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Abstract 

Background:  Tremor severity assessment is an important step for the diagnosis and 
treatment decision-making of essential tremor (ET) patients. Traditionally, tremor sever-
ity is assessed by using questionnaires (e.g., ETRS and QUEST surveys). In this work we 
assume the possibility of assessing tremor severity using sensor data and computer-
ized analyses. The goal of this work is to assess severity of tremor objectively, to be 
better able to asses improvement in ET patients due to deep brain stimulation or other 
treatments.

Methods:  We collect tremor data by strapping smartphones to the wrists of ET 
patients. The resulting raw sensor data is then pre-processed to remove any artifact 
due to patient’s intentional movement. Finally, this data is exploited to automatically 
build a transparent, interpretable, and succinct fuzzy model for the severity assess-
ment of ET. For this purpose, we exploit pyFUME, a tool for the data-driven estimation 
of fuzzy models. It leverages the FST-PSO swarm intelligence meta-heuristic to identify 
optimal clusters in data, reducing the possibility of a premature convergence in local 
minima which would result in a sub-optimal model. pyFUME was also combined with 
GRABS, a novel methodology for the automatic simplification of fuzzy rules.

Results:  Our model is able to assess tremor severity of patients suffering from Essen-
tial Tremor, notably without the need for subjective questionnaires nor interviews. The 
fuzzy model improves the mean absolute error (MAE) metric by 78–81% compared to 
linear models and by 71–74% compared to a model based on decision trees.

Conclusion:  This study confirms that tremor data gathered using the smartphones 
is useful for the constructing of machine learning models that can be used to support 
the diagnosis and monitoring of patients who suffer from Essential Tremor. The model 
produced by our methodology is easy to inspect and, notably, characterized by a lower 
error with respect to approaches based on linear models or decision trees.

Keywords:  Essential tremor, Tremor assessment, Mobile phone sensor data, 
Computational intelligence, Fuzzy modeling, Fuzzy self-tuning PSO
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Background
Millions of people worldwide are affected by neurological diseases that induce tremors. 
Although tremor is often associated with Parkinson’s disease, it can also be a symptom 
of other neurological disorders. A patient suffering from tremor shows involuntary oscil-
lations of any body part around any plane [1]. When there is no demonstrable cause of 
this tremor, the patient is diagnosed with Essential Tremor (ET).

Tremor hinders many daily tasks, such as precision tasks like buttoning shirts or other 
tasks like holding a cup of hot coffee [2]. For the correct diagnosis and treatment of 
tremor-related diseases, tremor severity assessment is an important step. Tremor sever-
ity assessment is also an important tool for evaluating treatment and monitoring how 
the disease develops, since essential tremor is a chronic and progressive neurological 
disease. Up to now, tremor severity is measured with qualitative rating scales, such as 
the Quality of life in Essential Tremor (QUEST) score or the Essential Tremor Rating 
Scale (ETRS) score.

The QUEST score [3] is determined by making the patient fill in a 30-item question-
naire that contains questions related to the effect of the tremor on the patient’s quality of 
life. Examples of such questions are “My tremor interferes with my ability to communi-
cate with others” and “I have lost interest in my hobbies because of my tremor”.

The ETRS [4] is filled by a medically trained assessor and evaluates the severity of the 
tremor in rest, postural, and during movement. The assessor asks the patient to perform 
21 different tasks (such a pouring a cup of water, or drawing a line or spiral) and scores 
the severity of the tremor during these tasks on a 0–4 scale.

Both the QUEST and the ETRS scores are widely used for diagnostics and treatment of 
ET, but they are subjective in nature. Using direct measurements from wearable sensors 
could provide more objectivity of the tremor severity assessment. Therefore, the atten-
tion for computerized tremor analysis has increased recently (for example, see [5–8]).

These previous studies often rely on dedicated devices to measure the tremor. These 
devices are expensive and only useful in clinical settings since patients do not have these 
devices at home. In this study, we propose using the relatively cheap and widely available 
sensors of smartphones to measure tremor severity. To do so, we rely on the smartphone 
application TREMOR12 [9], an open-source mobile app was developed by clinicians 
from the Maastricht University Medical Center. The app is freely available for research 
purposes in the Apple App Store.

In this study, we aim to develop a fuzzy model that maps the relationship between the 
QUEST and ETRS score and the sensor measurements of a smartphone strapped to the 
wrist of an ET patient. We use machine learning to determine the optimal parameters of 
the model. While many machine learning models (such as deep neural networks) behave 
like black boxes, fuzzy models have the advantage of being transparent. Because of this 
property, humans can inspect and study the behavior of the model. The resulting model 
can help clinicians to more objectively assess the severity of the patient’s tremor and can 
increase the inter-rater reliability among clinicians.
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Related work
A literature study by Grimaldi and Manto [10] reveals that four different types of sensors 
are commonly used to measure tremor for in ET patients: 

1.	 Accelerometers assess the linear acceleration on a specific axis (in g). These meas-
urements are a combination of linear acceleration, gravity, and additive noise. To 
diagnose tremor, only the linear acceleration component is relevant, but up to now, 
no analytic model has been validated to separate gravity (and noise) from the linear 
acceleration. Low-pass filtering is currently used in most studies [10].

2.	 Gyroscopes measure how fast the angular position or orientation of an object changes 
over time. Because of this, gyroscopes are used to measure the rotation speed (in 
radians per second) and the rotation or orientation (in radians).

3.	 Elektromyograms (EMGs) are used to measure the activity of the muscle fibers. This 
data is collected by a fine wire, which is inserted into a muscle of the ET patient. In 
[11], researchers were successful in differentiating Parkinson’s disease from Essential 
Tremor utilizing an Elektromyogram.

4.	 Force sensors assess the torque in newton meter and angular motion (in radians per 
second). The torque is the force applied to rotate an object around a pivot or axis. 
Force meters are assumed to be promising for assessing tremor severity, but the 
measuring devices are non-portable and expensive.

In Table  1 the characteristics of each of the before mentioned sensors for assessing 
tremor severity are summarized. Both the accelerometer and the gyroscope are afford-
able and non-invasive, which makes them easy to use on a larger scale. Therefore, studies 
that utilize these types of sensors will be the focus of the remainder of this section.

In a pilot study [8], the feasibility of assessing the severity of the symptoms and motor 
complications for Parkinson’s disease patients by means of accelerometer data is inves-
tigated. Twelve patients were asked to wear a body sensor network that consisted of 8 
accelerometers: two sensors were located on the upper arms (one right, one left) two on 
the lower arms, two on the upper legs, and two sensors were located on the lower legs 
of each patient. The data that was gathered was used to train a support vector machine 
which classified the severity of tremor, dyskinesia, and bradykinesia. For validation, 
the output of this classification model was compared with the assessment of medically 
trained clinicians. The error of the model (compared to the clinician’s estimates) were on 
average 2.5%.

Table 1  Characteristics of sensors to measure tremor severity

Accelerometer Gyroscope EMG Force sensors

Gravitational component Yes No No No

Signal to noise ratio Low to high High High High

Size of the sensor Small Small Small Large

Easy to use Yes Yes Variable No

Invasive No No Yes No

Cost Cheap Cheap Cheap Expensive
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In another study [12] on the usefulness of accelerometer data, data of 18 Parkinson’s 
Disease patients and 5 control patients were gathered. During the data measurement of 
both resting and action/postural tremor, a set of accelerometers was mounted on differ-
ent patient’s body segments. The estimation of the tremor type (resting or action/pos-
tural) and the severity of the tremor are based on features extracted from the acquired 
accelerometer signals and hidden Markov models. The trained models were able to 
quantify tremor severity with 87% accuracy, discriminate resting from postural tremor, 
and discriminates tremor from other Parkinsonian motor symptoms during daily 
activities.

A similar study [7] data of 7 Parkinson’s Disease patients were collected using wrist-
worn accelerometers and gyroscopes. These sensor data were used to train a least-
square-estimation model to estimate the severity of rest, postural, and kinetic tremors. 
The models’ estimation of tremor severity correlated well with the estimations of a neu-
rologist (r = 0.98).

The above-mentioned studies show great potential for automatic tremor severity 
assessment, but all studies make use of dedicated devices to measure the tremor sever-
ity. These devices are often expensive, hard to use, or not widely available. To overcome 
this problem, some studies propose to make use of smartphone sensors to measure 
tremor severity (e.g. [13–15]). However, these studies (and the smartphone applications 
used) focus on Parkinson’s disease patients. In Table 2 it can be observed that tremor 
that stems from Parkinson’s Disease differs significantly from Essential Tremor. To our 
knowledge, only one study [6] used smartphone sensors for gathering data to estimate 
the severity of Essential Tremor. However, only accelerometer data is used in this study.

In this work, we aim to build a model that is able to estimate tremor severity (in terms 
of ETRS or QUEST score) from smartphone sensor data. In contrast to [6], we use both 
the accelerometer and gyroscope of a smartphone. For data gathering, the freely avail-
able TREMOR12 application [9] is used.

Method
Data collection

In this study we make use of data that are recorded using the the TREMOR12 application 
[9]. This app offers low-cost tremor quantification for research purposes and algorithm 
development. With TREMOR12 it is possible to record acceleration, rotation, rotation 
speed, and gravity, all along three axes. The measurements are all time-stamped, and 
it is possible to sample in a frequency of up to 100 Hz. The raw signal data of the sen-
sors can be exported as a comma-separated file (.csv) for further processing and analysis. 
The application has been developed by clinicians (from the Maastricht University Medi-
cal Center, the Netherlands) to aid in evaluating the effect of the treatment of Essential 

Table 2  Characteristics of tremor caused by Parkinson’s disease and essential tremor

Parkinson’s disease Essential tremor

Tremor Resting Postural and kinetic

Frequency of tremor 4–6 Hz 7–12 Hz

Presence in hands >70% >95%
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Tremor patients. TREMOR12 runs on iPhone and iPod Touch (iOS8 or newer) and can 
be downloaded free of charge from the App Store. The source code is freely available 
from GitHub at the following address: https​://githu​b.com/digne​urosu​rgeon​/tremo​r12.

The sensor data are collected with a 10-ms sample rate (100 Hz). The measuring device 
is an iPhone 5s. Samples are collected using the accelerometer and the gyroscope of the 
phone, and measurements are done along the x, y, and z axes. The recorded variables are 
acceleration (in g) and rotation speed (in radians per second).

Twenty participants (11 men, 9 women), who were all diagnosed with Essential 
Tremor, took part in the experiment.At the time of the experiment, the average age 
of the participants was 67 years, and they were on average diagnosed with Essential 
Tremor 22 years ago. All participants underwent Deep Brain Stimulation as a treat-
ment for Essential Tremor in the past. The ETRS scores of the participants varied 
between 10 and 68 and the time of the experiment, their QUEST scores were between 
3 and 68.1 (Fig. 1).

At least 95% of the patients who suffer from Essential Tremor have a tremor in the 
upper limbs [17]. Because of this, the sensor data recording device for this study is 
strapped around the participant’s wrists. The phone was attached using an arm strap 
that is generally used for running and other sports activities. The phone was strapped 
on the dorsal side of the wrist by the trained experimenter to ensure a good fit and 
non-rigid fixation.

The participants were asked to perform five different tests. All tests were performed 
twice by each participant: once using the left hand and once using the right hand. The 
following tests were conducted: 

1.	 Rest The participant was asked to place both forearms and hands resting on a table. 
The tremor was measured for one minute on both wrists.

2.	 Postural 1 The participant was asked to stretch both arms forward with the hand 
palms facing down. This position is depicted in Fig. 1a. The tremor was measured for 
one minute on both wrists.

3.	 Postural 2 The participant was asked to hold both hands in front of the chest with 
the hand palm down and elbows sideways. This position is depicted in Fig. 1b. Again, 
tremor is measured on both sides for 1 min.

Fig. 1  Body positions for data measuring (figure adapted from [16])

https://github.com/digneurosurgeon/tremor12
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4.	 Glass The participant was asked to pick up a glass of water from the table, bring the 
glass towards the mouth, and put it back on the table to measure the kinetic tremor. 
This test was repeated three times for each side.

5.	 Finger-nose test The participant was asked to bring his index finger to the nose and 
subsequently to the index finger of the researcher. This movement was repeated 
three times to measure the kinetic tremor.

Data preparation

Filtering out noise

To begin and terminate the recording of data, the user must tap a button on the screen 
of the recording device. This procedure introduces noise at the beginning and at the end 
of the recording, as highlighted in Fig. 2.

According to our analyses, this type of noise is typically present in the first and the last 
50 samples of the data recorded during each test. Hence, in all tests that follow, the first 
and last 50 samples of each signal file were automatically discarded.

An additional source of noise in the measurements is due to voluntary movement, as 
evidenced during glass and finger-nose test. An example of such noise is shown in Fig. 3, 
where the original unprocessed signal is denoted by the blue line. Wide, low-frequency 
peaks originate from the patient moving his finger from his nose to the researcher’s hand 
and vice versa, a movement that was repeated three times. This signal is not relevant for 
tremor assessment and must be removed. In order to filter out the noise due to volun-
tary movement, we applied an Equiripple Finite Impulse Response filter between 7 and 
12 hertz, corresponding to Essential Tremor frequencies [1]. In this way, gravitational 
and motion components are removed from the signals. The result of this filtering phase 
is denoted in Fig. 3 by a red line.

Feature extraction

When all signals are processed and filtered, we proceed with the feature extraction 
phase. The goal is to reduce the time-series to features values, i.e., scalar real values 

Fig. 2  Acceleration for patient 1 during the rest test on the x, y and z axis. Tapping the start and stop 
recording button on the device and the patient getting in the correct position creates noise in the data
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encompassing all the information that can be used in the learning phase. Specifically, the 
following features are extracted:

•	 in the time domain, we calculate the root-mean-square (RMS) value of the signal 
which is a measure for the signal strength, and the signal period, which represents 
the average duration of one wave in the signal;

•	 in the frequency domain, the dominant magnitude and frequency are extracted using 
Daubechies 8 wavelet [18]. The power growth is also extracted from the time-fre-
quency domain to represent the power increase over time.

These features provide information about the highest intensity peak accumulated over 
the frequency range and the number of oscillations per second associated with it. Over-
all, 50 features (left and right wrist × five tests × five features per signal) must summarize 
the tremor for every patient.

Feature selection

Not all variables need to be meaningful when mapping the sensor data to the QUEST or 
ETRS score. We would like to find the smallest possible subset of variables that still pro-
vides a good mapping. To identify the most relevant variables for the models, we adopt 
a wrapper approach (for more information, see [19, 20]). We employ sequential forward 
selection in combination with cross-validation, which means variables are sequentially 
added to an empty candidate set until the addition of new variables does not decrease 
mean square error (MSE) of the model. The underlying models are CART decision trees 
[21] since these models are easy and fast to train and have been proven to be effective in 
modeling using sensor data of Essential Tremor patients [22].

Missing data

Not all tests have been performed by all patients since the finger-nose test was added to 
the experiment only after the data of the first four patients were already collected. Spline 
interpolation was used to estimate the missing values in case of incomplete data series.
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Fuzzy modeling

FST‑PSO clustering and fuzzy set inference

The first stage of our methodology consists of performing a fuzzy clustering [23] on the 
experimental data, in order to map such clusters against the linguistic variables. This 
step is necessary to automatically derive the fuzzy sets for the fuzzy rules. The conven-
tional fuzzy C-means algorithm can be prone to premature convergence to local minima 
[24]. For this reason, we developed a novel version of the clustering algorithm powered 
by the swarm intelligence method Fuzzy Self-Tuning PSO (FST-PSO) [25]. FST-PSO is 
a settings-free variant of Particle Swarm Optimization, able to adapt its functioning to 
the problem under investigation. In this case, FST-PSO contributes to determining the 
optimal cluster centers and the corresponding fuzzy partition matrix. By projecting the 
elements of the clusters on the linguistic variables, and by calculating the envelope of 
membership values for each cluster, fuzzy sets can be created and fit automatically. Spe-
cifically, in this work we fit Gaussian fuzzy sets. These fuzzy sets are used later by our 
system to represent linguistic terms.

Takagi–Sugeno fuzzy model

Fuzzy models are “expert systems”, where knowledge is represented in the form of 
(fuzzy) rules [26]. The knowledge is formalized using fuzzy sets [27] and their mem-
bership functions, which are exploited in these fuzzy rules. During the process of fuzzy 
inference, a given input is mapped to the output. This mapping serves as a basis from 
which decisions or predictions can be made. Because the fuzzy rules are presented in 
natural language, they can be inspected and interpreted by humans, so that they can 
reveal patterns in the data.

In this work, we develop a first-order Takagi–Sugeno fuzzy model. A Takagi–Sugeno 
fuzzy model [28] consists of a set of fuzzy rules. Each rule characterizes a local relation 
between the input and output variables. The rules of a first order Takagi–Sugeno fuzzy 
model are all in the following format:

In this representation j = 1, . . . J  denotes the rule number and x = (x1, . . . xN ) is the 
input vector. N is the number of input features; Ajn denotes the fuzzy set for rule Rj and 
nth feature, and yj is the consequent function of rule Rj , that is, a linear combination of 
the elements of x , with coefficients aj and a constant bj.

To assess to which degree each of the fuzzy rules applies in specific cases, the degree of 
fulfillment is calculated. The degree of fulfillment of a rule j is defined as:

The overall output y∗ of the fuzzy model for a specific vector of input variables x can 
then be calculated as the weighted average of the outputs of the individual rules:

(1)
Rj : IF x1 is Aj1 and . . . and xN is AjN

THEN yj = a
T
j x + bj

(2)βj = min(µAj1(x), . . . ,µAjN (x)), for j = 1, . . . ,N .
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The creation of a Takagi–Sugeno fuzzy model generally takes place in two steps [29, 30].

•	 In the structure identification phase, the number of rules and partition of the fea-
ture space is determined. This is often done by employing clustering algorithms, e.g., 
grid partitioning, subtractive [31] clustering, or fuzzy c-means [32]. In this study, we 
apply FST-PSO clustering (as described in the previous section);

•	 In the step of parameter identification, the model’s parameters (e.g., the membership 
functions and the linear coefficients) are identified. Often least-square or derivative-
based optimization techniques are used for this (for more information see [29]). In 
this work we rely on least-square optimization techniques.

Simplification of the rule base with GRABS

Fuzzy inference systems (FIS) found application in several fields of science over the last 
years because of their transparency and interpretability, which is higher than common 
“black-box” machine learning approaches. In order to estimate a transparent FIS from 
data, we proposed a new approach, named GRABS (Graph-Based Simplification), for 
FIS simplification which leverages graph theory to identify and remove similar fuzzy 
sets from rule bases [33]. GRABS uses a threshold-based similarity index (the Jaccard 
similarity [34]) to determine which fuzzy sets are overlapping. Then, a graph is created, 
where the fuzzy sets are the nodes, and similar sets are linked with an edge. GRABS 
detects the connected sub-components in the graph, whose nodes represent the same 
linguistic term. It then proceeds to the simplification (i.e., removal) of redundant nodes. 
Thanks to the similarity threshold hyper-parameter, GRABS can be used to reduce the 
bloating of rules with a tunable level of error.

Software

For this work, we relied on two Python packages: Simpful and pyFUME. In this section, 
we give some background on the workings of these packages.

Simpful

Simpful is a user-friendly, general-purpose, lightweight Python API for the definition 
of FIS [35]. Simpful’s API was designed in such a way that the modeling phase should 
resemble, as much as possible, human thinking and natural language, in order to simplify 
the definition of fuzzy sets, linguistic variables, and fuzzy rules. Simpful also supports 
fuzzy inference based on Sugeno reasoning of any order. One key feature of Simpful is 
that fuzzy rules are defined through well-formed strings of text, expressed using natu-
ral language, and thus simplifying the definition of the rule base. Thanks to the human-
readable format, Simpful facilitates the inspection of the model and the interpretation of 
results.

(3)y∗ =

∑J
j=1

βjyj
∑J

j=1
βj

.
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The current version of Simpful (v2.0.0) supports both (i) polygonal and functional (e.g., 
sigmoidal, gaussian or custom shaped) fuzzy sets. Simpful also supports the definition of 
fuzzy rules with an arbitrary degree of complexity, built using linguistic terms combined 
with logic operators (e.g., AND, OR, NOT). Simpful supports the definition of FIS with 
multiple inputs and outputs, with no limitation, and the definition of arbitrary fuzzy net-
works [36]. pyFUME, described in the next paragraph, creates Simpful models automati-
cally out of data. Simpful is available for download, under GPL license, on GitHub at the 
following URL: https​://githu​b.com/aresi​o/simpf​ul. Simpful can also be installed by using 
the PyPI facility: pip install simpful.

pyFUME

pyFUME [37] is a Python library for the automatic derivation of fuzzy models, designed 
to provide an easy to use and extensible interface both for practitioners and researchers.

Currently, pyFUME offers facilities to simplify the following operations: loading of the 
input data, with automatic partitioning between training and test data sets; clustering 
of the data in the input-output space by means of Fuzzy C-Means (FCM) clustering [32] 
or the method based on Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO [24, 
25]) described in the previous sections; estimation of the antecedent sets of the fuzzy 
model, using the method described in [38], using Gaussian (default option), double 
Gaussian, or sigmoidal membership functions; estimation of the consequent parameters 
of the first-order TS fuzzy model, implementing the functionalities described in [39]; 
generation, using the estimated antecedents and consequents, of an executable Simpful 
model (with the possibility of exporting the source code as a separate, executable file). 
pyFUME also provides a facility for the testing of the derived model, providing func-
tionalities for the measurement of Root Mean Square Error (RMSE), Mean Square Error 
(MSE), or Mean Absolute Error (MAE).

pyFUME is implemented in Python, depends on numpy [40], scipy [41] and Simpful 
[35], and can be downloaded from GITHUB at the following address: https​://githu​
b.com/CaroF​uchs/pyFUM​E. pyFUME can also be installed by using the PyPI facility: 
pip install pyFUME.

Results
We generated two fuzzy models using pyFUME: one to map the sensor data to the ETRS 
score and one to the QUEST score. The data set at hand for this study is limited in size. 
Because of this, we limit both models to two rules to avoid overfitting. For structure 
identification, FST-PSO based clustering was used [24]. The model was simplified using 
GRABS, with a similarity threshold of 0.90, since this number simplifies the models suf-
ficiently without losing information and compromising on accuracy. All other settings 
for pyFUME were kept on default. A summary of these settings can be found in Table 3. 
The pyFUME code to generate the model and calculate the mean absolute error can be 
found in Fig. 4.

https://github.com/aresio/simpful
https://github.com/CaroFuchs/pyFUME
https://github.com/CaroFuchs/pyFUME
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ETRS score

In our previous work [22] we show that following features are related to the ETRS score 
(see also Table 4 for an overview): the power growth of the accelerometer data in rest, 
the dominant magnitude of the accelerometer and the signal root mean square (RMS) 
of the rotation speed as measured during the first postural test, and the dominant fre-
quency (of the accelerometer) and the dominant magnitude (of the rotation speed) as 
measured during the second postural test. Therefore, these five variables are used to 
generate the fuzzy model that maps the sensor data to the ETRS score. The following 
two rules were obtained:

•	 RULE 1: IF (dominantFrequency IS high) AND (dominantMagni-
tude IS any value) AND (signalPeriod IS any value) AND 

(powerGrowth IS any value) THEN (ETRS score = 60.40 * 

dominantFrequency − 87.00 * dominantMagnitude + 14.0 * 
signalPeriod + 7.10 * signalRMS + 57.70 * powerGrowth - 
2.19)

•	 RULE 2: IF (dominantFrequency IS low) AND (dominantMagnitude 
IS low) AND (signalPeriod IS medium) AND (powerGrowth IS 

medium) THEN (ETRS score = − 33.30 * dominantFrequency + 

Table 3  Parameter settings used for developing the fuzzy models

Data preparation

Data normalization Yes

Percentage used for training/testing the models 75%/25%

Model structure

Number of clusters 2

Shape membership functions Gaussian

T-norm Minimum

Model construction

Clustering method FCM coupled 
with FST-
PSO

Degree of fuzziness of the identified cluster structure (m) 2

FST-PSO maximum number of iterations 100

GRABS threshold [33] 0.9

Fig. 4  The pyFUME code to generate the model that maps the sensor data to the ETRS score (line 3–4) and 
to calculate the mean square error of the resulting model (line 6–7)
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41.30 * dominantMagnitude + 10.80 * signalPeriod + 3.19 * 
signalRMS + 8.53 * powerGrowth + 55.70)

This model maps the sensor data to the ETRS score with a mean absolute error (MAE) 
of 2.70. The membership functions belonging to this fuzzy model are plotted in Fig. 5. 
As can be observed in the model’s rules and Fig. 5, one of the two fuzzy sets for the 
variable ‘signal RMS’ has been dropped by GRABS. This means the two sets showed a 
similarity of more than 90%.

Figure 5 seems to imply that the variable ‘Signal RMS’ does not contribute to the the 
performance of the system. To test this hypothesis, a new model excluding this vari-
able is trained. The resulting rules are as follows:

•	 RULE 1: IF (dominantFrequency IS high) AND (dominantMagni-
tude IS any value) AND (signalPeriod IS any value) AND 

(powerGrowth IS any value) THEN (ETRS score = 27.8 * domi-
nantFrequency − 42.4 * dominantMagnitude + 22.4 * signal-
Period + 23.3 * powerGrowth + 8.7)

•	 RULE 2: IF (dominantFrequency IS low) AND (dominantMagnitude 
IS low) AND (signalPeriod IS medium) AND (powerGrowth IS 

medium) THEN (ETRS Score = − 10.8 * dominantFrequency + 
53.5 * dominantMagnitude − 18.2 * signalPeriod + 14.0 * 
powerGrowth + 58.5)

The membership functions belonging to this fuzzy model are plotted in Fig.  6. This 
model has a mean absolute error (MAE) of 1.85. It can therefore be concluded that this 
model outperforms the previously presented model.

Fig. 5  The membership functions for the model that maps the sensor data to the ETRS score
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The model excluding ‘Signal RMS’ performs better than a multiple regression line 
( R2

= 0.58 , MAE = 8.44). We can also conclude that this model outperforms the 
model presented in [22], which was trained on the same data set and had an MAE of 
6.41. Therefore, compared to the model presented in [22], the error has been reduced by 
71.1%. These results are also shown in Table 5.

The computational time required to estimate the ETRS for new patients using these 
models is negligible . For example, computing the output of the fuzzy model—which 
is the most complex model of the three models that were developed—requires 0.6 ms 
(tested on a machine running Windows 10, with a Intel® Core™ i7-7700HQ CPU @ 
2.80GHz).

QUEST score

Following the findings presented in [22], we select the power growth of the rotation 
speed during the first postural test and the dominant frequency of the accelerometer as 
measured during the second postural test (see Table 4). These variables are then used to 
train the fuzzy model that maps the sensor data to the QUEST score. The trained model 
consist of the following set of rules:

•	 RULE 1: IF (DominantFrequency IS high) AND (PowerGrowth IS 
any value) THEN (QUEST score = 4.66 * DominantFrequency − 
8.52 * PowerGrowth + 11.70)

•	 RULE 2: IF (DominantFrequency IS low) AND (PowerGrowth IS 
low) THEN (QUEST score = − 4.41 * DominantFrequency − 
69.50 * PowerGrowth + 47.00)

Fig. 6  The membership functions for the model that maps the sensor data to the ETRS score, excluding the 
variable ‘Signal RMS’
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The membership functions of this fuzzy model are plotted in Fig. 7. None of the fuzzy 
sets showed high similarity, and therefore none of the sets were dropped by GRABS.

The mean absolute error of the fuzzy model is 2.30. When using the same data to fit 
a multiple regression line, a low fit is found ( R2

= 0.17 ), which also leads to low perfor-
mance (MAE = 12.10). The fuzzy model therefore clearly outperforms the regression 
line. The decision tree as presented in [22] has an error of 8.65. This means an improve-
ment of 73.4% in terms of the error rate for the fuzzy model compared to a decision tree 
when using the same data. These results are summarized in Table 5.

The computational time required to estimate the QUEST score for new patients using 
the fuzzy model is 0.4 ms (tested on a machine running Windows 10, with a Intel® 
Core™ i7-7700HQ CPU @ 2.80GHz).

Discussion
We presented a data-driven methodology for the automatic creation of interpretable 
models supporting the diagnosis and monitoring of patients suffering from Essen-
tial Tremor. Our methodology relies on pyFUME [37]—a novel tool combining swarm 

Table 4  Variables used for training the fuzzy models

ETRS QUEST

Test Sensor Feature Test Sensor Feature

Rest Accelerometer Power growth Postural 1 Rotation speed Dominant frequency

Postural 1 Accelerometer Dominant magnitude Postural 2 Accelerometer Power growth

Postural 1 Rotation speed Signal RMS

Postural 2 Accelerometer Dominant frequency

Postural 2 Rotation speed Dominant magnitude

Fig. 7  The membership functions for the model that maps the sensor data to the QUEST score

Table 5  Comparison between the regression models, decision trees and fuzzy models for 
predicting the ETRS and QUEST score. The fuzzy models outperform the other two models

Best values in bold

ETRS QUEST

Regression line Decision tree [22] Fuzzy model Regression line Decision tree [22] Fuzzy model

MAE 8.44 6.41 1.85 12.10 8.65  2.30
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intelligence, fuzzy clustering, and fuzzy reasoning—extended with GRABS, a graph-
based approach for rule-base simplification [33].

The tremor data used in this study was collected using the TREMOR12 application, 
which runs on widely available devices (in this study, iPhones), a characteristic that 
makes it easy and relatively inexpensive to acquire experimental data.

The developed fuzzy models show a better performance than linear models or the 
CART decision trees presented in [22]. The mean absolute error of the fuzzy model 
that maps sensor data to the ETRS score is 78% lower compared to the error of a lin-
ear model, and 71% lower then decision trees. The fuzzy models also outperform linear 
models (with 81%) and decision trees with (with 73%) when mapping the sensor data to 
the QUEST score. The fuzzy models therefore clearly outperform these other models.

In this work we relied on the feature selection phase performed by the CART algo-
rithm in our previous study [22]. However, we envision that this step should be 
performed autonomously by pyFUME, either as a pre-processing phase or using a bot-
tom-up approach. Integrating this functionality in pyFUME will be among our prioritary 
future developments.

All the patients involved in this study were treated with DBS during sample acquisi-
tion, leading to relatively low values for both ETRS and QUEST scores. Hence, patients 
suffering from severe tremors were not represented in our data set. In order to make 
our methodology able to detect and diagnose such cases, additional data collected from 
untreated patients should be added to the data set, and puFUME should run again to 
build a model suitable for the identification of such patients.

Conclusion
The QUEST and the ETRS scores are widely used for diagnostics and treatment of ET, 
but they are subjective in nature. To overcome this problem, in this study we use direct 
measurements from wearable (smartphone) sensors to assess the severity of the tremor 
more objectively. We used the data extracted from these measurements to develop fuzzy 
models that map the relationship between the QUEST and ETRS score. The models 
developed in this study outperform both linear models and decision trees, and the run-
ning time of model inference is in the order of miliseconds.

Models such as the ones developed in this study can help clinicians to quickly and 
objectively measure the effect of Deep Brain Simulation (DBS) on the patient’s trem-
ors. For DBS, a medical device called a neurostimulator is implanted in the patient’s 
chest. The neurostimulator sends electrical impulses trough electrodes to specific brain 
nuclei, which suppresses the patient’s tremor. The immediate feedback of sensor data 
and machine learning models could help finding the optimal voltage and the sequence of 
the stimulation for a specific patient to minimize the patient’s tremors. This could ulti-
mately lead to a situation where the neurostimulator is self-learning, and the settings of 
the stimulation can be adjusted automatically based on real-time feedback.

The use of sensor data from wearables, combined with models produced by machine 
learning algorithms, can also be useful for patients treated in different ways. For exam-
ple, they can be used to find the correct dosage for ET patients treated with medication or 
measure the effectiveness of magnetic resonance (MR) guided focused ultrasound.
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As a final remark, our data set currently contains 20 ET patients: we plan to collect new 
samples in the future to derive more robust models. This current study shows that using 
smartphone data can be useful to diagnose and assess the severity of Essential Tremor. 
The developed models indicate that there is a relation between the smartphone measure-
ments and tremor severity. However, more data is needed to develop models that are suit-
able for implementation in clinical practice. In the future, we plan to use smaller and lighter 
devices for data collection in future studies. The size of the measuring device might restrict 
the movement of the wrist of the patient, which could influence the measurements of the 
tremor. As a solution to this, we plan to use smartwatches in follow-up studies.
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