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Abstract
Background: All molecular functions and biological processes are carried out by
groups of proteins that interact with each other. Metaproteomic data continuously
generates new proteins whose molecular functions and relations must be discovered.
A widely accepted structure to model functional relations between proteins are
protein-protein interaction networks (PPIN), and their analysis and alignment has
become a key ingredient in the study and prediction of protein-protein interactions,
protein function, and evolutionary conserved assembly pathways of protein
complexes. Several PPIN aligners have been proposed, but attaining the right balance
between network topology and biological information is one of the most difficult and
key points in the design of any PPIN alignment algorithm.

Results: Motivated by the challenge of well-balanced and efficient algorithms, we
have designed and implemented AligNet, a parameter-free pairwise PPIN alignment
algorithm aimed at bridging the gap between topologically efficient and biologically
meaningful matchings. A comparison of the results obtained with AligNet and with the
best aligners shows that AligNet achieves indeed a good balance between topological
and biological matching.

Conclusion: In this paper we present AligNet, a new pairwise global PPIN aligner that
produces biologically meaningful alignments, by achieving a good balance between
structural matching and protein function conservation, and more efficient
computations than state-of-the-art tools.

Keywords: Protein-protein interaction network, Global alignment, Network matching,
Functional consistency

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3502-1&domain=pdf
http://orcid.org/0000-0002-5358-6768
mailto: merce.llabres@uib.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Alcalá et al. BMC Bioinformatics 2020, 21(Suppl 6):265 Page 2 of 22

Background
One of the most difficult problems in systems biology is to discover protein-protein
interactions as well as their associated functions. The alignment and analysis of protein-
protein interaction networks (PPIN) has become a key ingredient to obtain functional
orthologs as well as evolutionary conserved assembly pathways of protein complexes.
With this purpose, several pairwise alignment algorithms have been proposed in the
last 15 years. The early aligners [1–5] were aimed at finding local alignments between
regions with similar structure in the networks under comparison. But since the align-
ments between regions of the pair of PPIN could be mutually inconsistent, it could be
impossible to merge the alignments between regions into an alignment of the whole
networks. In contrast, a global alignment algorithm is aimed at finding the best overall
alignment between whole PPIN [6]. Several such global PPIN aligners have been proposed
during the last years [4, 7–11].

Most PPIN aligners are based on the idea that “two nodes are similar when their cor-
responding neighbors are so,” taking into account both the network topology and the
biological features of the proteins in the definition of “similarity.” The problem is that
attaining the right balance between network topology and biological information is one
of the most difficult and key points in any PPIN alignment algorithm. As it is shown in
[12, 13], when an alignment process is guided by topological information only, it produces
alignments with a high topological coherence but a low biological coherence, while when
it is guided by sequence information only, the resulting alignments have a high biological
coherence but a low topological coherence. This becomes specially inconvenient in those
aligners where the user has to choose the value of a parameter that specifies the desired
balance between the topological and the sequence similarities. In addition, most aligners
are not efficient from the computational point of view.

Motivated by this lack of well-balanced and efficient algorithms, we have designed
AligNet, a parameter-free pairwise PPIN alignment algorithm aimed at filling the gap
between efficient topologically and biologically meaningful matchings. The overall idea
of the algorithm is to obtain many local alignments that are combined and extended into
a meaningful global alignment. The final alignment captures the benefits of considering
both types of alignments: with the local alignments we capture the topological similarity
between the networks and we speed up the running time of the algorithm, while with the
final global alignment we solve the inconsistencies among the local alignments and yield
an overall alignment of the pair of input PPIN. AligNet has been implemented in R [14],
and the implementation is freely available from https://github.com/biocom-uib/AligNet.

A comparison of the results obtained with AligNet and with the best aligners assessed
in [12, 13] shows that AligNet achieves indeed a good balance between topological
and biological matching. In the tests reported in this paper, AligNet obtained high
functional consistence scores between aligned proteins in most of the alignments and
also a reasonable fraction of conserved interactions. In addition, AligNet, together
with HubAlign [8], had the best running times among all the aligners considered in
our tests.

Methods
In this paper, by a graph we understand an undirected graph, that is, a structure G =
(V , E) with V a finite set of nodes and E a family of 2-element subsets {u, v} of V called

https://github.com/biocom-uib/AligNet
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the edges of the graph. A PPIN is modelled in a natural way as a graph, with its nodes
representing the proteins and its edges, their interactions.

We introduce now some notations. Let G = (V , E) be a graph. We say that an edge
e = {u, v} is incident to u and v. The nodes v such that {u, v} ∈ E are the neighbors of u,
and they form the set NG(u). The degree deg(u) of a node u ∈ V is the number of edges
incident to it. A path between two nodes u, v ∈ V is a sequence of pairwise different edges
{u, u1} , {u1, u2} , . . . ,

{
uk−1, uk

}
, {uk , v} such that the first and last edges are incident to u

and v, respectively, and every pair of consecutive edges share a node (different from u and
v, in the case of the first and last edges, respectively). The length of a path is the number
of edges forming it, and its intermediate nodes are u1, . . . , uk . Two nodes are connected
when there exists a path between them. For every pair of connected nodes u, v ∈ V , their
distance dG(u, v) in G is the length of a shortest path connecting them. The diameter D(G)

of G is the maximum distance between any two connected nodes in G. The cardinality of
a set X is denoted by |X|.

AligNet receives as input two graphs G = (V , E) and G′ = (V ′, E′) representing two
PPIN (in particular, each node of them is injectively identified with a protein) and it pro-
duces, as output, a similarity score for them and a local and a global alignment between
them. Figure 1 shows the pipeline of our algorithm AligNet. The main steps in AligNet
that are described below are:

1 The computation of overlapping clusterings C(G) and C(G′), respectively, of the
input networks G and G′.

2 The computation of alignments between pairs of clusters in C(G) and C(G′).
3 The computation of a matching between C(G) and C(G′).
4 The computation of a local alignment of the input networks G and G′.
5 The extension of this local alignment to a meaningful global alignment.

Step 1. Overlapping clusterings. The first step in AligNet consists in computing an
overlapping clustering of each input network. These clusterings are based on the follow-
ing similarity score s(u, v) between pairs of proteins (nodes) u, v in a PPIN G: If u, v are

Fig. 1 Pipeline of AligNet algorithm
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not connected by a path, then s(u, v) = 0, and if they are connected,

s(u, v) = B(u, v) + D(G)+1−dG(u,v)
D(G)+1

2
,

where B(u, v) is the normalized bit score of the proteins u and v, that is, the rescaled
version of their alignment score obtained with BLAST+, which is independent of the size
of the search space [15]. The intuition behind this similarity score is that two proteins are
similar if they have similar sequences of nucleotides and they are relatively close to each
other in the graph.

To obtain the overlapping clustering of an input network, we define a cluster centered
at each node. To avoid the choice of a fixed and arbitrary cluster size, we considered the
similarity score distribution and define the cluster centered at each node as follows. Let α

be the third quartile of the distribution of the similarity score values of pairs of nodes, so
that only 25% of the pairs of nodes (u, v) are such that s(u, v) > α. Then, for every node
u ∈ V , the cluster Cu in G centered at u is

Cu = {v ∈ V | s(u, v) > α} .

Let C(G) = {Cu | u ∈ V } and C(G′) = {
Cu′ | u′ ∈ V ′}.

Figure 2 displays two toy PPIN that will be used as a running example throughout this
section. The first network consists of 8 nodes and 9 edges, while the second network con-
sists of 9 nodes and 17 edges. Figure 3 displays the PPI networks considered as a running
example as well as its overlapping clustering. The first network consists of 8 nodes and 9
edges, so there are 8 clusters. The second network consists of 9 nodes and 17 edges, and
its overlapping clustering has 9 clusters.

Step 2. Alignments between pairs of clusters. In this second step, AligNet computes
an alignment between every pair of clusters Cu ∈ C(G) and Cu′ ∈ C(G′) such that
B(u, u′) > 0. These alignments define an alignment score between every such a pair of
clusters that will be used in the third step to compute a matching between C(G) and
C(G′).

Fig. 2 a A subnetwork of the Drosophila melanogaster PPI network. b A subnetwork of the Homo Sapiens PPI
network
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Fig. 3 Overlapping clusterings. This figure shows the overlapping clustering on the PPINs in Fig. 2 obtained
by AligNet. We can see here the 8 clusters in the network in Fig. 2 on the left, and the 9 clusters in the
network in Fig. 2 on the right. The center of every cluster is highlighted in blue. Since we have considered
two small pieces of a PPIN, we obtain here that, the first cluster on the left is the entire piece of network. In
the right, we obtain also the entire piece of network in the second cluster on the right. Notice that we obtain
the whole piece of the network when we consider the cluster of a node that is in the center of the network

Formally, for every u ∈ V and u′ ∈ V ′ such that B(u, u′) > 0, the alignment between
Cu ∈ C(G) and Cu′ ∈ C(G′) is obtained as follows:

(i) Match u with u′. Set Lu,u′ = {
(u, u′)

}
, L(1)

u,u′ = {u} and L(2)

u,u′ = {u′}.
(ii) For every v ∈ Cu ∩ NG(u) and for every v′ ∈ Cu′ ∩ NG′(u′), let

F
(
v, v′) = | deg(v) − deg(v′)| − B

(
v, v′) + 1.

Compute a matching Mu,u′ ⊆ (Cu ∩ NG(u)) × (Cu′ ∩ NG′(u′)) that minimizes
∑

(v,v′)∈Mu,u′ F(v, v′) using the Hungarian algorithm [16]. Sort the pairs in Mu,u′ in
decreasing order of their F value, and concatenate them to Lu,u′ . Add their first
coordinates to L(1)

u,u′ and their second coordinates to L(2)

u,u′ .
(iii) Iterate step (ii), replacing (u, u′) by the rest of the pairs in Lu,u′ and removing from Cu

and Cu′ the nodes already aligned.
More specifically, in the k -th iteration, take the k -th element (v0, v′

0) of Lu,u′ . For
every w ∈ (Cu \ L(1)

u,u′) ∩ NG(v0) and every w′ ∈ (Cu′ \ L(2)

u,u′) ∩ NG′(v′
0), compute

F(w, w′). Then, compute a matching

Mv0,v′
0

⊆
(
(Cu \ L(1)

u,u′) ∩ NG(v0)
)

×
(
(Cu′ \ L(2)

u,u′) ∩ NG′(v′
0)

)

that minimizes
∑

(v,v′)∈Mv0,v′0
F(v, v′). Sort the pairs forming Mv0,v′

0
in decreasing

order of their F value, and concatenate them to Lu,u′ . Add their first coordinates to
L(1)

u,u′ and their second coordinates to L(2)

u,u′ .

The resulting alignment Lu,u′ defines a partial injective mapping ηu,u′ : Cu → Cu′ .
The nodes in Cu that are matched to nodes in Cu′ form the domain of the mapping ηu,u′ ,
which is denoted by Dom ηu,u′ . Figure 4 shows an example of the alignment of a pair of
clusters: one cluster from the first network and another cluster from the second network.
The general idea behind this alignment procedure is that u is matched to u′ and then a
node v ∈ Cu should be matched to a node v′ in Cu′ when they have similar sequences and
similar degrees, provided that, furthermore, there exist paths connecting u with v and u′
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Fig. 4 Alignment of a pair of clusters. This figure shows how AligNet aligns two clusters which corresponds
to Step 2 of our algorithm. The clusters in this example are, respectively, the first in the list of clusters of G,
which are shown on the left in Fig. 3 and the seventh in the list of clusters of G′ , which are shown on the right
in Fig. 3. We show in the picture all the steps needed to align the cluster of G with the cluster of G′ . From top
to bottom in this figure, we can see that AligNet first aligns the centers of the clusters, which are the nodes
highlighted in blue. Then, AligNet aligns the neighbors of the centers (second row). Next, AligNet aligns the
neighbors of the neighbors. In each step we show in a different colour the nodes that are aligned in the
present step. Notice that, in this example, there are two nodes that remain unmatched

with v′ such that their intermediate nodes are already aligned in sequential order along
the paths. The alignment procedure gives priority to matching neighbors of nodes x, x′ at
the possible shortest distance of the respective cluster centers and with F(x, x′) as large as
possible among those pairs already matched at the same iterative step.

Step 3. Matching between families of clusters. Let

A = {
ηu,u′ | u ∈ V , u′ ∈ V ′, B(u, u′) > 0

}

be the set of alignments obtained in step 2. The score of each ηu,u′ ∈ A is defined as

Score(ηu,u′) =
∑

v∈Dom ηu,u′ B(v, ηu,u′(v))
|Dom ηu,u′ | + |Dom ηu,u′ |

maxηw,w′ ∈A|Dom ηw,w′ | .

This score assesses simultaneously the average similarity of the sequences of the
proteins matched by ηu,u′ and their number.

Once computed all these scores, AligNet obtains a matching between C(G) and C(G′)
by applying the maximum weighted bipartite matching algorithm to the bipartite graph
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whose nodes are the clusters in C(G) and C(G′), whose edges connect pairs of clusters
Cu ∈ C(G) and Cu′ ∈ C(G′) with B(u, u′) > 0, and the weight of the edge connecting Cu
with Cu′ is the score Score(ηu,u′). We shall denote by C the set of partial injective map-
pings ηu,u′ corresponding to pairs of clusters (Cu, Cu′) that are matched by this matching.
Figure 5 shows the matching obtained in this step between the families of clusters in Fig. 3.

Step 4. Local alignment of PPIN. In this step, AligNet produces a local alignment
between G and G′ from the matching between C(G) and C(G′) obtained in the previous
step.

The main idea is to define this alignment by merging the partial injective mappings
ηu,u′ ∈ C. The problem is that these mappings may be inconsistent. A first approach to
overcome this problem would be to consider the weighted bipartite hypergraph with set
of nodes V �V ′ and where every mapping ηu,u′ defines a hyperarc with source its domain,
target its image, and weight Score

(
ηu,u′

)
, and to solve on it the weighted bipartite hyper-

graph assignment problem, whose solution would provide a well-defined local alignment
of the input networks.

However, in order to decrease the computation time of AligNet, we do not define this
hypergraph from the whole C, but just from a subset R of best-scored alignments built
recursively as follows. Starting with R = ∅, AligNet adds to R at each step a mapping
ηw0,w′

0
∈ C with w0 not belonging to the union of the domains of the mappings ηw,w′

already in R and with maximum Score
(
ηw0,w′

0

)
among all such mappings. AligNet iter-

ates this procedure until every node in
⋃

ηu,u′ ∈C Dom ηu,u′ belongs to the domain of some
mapping in R. In Fig. 6 we give the subsetR of C for the networks in our running example.

Then, Alignet obtains from the directed hypergraph with nodes V � V ′ and hyper-
arcs defined by the mappings ηu,u′ ∈ R as explained above, a local well-defined
alignment between G and G′ as a solution of the corresponding weighted bipartite hyper-
graph assignment problem [17]. Figure 7 shows the local alignment obtained from the
hypergraph corresponding to Fig. 6.

Fig. 5 Alignment of the clusterings. This figure shows the final assignment (same colour) between the
clusters in Fig. 3 produced by AligNet, which corresponds also to Step 3. Each of the eight clusters obtained
from G is aligned to one, and only one, of the nine clusters obtained from G′ . Hence, one cluster from G′
remains unmatched which is the second cluster in the third row on the right in Fig. 3. In this figure, we show
the clusters from G on the left and its corresponding cluster image from G′ on the right
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Fig. 6 Appropriate set of alignments. This figure shows how AligNet constructs an appropriate set of
alignments considered to obtain a final local alignment. This corresponds to the Step 4 of our aligner. First of
all, a maximum score alignment between a pair of clusters is chosen: in this case, this corresponds to the
matching between the clusters in Fig. 4. Both clusters are shown in the second row of this figure. The
shadowed nodes are the nodes that are not aligned. Next, a maximum score alignment of a pair of clusters
with source a cluster centered at a shadowed node is chosen: it turns out to be the one in the second row in
Fig. 5 and it is shown in the third row in this figure. Finally, the last alignment to be included in the
appropriate set of alignments must be the one with source cluster centered at the remaining shadowed
node: this corresponds to the alignment in the last row in Fig. 5 shown in the bottom of this figure. Notice
that in the end, that is when we consider the three alignments together, there are four nodes in the source
network with inconsistent assignments

Step 5. Global meaningful alignment of PPIN. In order to extend the local alignment
produced in the previous step, AligNet iterates the following procedure:

• It removes the nodes in G and G′ that have already been aligned, and it recomputes
the score of each alignment ηu,u′ following the same definition as in step 3, but only
taking into account the remaining nodes in its domain and image.

• It computes a new optimal matching C between C(G) and C(G′), as in step 3, but
using as edges those ηu,u′ whose updated score is positive, and weights these updated
scores.

• It computes a new set R of best-scored alignments ηu,u′ with Score(ηu,u′) > 0, as in
step 4.
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Fig. 7 Local alignment. This figure shows the local alignment of the original networks obtained by AligNet in
its fourth step, once the inconsistent assignments have been solved. The coherent assignment of nodes is
obtained as the solution to the weighted bipartite hypergraph assignment problem, for the hypergraph
associated to the appropriate set of alignments described in Fig. 6. In this case, the hypergraph has three
hyperarcs, corresponding to the three alignments considered in the appropriate set of alignments

• It defines a new directed hypergraph whose nodes are the nodes in V ∪ V ′ not yet
aligned and hyperarcs the mappings ηu,u′ in the new set R, understood as hyperarcs
with source the still unaligned nodes in their domain and target the still unaligned
nodes in their image.

• It computes a local alignment between unaligned nodes in V and V ′ by solving the
weighted bipartite hypergraph assignment problem for this hypergraph, and it adds
this local alignment to the alignment obtained so far.

This procedure is iterated while there exist nodes not aligned belonging to the domain
or the image of some alignment ηu,u′ with (updated) positive score. In Fig. 8 we show the
final global meaningful alignment obtained with AligNet for the networks in our running
example.

Results
In this section we report the tests performed to assess the performance of AligNet.
Following the comparisons published in [12, 13], we decided to compare AligNet with
SPINAL [7], HubAlign [8], NATALIE [18], L-GRAAL [19], and PINALOG [20] on
the dataset used in [12], which consists of the PPIN of M. musculus (mus), C. ele-
gans (cel), D. melanogaster (dme), S. cerevisiae (sce), and H. sapiens (hsa), down-
loaded from the IsoBase database [21] (version 1.0.2); see Table 1. Unfortunately, we
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Fig. 8 Final global alignment. This figure shows the final global alignment of the original networks obtained
by AligNet. Notice that, in the fifth step of AligNet, the previous alignment is extended to a global one. In this
case, there were two unmatched nodes in the source network in Fig. 7 which are now assigned

had to discard the aligner NATALIE from our tests because some computations did
not finish.

In a first assessment of the alignments, we used two quality measures: the edge correct-
ness ratio (EC), which quantifies the amount of structure preserved by the alignment, and
the functional coherence value (FC), which assesses the functional similarity of the aligned
proteins by comparing their Gene Ontology annotation. More formally, let G = (V , E)

and G′ = (V ′, E′) be two PPIN such that |V | ≤ |V ′| and let μ : V → V ′ be a mapping
defining an alignment. The edge correctness ratio of μ is

EC(μ) =
∣∣{{u, v} ∈ E : {μ(u), μ(v)} ∈ E′}∣∣

min{|E|, |E′|}

Table 1 Number of nodes and edges (with and without loops) of the PPIN considered as input data
in our tests

Nodes Edges (with loops) Edges (without loops)

M. musculus 623 776 559

C. elegans 2,995 8,639 4,827

S. cerevisiae 5,524 164,718 82,656

D. melanogaster 7,396 49,467 24,937

H. sapiens 10,403 105,232 54,654
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Table 2 Edge correctness ratio obtained in every alignment

Net1 Net2 AligNet HubAlign L-GRAAL PINALOG SPINAL

mus cel 0.58 0.81 0.79 0.34 0.01

mus sce 0.65 0.97 0.68 0.56 0.05

mus dme 0.65 0.88 0.70 0.30 0.03

mus hsa 0.76 0.95 0.77 0.62 0.24

cel sce 0.24 0.83 0.38 0.30 0.06

cel dme 0.31 0.68 0.53 0.18 0.01

cel hsa 0.31 0.77 0.43 0.23 0.01

sce dme 0.03 0.01 0.08 0.19 0.03

sce hsa 0.04 0.03 0.13 0.19 0.04

dme hsa 0.13 0.37 0.31 0.13 0.01

mean 0.37 0.63 0.48 0.30 0.05

and the functional coherence value of μ is

FC(μ) =
∑

u∈V FS(u, μ(u))

|V | ,

where the similarity score FS is defined by

FS(u, u′) = |GO(u) ∩ GO(u′)|
|GO(u) ∪ GO(u′)| ,

with GO(u) and GO(u′) the sets of GO annotations of the proteins u and u′, respectively.
Tables 2 and 3, as well as Figs. 9 and 10, report the EC and FC scores of the align-

ments, respectively. These scores are produced by the aligners under consideration using
the aligners’ parameters suggested by default whenever it was needed. Because all align-
ments attained a very low FC score, to put these low scores in perspective, we estimated
the maximum value FCmax of the FC score for every pair of networks. This maximum
value FCmax was obtained solving the maximum weighted bipartite matching problem,
where the complete bipartite graph had the proteins as nodes and the weight of each edge
connecting one protein in a network to a protein in the other network was the FC score
of the corresponding pair of proteins. These maximum values are listed in Table 3. We
observe that they are very low, being around 0.2 in most computations. Also, we observe
in Tables 2 and 3, that AligNet and HubAlign obtained the best balance between FC and
EC scores followed by PINALOG and L-GRAAL.

Table 3 Functional coherence value obtained in every alignment

Net1 Net2 FCmax AligNet HubAlign L-GRAAL PINALOG SPINAL

mus cel 0.21 0.06 0.04 0.03 0.10 0.12

mus sce 0.24 0.08 0.07 0.04 0.12 0.15

mus dme 0.19 0.05 0.03 0.03 0.07 0.06

mus hsa 0.54 0.23 0.26 0.10 0.48 0.10

cel sce 0.20 0.06 0.03 0.04 0.13 0.19

cel dme 0.23 0.04 0.02 0.02 0.09 0.09

cel hsa 0.24 0.04 0.02 0.03 0.08 0.08

sce dme 0.24 0.05 0.07 0.02 0.07 0.10

sce hsa 0.26 0.06 0.08 0.02 0.09 0.11

dme hsa 0.20 0.04 0.02 0.02 0.09 0.08

mean 0.26 0.07 0.06 0.04 0.13 0.11
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Fig. 9 Edge Correctness Scores. This figure shows the edge correctness score obtained for each aligner in
every alignment. The different aligners are presented in different colours

In addition, in our first test and in order to measure the amount of variation or dis-
persion of the EC and FC scores used to evaluate the aligners, we introduced some noise
to the networks by randomly adding and deleting 5% of the edges. For every aligner,
we were able to compute 100 new pairwise alignments considering the perturbed net-
works of M. musculus mapped to the perturbed networks of C. elegans, D. melanogaster,
and S. cerevisiae. In this way, for every aligner we ended up with a sample of 100 EC
and FC scores for each of the alignments mus–cel, mus–sce and mus–dme. In Table 4,
the mean of the EC and FC scores as well as their standard deviation are presented.
Also, to visualise the scores distribution, we considered violin plots to present the results
(See Figures 11,12 and 13). We conclude that small perturbations of the real networks
produced small variations of the EC and FC scores.

As a second test, we compared the behavior of AligNet, PINALOG, HubAlign, and L-
GRAAL in relation to the alignment of protein complexes (we excluded SPINAL from

Fig. 10 Functional Coherence Scores. This figure shows the functional coherence score obtained for each
aligner in every alignment. In a purple dot we show the maximal value expected for every The different
aligners are presented in different colours
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Table 4 Statistics of the EC and FC scores

Aligner Nets EC_mean FC_mean EC_min EC_max EC_sd FC_sd

AligNet mus_cel 0.5819678 0.0731654 0.5420394 0.6207513 0.0166303 0.0033529

AligNet mus_dme 0.6583839 0.0516291 0.6118068 0.6923077 0.0158178 0.0023391

AligNet mus_sce 0.6149481 0.0767457 0.5706619 0.6672630 0.0188964 0.0029397

HubAlign mus_cel 0.8321288 0.0514488 0.7745975 0.8694097 0.0157104 0.0026933

HubAlign mus_dme 0.9022209 0.0343045 0.8747764 0.9266547 0.0114605 0.0023421

HubAlign mus_sce 0.9684609 0.0661089 0.9499106 0.9892665 0.0088473 0.0029502

L-GRAAL mus_cel 0.7578712 0.0451042 0.7066190 0.8032200 0.0198398 0.0037184

L-GRAAL mus_dme 0.7770627 0.0246251 0.7137746 0.8318426 0.0209408 0.0023098

L-GRAAL mus_sce 0.6856139 0.0482183 0.5635063 0.8246869 0.0677820 0.0049054

PINALOG mus_cel 0.0842755 0.1361287 0.0554562 0.1305903 0.0146922 0.0031677

PINALOG mus_dme 0.1700990 0.0954297 0.1270125 0.2093023 0.0170064 0.0016534

PINALOG mus_sce 0.4001862 0.1226443 0.3685152 0.4508050 0.0104970 0.0017084

this test because its results in the EC and FC tests were not convincing). Following the
procedure explained in [20], we considered the database MIPS CORUM [22] as the gold
standard for the human protein complexes and the information available in [23] as the
gold standard for the yeast complexes. In addition, we considered the functional infor-
mation available in MIPS CORUM for the human complexes and in MIPS FunCat [24]
for the yeast complexes. To measure the quality of an alignment in terms of its behaviour
on protein complexes, we used the complex functional coherence value (CFC), defined
as the ratio of complexes that are aligned correctly with respect to the aligned com-
plexes. More specifically, if we call a pair of complexes, one in each network, coherent
when they share some biological function and incoherent otherwise, and if we denote by
CP and NCP the numbers of coherent and incoherent pairs of aligned complexes, then
CFC = CP

CP+NCP × 100. We report the results obtained by all the aligners in Table 5 and
Fig. 14. We observe there that AligNet obtained the highest CFC value (25.34) followed
by PINALOG (24.48) whereas HubAlign and L- GRAAL obtained a very low CFC value
(5, 4.75 resp.).

In order to further compare the results obtained by AligNet on protein complexes with
those of the others aligners, we counted, for each other aligner A, the complexes that
were not aligned either by AligNet or by A; the coherent and incoherent pairs among
those complexes that were aligned by AligNet but not by A; and the coherent and inco-
herent pairs among those complexes that were aligned by A but not by AligNet. The

Fig. 11 Scores of mus–cel alignments. This figure shows as violin plots the distribution of the EC and FC
scores obtained for every aligner in the alignments of the perturbed networks of mus and cel
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Fig. 12 Scores of mus–sce alignments. This figure shows as violin plots the distribution of the EC and FC
scores obtained for every aligner in the alignments of the perturbed networks of mus and sce

results are given in Table 6 and Fig. 15. We observe there that the number of incoherent
pairs by HubAlign, L-GRAAL and PINALOG versus AligNet nearly double the number
of incoherent pairs by AligNet versus the others.

As a third test to evaluate the aligners, we considered the essential proteins, i.e. those
proteins that are indispensable for the survival of an organism, again in the human and
yeast PPINs. We evaluate the aligners performance assuming that essential proteins must
be aligned to essential proteins. Thus, for every alignment between the PPIN of S. cere-
visiae and H. sapiens, a true possitive (TP) is an essential protein matched to an essential
protein while a false possitive (FP) is an essential protein matched to a non essential
one. In the same way, a true negative (TN) is a non essential protein matched to a non
essential one and a false negative (FN) is a non essential protein matched to an essen-
tial one. The essential proteins information was retrieved from the DEG Database [25]
(http://www.essentialgene.org/). We considered the following statistical measures to eval-
uate the aligners performance: specificity defined by TN/N , precision defined by TN/N ,
F1-score defined by 2TP/(2TP + FP + FN), accuracy defined by (TP + TN)/(P + N)

and balanced accuracy, defined by ((TP/P) + (TN/N))/2, where P and N are the num-
ber of essential and non essential proteins respectively in S. cerevisiae. Also, we calculated
the Pearson correlation of this binary classification problem, called MCC (Matthews
Correlation Coefficient) defined by

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Fig. 13 Scores of mus–dme alignments. This figure shows as violin plots the distribution of the EC and FC
scores obtained for every aligner in the alignments of the perturbed networks of mus and dme
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Table 5 Number of not assigned, correctly assigned (CP), incorrectly assigned (NCP) protein
complexes and the complex functional coherence value obtained for every aligner

AligNet PINALOG HubAlign L-GRAAL

Not Assigned 1269 945 1154 996

CP 128 203 31 37

NCP 377 626 589 741

CFC 25.34 24.48 5 4.75

and the proficiency, also called uncertainty coefficient or entropy coefficient. The uncer-
tainty coefficient in this test is defined as follows: let {p1, . . . pn} be the set of proteins in
S. cerevisiae and let η be an alignment between the two PPIN S. cerevisiae and H. sapi-
ens. Two random variables X and Y are considered such that, X is a binary vector
X = (xi)i=1,...,n such that xi takes the value 1 if protein pi is essential and the value 0 oth-
erwise. Y is a binary vector Y = (yi)i=1,...,n such that yi takes the value 1 if protein η(pi) is
essential and the value 0 otherwise. Then, the uncertainty coefficient is defined by

UC = (H(X) − H(X|Y ))/H(X)

where H(X) is the entropy of X and H(X|Y ) is the conditional entropy. In this test, the
uncertainty coefficient measures the capability to predict that a S. cerevisiae protein is
essential provided that its image by η is essential. In Fig. 16 we show the values for each
statistical measure obtained for every aligner. As we can observe there, all aligners have
a similar value of accuracy and balanced accuracy. Concerning specificity, precision and
F1-score, HubAlign obtained the lowest value while the others aligners are comparable.
The highest proficiency and MCC values were obtained by AligNet while the lowest one
was obtained by PINALOG.

Finally, in order to study the efficiency of the considered aligners, we observed
their running time and memory space needed to perform an alignment. We
run our implementation of AligNet on a server with 4 processors at 2.6 GHz
and 20 GB of RAM and we also run the latest implementations of PINALOG
(downloaded from http://www.sbg.bio.ic.ac.uk/~pinalog/), SPINAL (downloaded from
http://code.google.com/p/spinal/), HubAlign (downloaded from" https://github.com/
hashemifar/HubAlign) and also L-GRAAL (downloaded from http://www0.cs.ucl.ac.
uk/staff/natasa/L-GRAAL/). NATALIE could not align the two smallest networks,

Fig. 14 Complex Functional Coherence. This figure shows the number of non-assigned complexes (in blue),
the number of coherent pairs (in green), the number of incoherent pairs (in red) and the complex functional
coherence value (yellow dot). The number of complexes is shown on the left axis, while the complex
functional coherence value is shown on the right axis

http://www.sbg.bio.ic.ac.uk/~pinalog/
http://code.google.com/p/spinal/
https://github.com/hashemifar/HubAlign
https://github.com/hashemifar/HubAlign
http://www0.cs.ucl.ac.uk/staff/natasa/L-GRAAL/
http://www0.cs.ucl.ac.uk/staff/natasa/L-GRAAL/
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Table 6 Numbers of complexes assigned by AligNet and not assigned by the other aligners, and
conversely

AligNet HubAlign AligNet L-GRAAL AligNet PINALOG
vs vs vs vs vs vs
HubAlign AligNet L-GRAAL AligNet PINALOG AligNet

Not Assigned 891 891 763 763 815 815

Assigned 263 378 233 506 130 454

Incoherent 175 357 167 477 105 375

Coherent 88 21 66 29 25 79

Precision 33.5% 5.6% 28.3% 5.7% 19.2% 17.4%

C. elegans and D. melanogaster, on a computer with 64 GB of RAM. PINALOG, SPINAL,
HubAlign and L-GRAAL were able to complete all the alignments. In order to visualize
their running times, we show the running time of every finished computation for each
aligner in the top barplot in Fig. 17. We can observe that AligNet is considerably faster
than PINALOG and SPINAL, with a running time of less than 1,000 seconds in most
of the alignments. However,it is difficult to see the running times in some alignments
because SPINAL needed more than 20,000 seconds for the alignment between S. cere-
visiae and H. sapiens. Thus, in order to visualize the results in the cases where the aligners
consumed less than 3,500 seconds, we describe in Fig. 18 the running times cutting at ten
minutes. We observe there that HubAlign is the fastest aligner followed by AligNet.

In Fig. 19, we present the running times ordered by the networks size. We observe that
in the case of AligNet the running time increases as so do the networks. However, this is
not the case of L-GRAAL, SPINAL and HubAlign. On the other hand, PINALOG presents
a correlation between networks sizes and running times but it is the slowest aligner. Thus,
AligNet is the aligner that present the strongest correlation between running time and
networks size.

Discussion
We performed three tests to evaluate and compare our tool AligNet to the best aligners
according to [12, 13]. In the first test we assessed the alignment correctness by calculating
the EC and FC scores. We present the results in Tables 2 and 3, as well as Figs. 9 and 10.
We can observe there that the alignments of small networks with a small number of edges,
such as M. musculus, produced alignments with high EC scores, especially when the tar-
get network has a large number of edges. However, we can also observe that, when the

Fig. 15 Complex Functional Coherence Precision. This figure shows the number of coherent pairs (green)
and incoherent pairs (red) obtained with one aligner versus the other
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Fig. 16 Binary Classifier Metrics. This figure shows the results obtained for each aligner in the essential
proteins alignment test, for every statistical measure

number of edges in the source network increased, the EC scores decreased dramatically
even in the case of HubAlign. As far as the functional coherence goes, we can observe in
Table 3 and Fig. 10 that all aligners attained a very low FC score whose value in most of
the computations is around 0.2 points below the maximum score that can be obtained.
An overview to Figs. 9 and 10 reflects that the order from the highest to the lowest EC
scores is almost the opposite to the order from the highest to the lowest FC score. That
is, the alignment with the highest EC score gets the lowest FC score, being AligNet and
HubAlign the aligners that obtained the best balance between FC and EC scores followed
by PINALOG and L-GRAAL.

In this first test, we also measured the amount of variation or dispersion of the EC and
FC scores used to evaluate the aligners. We introduced some noise to the networks by

Fig. 17 Running times. This figure shows the running times (in seconds) we obtained when we performed
all the alignments for every pair of the considered networks. In this figure we present the results obtained
with the aligners AligNet, PINALOG, SPINAL, HubAlign and L-GRAAL
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Fig. 18 Running times cut at 10 minutes. We show in this figure the running times for those alignments that
took lees than 10 minutes

randomly adding and deleting 5% of the edges. In this way, for every aligner we ended
up with a sample of 100 EC and FC scores for each of the alignments mus–cel, mus–sce
and mus–dme. In Table 4, the mean of the EC and FC scores as well as their standard
deviation are presented. Notice that the differences between the mean of the EC scores
obtained by AligNet and HubAlign is around 0.3 being HubAlign the aligner with high-
est EC scores, while the differences between the mean of the FC scores obtained by
AligNet and PINALOG is at maximum 0.05 being PINALOG the aligner with highest FC
scores but the lowest EC scores. Thus, the goal of AligNet is accomplished since it clearly
obtained the best balance between EC and FC scores. Also, to visualise the scores distri-
bution, in Figures 11,12 and 13 we present the results considering violin plots. In violin

Fig. 19 Time Consistency. This figure shows the running times in seconds obtained for every pairwise
alignment and every aligner. We ordered the pairwise alignments considering the size (number of nodes) of
the networks
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plots we can observe the probability density of the EC and FC scores as well as all the data
that is shown in a box plot. As we can observe in these figures, HubAlign and L-GRAAL
obtained the highest EC scores but the lowest FC scores in contrast to PINALOG that
obtained the lowest EC scores but the highest FC scores. Notice that, the violin’s shapes
show the scores distribution, that is, flat and wide violins indicate that most of the values
are near to the mean in contrast to vertical and narrow violins where the values are dis-
persed away from the mean. There is only a vertical violin corresponding to the EC scores
in the alignments of L-GRAAL between mus and sce. This entails that except for this ver-
tical violin case, small perturbations of the real networks produced small variations of the
EC and FC scores.

In the second test we evaluated the alignment of protein complexes. We used the com-
plex functional coherence value (CFC) to measure the quality of an alignment in terms of
its behaviour on protein complexes. The CFC score is defined as the ratio of complexes
that are aligned correctly with respect to the aligned complexes. In Table 5 and Fig. 14
we show the results obtained by all the aligners. AligNet obtained the highest CFC value
(25.34) followed by PINALOG (24.48) and HubAlign but L- GRAAL obtained a very low
CFC value (5, 4.75 resp.). In order to further compare the results obtained by AligNet on
protein complexes with those of the others aligners, we counted, for each other aligner
A, the complexes that were not aligned either by AligNet or by A; the coherent and inco-
herent pairs among those complexes that were aligned by AligNet but not by A; and the
coherent and incoherent pairs among those complexes that were aligned by A but not by
AligNet. The results are given in Table 6 and Fig. 15. In its first two numerical columns
we can see that 891 complexes were not aligned neither by AligNet nor by HubAlign;
263 complexes were aligned by AligNet but not by HubAlign, of which 88 were correctly
aligned (coherent pairs) and 175 were incorrectly aligned (by AligNet); and 378 complexes
were aligned by HubAlign but not by AligNet, of which 21 were correctly aligned and 357
were incorrectly aligned (by HubAlign). Therefore, HubAlign aligned more complexes
than AligNet, but AligNet achieved a higher precision in the alignment of complexes
than HubAlign: 33.5% vs 5.6%. In a similar way, AligNet also showed a higher precision
than L-GRAAL and a slightly higher precision than PINALOG (19.2% vs 17.4%), although
PINALOG aligned more complexes than AligNet. Our interpretation is that AligNet is
more conservative than PINALOG.

In the third test we evaluated the alignment of essential proteins in the human and yeast
PPINs. We evaluated the aligners performance assuming that essential proteins must be
aligned to essential proteins and we compute seven statistical measures. In Fig. 16 we
show the values for each statistical measure obtained for every aligner. As we can observe
there, all aligners have a similar value of accuracy and balanced accuracy. Concerning
specificity, precision and F1-score, HubAlign obtained the lowest value while the oth-
ers aligners are comparable. The highest proficiency and MCC values were obtained by
AligNet while the lowest one was obtained by PINALOG.

Finally, one of the weak points of PPIN aligners is their lack of efficiency. Indeed, as we
have already mentioned, although NATALIE was suggested as a good aligner, it could not
align the two smallest networks, C. elegans and D. melanogaster, on a computer with 64
GB of RAM. With respect to PINALOG, SPINAL, HubAlign and L-GRAAL, we were able
to complete all the alignments. In order to visualize their running times, we show the run-
ning time of every finished computation for each aligner in Fig. 17. We can observe there
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that SPINAL is, with a big difference, the slowest one to compute the alignment between
H. sapiens and S. cerevisiae, and also between D. melanogaster and S. cerevisiae. PINA-
LOG is the slowest one, also with a big difference, to compute the alignment between
C. elegans and H. sapiens, as well as the alignment between H. sapiens and M. musculus.
AligNet is considerably faster than PINALOG and SPINAL, with a running time of less
than 1,000 seconds in most of the alignments. Only in one computation, the alignment
between D. melanogaster and H. sapiens, AligNet is slower than PINALOG and SPINAL,
and the difference is less than 2,000 seconds. Because SPINAL needed more than 20,000
seconds for the alignment between S. cerevisiae and H. sapiens, it is difficult to see the
running times in some alignments . Thus, in order to visualize the results in the cases
where the aligners consumed less than 3,500 seconds, we show in Fig. 18 the running
times cutting at ten minutes. We observe there that HubAlign is the fastest aligner. Thus,
we conclude that HugAlign is the fastest aligner followed by AligNet.

We also present the running times ordered by the networks size in Fig. 19. It should
be expected that the running time increases as so do the networks, and this is the case
of AligNet. However, this is not the case of L-GRAAL, SPINAL and HubAlign. Actually,
L-GRAAL shows an unpredictable running time related with the networks size. In sum,
HubAlign is clearly the faster aligner but the correlation between the networks size and
running times is not clear. PINALOG presents a correlation between networks sizes and
running times but it is the slowest aligner. And AligNet present the strongest correlation
between running time and networks size and it is faster than PINALOG.

Conclusions
In this paper we present AligNet, a new method and software tool for the pairwise global
alignment of PPIN aimed to produce biologically meaningful alignments by achieving a
good balance between structural matching and protein function conservation. AligNet
is a parameter-free algorithm that, given two PPIN, produces a consistent alignment
from the smaller network, in terms of number of nodes, to the larger network. Its
implementation in R is freely available from https://github.com/biocom-uib/AligNet.

In order to assess the correctness of AligNet, we have evaluated the quality of the
alignments obtained with it and with the 4 best aligners established in [12, 13], namely:
PINALOG, SPINAL, HubAlign, and L-GRAAL. As a result of the comparison between
the aligners, we obtained again, as it was the case in [12, 13], that the agreement of the
alignments obtained with different aligners is very low. Most global aligners achieved a
high node coverage, meaning that the average number of assigned nodes in the source
network is high, but all of them obtained a very low biological coherence value. With
respect to the topological coherence value, some aligners were able to obtain a high score
but it was associated with a low biological coherence score. Overall, we can conclude that
AligNet is the aligner that obtained the best balance between topological coherence (it
preserves 60% of the edges) and functional coherence (relative function coherence val-
ues between 20% and 40% and the highest complex functional coherence score, 25.34).
PINALOG obtained similar functional coherence scores than those of AligNet, lower
topological coherence scores and the lowest proficiency value. HubAlign and L-GRAAL
obtained high topological coherence scores but very low CFC values. SPINAL surpris-
ingly obtained a very low topological coherence value. Thus, we recommend Alignet to
preserve the biological function, and to preserve the topological structure.

https://github.com/biocom-uib/AligNet
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7. Aladaǧ AE, Erten C. SPINAL: Scalable protein interaction network alignment. Bioinformatics. 2013;29(7):917–24.
8. Hashemifar S, Xu J. HubAlign: an accurate and efficient method for global alignment of protein-protein interaction

networks. Bioinformatics. 2014;30(17):i438–44.
9. Neyshabur B, Khadem A, Hashemifar S, Arab SS. NETAL: a new graph-based method for global alignment of

protein-protein interaction networks. Bioinformatics. 2013;29(13):1654–62.
10. Patro R, Kingsford C. Global network alignment using multiscale spectral signatures. Bioinformatics. 2012;28(23):

3105–14.
11. Singh R, Xu J, Berger B. Global alignment of multiple protein interaction networks with application to functional

orthology detection. PNAS. 2008;105(35):12763–8.
12. Clark C, Kalita J. A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics.

2014;30(16):2351–9.
13. Malod-Dognin N, Ban K, Pržulj N. Unified alignment of protein-protein interaction networks. Sci Rep. 2017;7(953):.
14. Alain FZ, Elena NI, Erik HWG. Meesters. A Beginner’s Guide to R: Springer; 2009.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-6
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-6
https://github.com/biocom-uib/AligNet 
http://bioinfo.uib.es/~recerca/AligNet/


Alcalá et al. BMC Bioinformatics 2020, 21(Suppl 6):265 Page 22 of 22

15. Camacho C, Coulouris G, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):1.
16. Kuhn HW. The Hungarian method for the assignment problem. Naval Res Logist. 2005;52(1):7–21.
17. Borndörfer R, Heismann O. The hypergraph assignment problem. Discrete Optim. 2015;15:15–25.
18. Klau GW. A new graph-based method for pairwise global network alignment. BMC Bioinformatics. 2009;10(1):S59.
19. Malod-Dognin N, Pržulj N. L-GRAAL: Lagrangian graphlet-based network aligner. Bioinformatics. 2015;31(13):2182–9.
20. TPhan HT, Sternberg MJE. PINALOG: A novel approach to align protein interaction networks—implications for

complex detection and function prediction. Bioinformatics. 2012;28(9):1239–45.
21. Park D, Singh R, et al. IsoBase: a database of functionally related proteins across PPI networks. Nucleic Acids Res.

2011;39(suppl 1):D295–D300.
22. Ruepp A, Brauner B, et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids

Res. 2008;36(suppl 1):D646–D650.
23. Gavin A-C, Aloy P, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):

631–6.
24. Ruepp A, Zollner A, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from

whole genomes. Nucleic Acids Res. 2004;32(18):5539–45.
25. Luo H, Lin Y, Gao F, Zhang C-T, Zhang R. DEG 10, an update of the Database of Essential Genes that includes both

protein-coding genes and non-coding genomic elements. Nucleic Acids Res. 2014;42:D574–D580.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

