MRI 
data with significant distortion in co-registration with FA and T1 image or with T1 
image and MNI template were excluded from the study. Of note, since T1 scans were 
used for jointly guiding both dw-MRI and rs-fMRI registrations, the multimodal 
images were registered onto a same reference template.

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://fsl.fmrib.ox.ac.uk/fsl/
http://trackvis.org/dtk/
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Multimodal brain network

The framework of multimodal brain network modeling is shown in Fig. 1a. Let us assume 
that we have N subjects and M regions of interest (ROIs). For each ROI, a regional mean 
fMRI BOLD time series is available. We suppose that the BOLD time series with respect 
to the i-th ROI can be denoted as xi = {x1i, x2i, . . . , xTi} ∈ RT , where T is the number 
of time points (we have 280 time points). βi = {β1i,β2i, . . . ,βMi} ∈ RM is the coefficient 
vector that represents the indices of other co-activated ROIs associated with the i-th 
ROI. We can estimate the whole-brain network B = {β1,β2, . . . ,βM} ∈ RM×M by solv-
ing the following l1-norm regularization problem:

where λ1 is a non-negative regularization parameter controlling the sparsity of the brain 
network. A larger λ1 forces more coefficients to be zeros, i.e., more values in coefficient 
vector {β i}

M
i=1 equal to zero, which is able to select the strongly co-activated ROIs from 

the i-th ROI to the other ROIs. In general, functional network estimated by rs-fMRI 
can measure the temporal correlation of anatomically segregated brain regions, while a 
structural network based on dw-MRI is formed by characterizing the white matter fiber 
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Fig. 1 a The proposed multimodal framework, where dw-MRI network as a constraint is used to guide 
the regression of rs-fMRI BOLD time series to create fused brain connectivity network; b a sequence of 
brain networks with different sparsity are constructed to form integrated networks, which are prepared for 
subsequent graph filtration analysis to extract persistent homology measures; c each integrated network 
is converted to distance network, and persistent homology is applied to quantify the distance network 
by evaluating the persistence of connected components (PH-0) and cycles (PH-1); d statistical analysis is 
performed to capture the difference between APOE ε4 carriers and non-carriers. Also, we extract specific loop 
structures by identifying connectivity patterns using PH-1
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tracts. In order to integrate these two sources of complementary information, we pro-
pose to incorporate the structural network into Eq.  (1) to guide modeling of the func-
tional brain network. Thus, a multimodal network construction can be formulated as:

where Dji represents the structural connectivity information computed from the dw-
MRI data. The neurological basis of Dji is that the coupling of functional and structural 
connectivity can be regarded as significantly correlated with brain development. A 
stronger FC is likely to be attributed to a larger SC, and in turn a lower penalty to {β i}

M
i=1 . 

Therefore, we define the Dji as an inverse proportion function of SC. In particular, we set 
Dji = exp(−ρ2

ji/σ) to penalize the estimated connection between the j-th and i-th ROIs, 
where ρji denotes elements in the structural brain network, and σ is the average of stand-
ard variances of all subjects’ structural network elements (i.e., ρji).

Note that the aforementioned model only characterizes the extent of the influence 
from the i-th ROI to other ROIs, ignoring the temporal dependency among the other 
ROIs. Thus, we further introduce an additional source of guidance, named generalized 
fused Lasso, to pursue smoothness between the pairwise ROIs as follows:

where �22
∑M

(u,v)

∣

∣β(u,·) − β(v,·)
∣

∣ is the generalized fused Lasso term, which is used to 
adaptively control the similarity by shrinking the difference between ROIs toward zero. 
Moreover, l1-norm regularization is used to penalize the fusion term, which results in a 
sparse pattern.

Persistent homology quantification

Persistent homology (PH)—a mathematical formalism from computational topology 
[26]—can explore the persistence of topological invariants in a network, including con-
nected components, cycles, voids, etc. More specifically, a process called graph filtra-
tion generates a series of nested simplicial complexes by varying the value of a filtration 
parameter [27]. Furthermore, we can track the persistence over the graph filtration from 
the formation (birth) of a topological feature until it disappears (death) by being con-
nected to a neighboring network (Fig. 2a). In general, we define 0-dimensional features 
(PH-0) as the persistence of connected components, 1-dimensional features (PH-1) as 
the persistence of cycle structures. When thinking of these persistent intervals as bars, 
we can construct a barcode using the finite multi-set of bars to record the PH features, 
where PH-0 is represented using β0 barcode (Fig. 2b), PH-1 is using β1 barcode (Fig. 2c). 
Particularly, we can record the cycle structures over the graph filtration, and then inte-
grate them to a frequency network which contains the specific connectivity information 
of the network.

Because there is no definite rule to determinate the proper λ1 and λ2 for the proposed 
model in Eqs. (2, 3), it will lead to inconsistency of network structure and uncertainty of 
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results that follow. The problem can be remedied by using PH to perform statistical 
inference over every possible λ. More specifically, suppose that a group of brain net-
works NG = (Nλ1, Nλ2,  …,  Nλn) corresponding to different regularization parameters 
(λ1 < λ2 < , …, < λn) rather than a fixed parameter, we can integrate the network group into 
an integrated network Nint (see Fig. 1b). The elements in Nint can be defined as probabil-
ity-of-appearance of an edge in the network group NG. Assuming γ = 1 or 0 represents 
an edge exists or not, n is the number of networks in NG, we use distance network Nd to 

convert the elements of Nint by dij =
√

1−
(

∑n
l γ

l
ij/n

)2
∈ Nd (see Fig.  1c). Then, a 

graph filtration for Nd can be constructed as follows: (1) Initial step is corresponding to 
the set of all brain regions; (2) Linearly increase the filtration distance ε (i.e., threshold) 
within the interval [0, 1], where the maximum number of generated networks is set as 
1000; (3) For each ε, threshold the weighted distance network Nd using dij < ε to con-
struct a binary network; (4) In the end, all brain nodes will be connected to one large 
unit. PH can be used to encode the graph filtration using the PH-0 and PH-1.

0-dimensional features (PH-0) We can obtain a β0 curve by fitting the β0 barcode using 
a functional data analysis (FDA) which can track the β0 curve features by combining 
b-spline basis functions with proper choice of roughness penalties [28, 29] (see Fig. 2b). 
Mathematically, the β0 curve function yβ0 can be defined as:

Fig. 2 a The flowchart of constructing graph filtration, and persistent features in graph filtration can be 
visualized using barcode. For β0 barcode, there are 6 connected components in filtration distance 0, which 
are corresponding to 6 bars. After integrating two connected components into one unit, one of the bars that 
represents the original components disappears; the other as the new connected component extends to next 
step. Therefore, the bars in step 1 become 3 that are corresponding to 3 connected components in  G1. For 
an example of β1 barcode, we observe that the cycle with yellow is born in filtration step 2, and continues to 
step 4 before it is completely covered in filtration step 5. Subsequently, frequency network can be obtained 
by integrating all cycle structures into a network, where P is the persistent interval, the values in frequency 
network represent probability-of-appearance of an edge. b We use functional data analysis (FDA) to fit β0 
barcode to β0 curve, and further calculate the corresponding derivative curve. c Persistence landscapes is 
applied to convert β1 barcode to landscape layers; furthermore, we can compute the unique average for a 
collection of persistent landscapes
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where φ is an order four b-spline basis, and c contains the penalty coefficients, the resid-
uals εj is statistically independent. However, the fitting curves are not smooth because 
the process simply interpolates these points with lines. The problem can be addressed by 
minimizing the Eq. (5), which provides a compatible between capturing important curve 
features and reduce computations.

where the first term on the right side is the ordinary sum of squared errors of residu-
als, and the second term is the measure of roughness. The smoothing parameter λ 
specifies the emphasis on the integration relative to the goodness of fit in the SSE. As λ 
approaches positive infinity, curves become less rough and converge to a straight line. A 
theme in functional data analysis is the possibility of also using information on the rates 
of change or derivatives of the curves [30], because these curves are intrinsically smooth. 
The derivative curve of β0 fitting can magnify the curve’s features, thereby measuring the 
network difference through the curve distance measures like Cityblock and standardized 
Euclidean (Seuclidean) distance.

1-dimensional features (PH-1): A persistence landscapes method can convert the 
nonstandard and nonlinear 1-dimensional features to a sequence of piecewise-linear 
functions in Banach space, so we can use the linear vector space structures [31]. Their 
calculation is much faster than the corresponding barcode calculation. Given a β1 bar-
code interval (b, d) with b < d, the piecewise linear function is defined as:

The persistence landscapes of a β1 barcodes 
{

(bi, di)
}n

i=1
 is a sequence of function λk 

so that λk is equals to the k-th largest value of 
{

f(bi ,di)(x)
}n

i=1
 . More specifically, for every 

fixed k, λk can be regarded as exterior contours of a group of pairwise linear functions. 
Statistically, the great advantage of persistence landscapes is that, it is possible to com-
pute the unique mean landscapes for a collection of persistent landscapes by taking the 
average for every landscape layer [32] (see Fig. 2c). This is not possible for barcodes, as 
they are not elements of a Banach space. The Lp distances can be used to quantify the 
difference between �k(t) and �′k(t) corresponding to two persistent landscapes. In addi-
tion, we can not only calculate the Lp distance for 1 ≤ p ≤ ∞ between the pairwise land-
scapes, but also between the average landscapes for two groups of persistence barcodes 
when analyze statistically. That allows one to compare multiple groups of β1 barcodes by 
calculating the pairwise similarity between them.

Parameter selection

In the proposed multimodal modeling framework, there are two free parameters: l1-reg-
ularization parameter λ1, and fused Lasso parameter λ2, which control the performance 
of evaluation. A grid search is applied to search the optimal parameter combination. Of 
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note, for obtaining the sequence of networks with different sparsity, a group of regulari-
zation parameter λ1 are selected in the range of [0, 0.9] with a uniform step size. Hence, 
we set the total sampling number of λ1 as a free parameter Nλ1, and its candidate values 
for grid search are [100, 200, …, 500]. The candidate values for the fused Lasso param-
eter λ2 are [0.1, 0.2, …, 0.8]. In a word, our method involves the two parameters {Nλ1, λ2} 
which should be optimized for receiving the most specific difference in APOE ε4-related 
group analysis.

Statistical analysis and comparison

For the functional network, the structural network, and the proposed multimodal net-
work, group-level significant differences between APOE ε4 carriers and non-carriers are 
computed (Fig. 1d). A non-parametric permutation test (see Additional file 1: Appen-
dix S1) is used to assess the statistical difference for PH measurements (i.e., PH-0 and 
PH-1), while the graph theory measurements [33] such as local efficiency (LE), between-
ness (BET), global efficiency (GE), and clustering coefficient (CCO) are evaluated using 
a two-sample t-tests. Significance is determined using a level of 0.05. For subject-level 
network differences, we denote distances within group (DWG) as the distances between 
all pairs of subjects within a group. For example, DWG of the APOE ε4 carriers with 
27 subjects can be a vector composed of 351 pairwise distances. Similarly, the distances 
between groups (DBG) indicate the distances between all pairs of subjects from different 
groups. For instance, the DBG between APOE ε4 carriers (27 subjects) and non-carriers 
(36 subjects) could consist of 972 pairwise distances. In this study, Euclidean distance is 
used to measure the distances in DWG and DBG. Furthermore, we compared the PH 
metrics and the competing graph theory metrics.

Connectivity pattern identification

We develop a connectivity pattern identification method for exploring the specific con-
nectivity structures for APOE ε4 carriers and non-carriers, respectively. First, during 
the graph filtration, the brain regions synchronizing in a cycle structure could reflect 
a more meaningful neurobiological communication pattern in high dimensional space. 
Second, topological features with longer persistence could be assumed to convey impor-
tant information about the brain network, while short ones are associated with noise. 
Hence, a frequency network which integrates the highest persistent cycles can encode the 
important brain connectomic information, and be used to identify the specific connec-
tivity pattern for different APOE ε4 groups.

Suppose we have n frequency networks Θ for n APOE ε4 carriers, and m frequency 
networks Φ for m APOE ε4 non-carriers in Eq.  (7). After adding the weights of every 
corresponding edges together for each frequency network group, we can achieve the 
network �̃ or �̃ in Eq. (8). A difference analysis is performed for each specific connec-
tivity. Subsequently, we select a threshold (εt = 2) to filter the difference results and to 
obtain the ensuing difference network (binary network) Δε4 or Δnon-ε4 in Eq. 9. That is to 
say, the specific edges in network Δε4 could appear more often in the APOE ε4 carriers 
than non-carriers. Furthermore, compared to the edge measurement in Δε4 or Δnon-ε4, 
the specific loops could reflect the potential biological communication pattern. In this 
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study, we further extract the loop structures from Δε4 or Δnon-ε4 to quantify the APOE 
ε4-associated connectivity.

Results
Performance comparison

Table 1 shows the significance (p-value of two-sample t-test) of group comparison results 
(APOE ε4 carriers vs non-carriers) using six network measures from three types of brain 
networks. From Table 1, no statistically significant differences (p > 0.05) were found in 
terms of LE, BET, GE, CCO, and PH-1, of the whole brain FC. But a significant difference 
in PH-0 were observed, p = 0.0244 < 0.05, between APOE ε4 carriers and non-carriers. 
For the whole brain SC, one significant difference in PH-0 was found, p = 0.0081 < 0.05, 
and the groups do not differ significantly in other measurements, which is similar to FC. 
Of note, for the SC, p values is lower than that in FC, which represents a more signifi-
cant difference shown in SC. Especially, PH-1 shows a significant improvement relative 
to that in FC, and the result is marginally significant with p = 0.056. For the proposed 
multimodal brain network, our method outperforms the competing FC and SC. The sta-
tistically significant differences were found in LE (p = 0.0196), CCO (p = 0.0178), PH-0 
(p = 0.0001), and PH-1 (p = 0.0321) between groups. We further quantified the subject-
wise network differences using DWG and DBG for the FC, the SC, and the multimodal 
network (see Fig. 3) and performed a paired t-test between neighbor columns in each 

(7)� = {�1,�2, . . . ,�n}, � = {�1,�2, . . . ,�m}

(8)�̃ =
∑n

i=1
�i, �̃ =

∑m

j=1
�j

(9)�ε4 = �̃− �̃ < εt , �non−ε4 = �̃− �̃ < εt .

Table 1 The significance (p-value of  a  two-sample t-test) of  group comparison results 
(APOE ε4 carriers vs non-carriers) using six network measures from  three types of  brain 
networks

The three types of brain networks include functional connectivity networks (FC), structural connectivity networks (SC), and 
the networks constructed using our proposed method (Proposed). The six network measures include local efficiency (LE), 
betweenness (BET), global efficiency (GE), clustering coefficient (CCO), and two PH measurements (PH-0 and PH-1)

LE BET GE CCO PH-0 PH-1

FC 0.4388 0.6570 0.9791 0.5022 0.0244 0.1562

SC 0.0947 0.4632 0.1927 0.0526 0.0081 0.0560

Proposed 0.0196 0.1469 0.2756 0.0178 0.0001 0.0321

Fig. 3 For a the functional connectivity, b the structural connectivity, and c the proposed multimodal brain 
connectivity, the distance between groups (DBG, in green) and the distance within group (DWG, ε4 group 
in red and non-ε4 group in blue) are given. We compared the persistent homology features and some graph 
theory metrics. A discriminative feature corresponds to a large DBG (green) against two small DWGs (red and 
blue). In addition,  pL and  pR represent the statistical significance using t-test between any columns, i.e. DWG 
(ε4) and DBG, DWG (non-ε4) and DBG, respectively

(See figure on next page.)
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boxplot. We found that the PH metrics reflect the difference of networks better than 
graph metrics like LE, BET, GE, and CCO. That is to say, the DBG (green) between 
APOE ε4 carriers and non-carriers should be higher than the DWG within carriers (red) 
or DWG within non-carriers (blue).

The influence of regularizations

We applied grid search to explore the influence of regularizations for statistical group 
analysis. From Fig. 4, the performances in LE, BET, GE, and CCO are irregular, which 
is because graph theory measurements have a strong parametric sensitivity for network 
structures. In addition, we found that when Nλ is small (Nλ = 100, 150, and 200), p val-
ues in PH-0 remain a relatively high level (lower significance level). With an increas-
ing value of Nλ, p value achieves the best performance (p = 0.001) at Nλ = 350, and then 
shows a suboptimal performance again at Nλ = 400. For PH-1, the trend is almost similar 
to PH-1 that the best performance is received (p = 0.0321) at Nλ = 350. For λ2, we found 
p value shows a growth trend firstly, and after achieving the optimization λ2 (0.5 and 0.7 
for PH-0 and PH-1), the performance tends to decrease.

Connectivity pattern identification

After obtaining the frequency network for every subject, we constructed the difference 
network between groups by the proposed connectivity pattern identification frame-
work. Furthermore, we extracted the loops from each difference network corresponding 

Fig. 4 The statistical performance of different regularization parameters. For 0-dimensional features and 
1-dimensional features, the candidate parameters for grid search are sampling number Nλ1 and regularization 
parameter λ2. For other graph theory measurements, the candidate parameters are regularization parameter 
λ1 and λ2
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to APOE ε4 group or non-ε4 group, where it totally has 40 loops for Δε4 and 35 loops 
for Δnon-ε4. In particular, we defined the number of edges forming the loops as a weight, 
and then selected the top 8 loops with the largest weights (see Additional file 1: Appen-
dix S2). It is worth mentioning that the loop structures might not entirely appear in the 
brain network of each subject, but in just parts of them. Figure 5 graphically illustrates 
that the extracted 8 loops for APOE ε4 carriers and non-carriers, respectively, where the 
red arcs represent the connections associated with the default mode network (DMN) 
that has been commonly regarded as AD-pathology related. The black arcs in Fig.  5 
denote the connections outside the DMN, which extends the previous studies of DMN 
to the whole brain level.

Discussion
Efficacy of the multimodal modelling

In this paper, we compared the rs-fMRI networks, the dw-MRI networks, and the mul-
timodal networks. We found that there were no significant differences between APOE 
ε4 carriers and non-carriers in the graph measurements of the rs-fMRI and dw-MRI 
networks. But compared with the rs-fMRI networks, a relatively big difference was 
observed in the dw-MRI networks. This finding is consistent with prior studies [6, 9, 
34], which found that APOE ε4 carriers show relatively poorer SC than FC, involving 
disrupted white matter microstructural organization, smaller brain volumes, and lower 
regional SC in DMN. Furthermore, when integrating multimodal information from the 
rs-fMRI and dw-MRI data using our proposed framework, we observed a significant 
group difference in LE, CCO, PH-0, and PH-1. Although the same significant difference 
is observed in PH-0 for the FC, the SC, and the multimodal network, the proposed mul-
timodal network showed the best performance (p = 0.0001). Our observation indicates 
that the multimodal network is more sensitive than either rs-fMRI or dw-MRI alone 
in exploring specific connectivity properties related to risk of Alzheimer’s disease. This 
result demonstrates the advantage of multimodal integration using the dw-MRI connec-
tivity to guide the fMRI-based network construction.

Efficacy of persistent homology

We proposed a novel framework for quantifying network features using PH. The pro-
posed framework integrates a group of brain networks with different sparsity levels, 
which avoids the uncertainty of regularization parameter selection. Moreover, instead 
of trying to obtain an unbiased estimate of connectivity strength, our method focused 
on the binary network structure rather than the weight-based connectivity network. Sta-
tistically, we found persistent homology features show more significant difference than 
other graph theory measurements at the group level. Especially, the PH-0 outperforms 
the PH-1 in statistical performance, which represents the connected components is 
more sensitive in encoding graph filtration than the topological cycle structures. After 
evaluating the subject-level difference using DWG and DBG, persistent homology fea-
tures showed a better discriminating power than others. It is also worth noting that the 
DWG of APOE ε4 non-carriers should be larger than the DWG of the APOE ε4 carri-
ers, i.e., the blue boxplot in Fig. 3 is typically higher than the red one. This indicates that 
the carrier group appears more homogeneous than non-carrier group. Furthermore, the 
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Fig. 5 The specific connectivity for a APOE ε4 carriers, b APOE ε4 non-carriers, where red arcs represent the 
DMN-associated connections and black arcs extend the connections to whole brain
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above patterns were detected only by the multimodal network with PH quantification, 
but not by any other studied methods. A similar approach fusing persistent homology 
and sparse representation has been used by [14] for characterizing the abnormality of 
white matter network, but they investigated a sparse version of pair-wise ROI correla-
tion, rather than multiple co-activated ROIs, and explore the single modality rather than 
multiple modalities.

Efficacy of regularizations

Brain networks corresponding to various combinations of l1-regularization parameter 
λ1 and fused Lasso parameter λ2 have different sparsity levels, leading to a variety of dif-
ferent results. The bigger the l1-norm regularization parameter, the lower nonzero ratio 
will be obtained for brain network. Different from l1-norm regularization parameter, the 
fused Lasso parameter handles the feature collinearity for improved stability. By grid 
search to adjust the two parameters, the best combination of parameters can improve 
the results of statistical analysis. This demonstrates the effectiveness of searching the 
parameters to characterize the APOE ε4-related network difference.

The evaluation of specific connectivity

The significant decrease in brain connectivity caused by AD could modularize regional 
brain atrophy. On the other hand, brain regions involved in a topological cycle with long 
persistence are potentially located in relatively independent modules in the brain net-
work. The frequency network aims to record the frequent edges in a group of cycles, 
because the frequent edges could connect to the atrophied brain regions in APOE ε4 car-
riers with a higher probability. The difference network specializes these frequent edges. 
We further extracted the specific loops structures from the difference network as the 
results of connectivity pattern identification. After evaluating these loop structures, we 
found brain regions in APOE ε4 carriers mostly refer to the interconnection within the 
DMN than non-carriers. Especially, we found that compared with non-carriers, APOE 
ε4 carriers exhibit one cluster involving the connections between left temporal gyrus 
and right temporal gyrus, mainly focusing on left middle temporal gyrus, left superior 
temporal gyrus, right superior temporal gyrus, right middle temporal gyrus, right infe-
rior temporal gyrus. Moreover, APOE ε4 carriers show the specific connectivity within 
a sub-network centering on the left hippocampus, extending into left/right cuneus, left/
right superior occipital gyrus, right precuneus, left Inferior parietal lobule, left middle 
temporal gyrus, right temporal pole middle gyrus, right superior temporal gyrus, right 
thalamus, and left superior frontal gyrus (medial orbital). These results were founded to 
be associated with brain network of APOE ε4 carriers in previous researches [6, 8, 35], 
and further indicate the effectiveness of the proposed connectivity pattern identification 
method.

Limitation and future directions

Of note, in this study, there are two limitations needing to be improved next for the 
proposed method. First, our method could identify cycles consisting of the greatly 
changed brain regions, rather than mildly changed regions. Because significant edges 
between regions as the modulator have a longer persistent interval in graph filtration, 
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which can be easy to observe using PH. This limitation may potentially influence the 
result of connectivity pattern identification. Second, a relatively small number of sub-
jects remains a problem for statistical analysis. In the future, we will improve the per-
formance of structure identification using a more specific brain partition and validate 
our framework on a larger dataset.

Conclusions
In this study, we have proposed a novel multimodal brain network modeling frame-
work for identifying the APOE ε4-related differences in the brain connectome. To 
integrate brain network information of different sparsity levels as well as avoid extra 
connectivity strength estimation, we have introduced persistent homology (PH) to 
quantify the individual network. Experimental results on the ADNI database demon-
strated that the proposed framework could generate multimodal brain networks with 
great discriminative power. Moreover, the persistent homology features outperformed 
other measurements when quantifying APOE ε4-related network differences. In addi-
tion, the specific connectivity pattern could be obtained by encoding the 1-dimen-
sional features of PH. These specific structures were consistent with previous results 
in DMN and expanded DMN to whole brain connectivity. These findings suggest that 
the proposed method not only improves the statistical performance between APOE 
ε4 carriers and non-carriers, but also characterizes the interaction effects between 
brain connectivity and APOE ε4.
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