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Introduction
With the development of genome-wide assay of genetic variants, vast of complex traits 
associated variants have been detected by the genome-wide association studies (GWAS) 
[1]. However, the function of GWAS signals largely remains elusive, because most 
GWAS-derived variants locate in the non-coding regions, i.e. intergenic or intronic 
regions, which means they do not alter the protein sequence directly [2]. Understand-
ing the function of variants associated with diseases and other traits has been one of the 
focuses in the field of the post-GWAS era, which could benefit the discovery of novel 
mechanisms and drug targets [3–5]. Emerging evidence has shown that variants could 

Abstract 

Background:  Advances in the expression quantitative trait loci (eQTL) studies have 
provided valuable insights into the mechanism of diseases and traits-associated 
genetic variants. However, it remains challenging to evaluate and control the quality of 
multi-source heterogeneous eQTL raw data for researchers with limited computational 
background. There is an urgent need to develop a powerful and user-friendly tool to 
automatically process the raw datasets in various formats and perform the eQTL map-
ping afterward.

Results:  In this work, we present a pipeline for eQTL analysis, termed eQTLQC, fea-
tured with automated data preprocessing for both genotype data and gene expression 
data. Our pipeline provides a set of quality control and normalization approaches, and 
utilizes automated techniques to reduce manual intervention. We demonstrate the 
utility and robustness of this pipeline by performing eQTL case studies using multiple 
independent real-world datasets with RNA-seq data and whole genome sequencing 
(WGS) based genotype data.

Conclusions:  eQTLQC provides a reliable computational workflow for eQTL analysis. It 
provides standard quality control and normalization as well as eQTL mapping proce-
dures for eQTL raw data in multiple formats. The source code, demo data, and instruc-
tions are freely available at https://​github.​com/​storm​lovet​ao/​eQTLQC.

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Wang et al. BMC Bioinformatics  2021, 22(Suppl 9):403 
https://doi.org/10.1186/s12859-021-04307-0

*Correspondence:   
xdong@rics.bwh.harvard.
edu; ydwang@hit.edu.cn; 
jiajiepeng@nwpu.edu.cn 
1 School of Computer 
Science, Northwestern 
Polytechnical University, 1 
Dongxiang Road, Chang’an 
District, Xi’an, China
2 School of Computer 
Science and Technology, 
Harbin Institute 
of Technology, West Dazhi 
St., Harbin, China3 Brigham 
and Women’s Hospital, 
Harvard Medical School, 75 
Francis St., Boston, USA

https://github.com/stormlovetao/eQTLQC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04307-0&domain=pdf


Page 2 of 18Wang et al. BMC Bioinformatics  2021, 22(Suppl 9):403

exert their effects by regulating expression levels of local or distant genes, which are 
termed as expression quantitative trait loci (eQTL). The eQTL analysis aims to associate 
genetic variants with the variation of gene expression levels. The eQTL summaries have 
been widely applied in interpreting GWAS and in mendelian randomization studies [6, 
7].

As the decrease of cost in next-generation sequencing (NGS), RNA-seq technology 
has been widely used to measure the presence and quantity of transcriptome in eQTL 
studies [8]. RNA-seq advances microarray in multiple aspects. First, RNA-seq has 
higher sensitivity and accuracy towards low-abundance transcripts. Second, RNA-seq 
could cover all transcripts in theory, both coding and non-coding RNAs, while microar-
ray can only measure annotated transcripts with certain abundance [9]. For example, in 
our recent work, we performed total RNA sequencing (sequencing RNA with or with-
out Ploy-A tail) of dopamine neurons in substantia nigra, and this enabled us to detect 
eQTLs regulating enhancer RNA [2]. Furthermore, RNA-seq can be used to detect the 
splicing events of pre-mRNA, which enables the research of splicing QTL(sQTL). To 
perform eQTL analysis, RNA-seq data is required to be processed into an expression 
matrix. From RNA-seq reads to the expression matrix, multiple quality control (QC) 
and normalization steps are needed to remove biases from samples, techniques, or arti-
ficial factors. Besides the RNA-seq data, genotypes of the same samples are also required 
to perform eQTL analysis. And rigorous quality control procedures of raw genotyping 
data are also needed to enable high-quality eQTL analysis.

The rapid development of tools and databases helps researchers to understand com-
plex diseases [10–15]. In recent years, multiple advanced eQTL analysis tools have been 
developed, such as MatrixEQTL [16], FastQTL [17] and QTLTools [18], which have dif-
ferent outstanding features. MatrixEQTL achieves fast computing efficiency by taking 
advantage of large matrix operations [16]. FastQTL efficiently controls the multiple per-
mutation testing problem [17]. QTLTools integrates multiple tools to perform molecu-
lar QTL discovery and downstream functional annotation analysis [18]. However, few 
tools can automatically pre-process the genotype data and gene expression data, which 
are necessary for eQTL analysis. Although published protocols exist for the processing 
of RNA-seq data and genotype data respectively [9, 19, 20], there is currently no com-
putational workflow that can be compatible with multi-source heterogeneous eQTL 
raw data. And it also remains a big challenge for users who have limited computational 
backgrounds to deal with vast preprocessing details. Thus, there is an urgent need to 
develop an automatic eQTL analysis tool involving standard and rigorous quality con-
trol procedures for eQTL studies. To achieve this purpose, several challenges need to 
be addressed. First, various data formats and data types exist in eQTL raw data. For 
example, depending on the stage of RNA-seq analysis, gene expression data may be in 
FASTQ, BAM, or read count formats. Second, biases commonly exist in both RNA-seq 
and genotype data, and comprehensive quality control and normalization procedures 
are required. Besides, in the current preprocessing protocol, a large amount of effort is 
required to manually run each step, which may also induce biases. Therefore, tools that 
can automatically handle computing details are needed to reduce manual intervention.

In this study, we present an automated pipeline for eQTL analysis, termed eQTLQC, 
featured with a set of rigorous preprocessing approaches for both genotype and gene 



Page 3 of 18Wang et al. BMC Bioinformatics  2021, 22(Suppl 9):403	

expression data. The main designs of eQTLQC have been used in data preprocess-
ing and eQTLs identification in our recent work [2, 21]. To aid the automatic process, 
eQTLQC provides users with a JSON configuration file to setup parameters and the 
processing logic flexibly. Our eQTL analysis framework supports various input formats 
for RNA-seq and genotype data. Machine learning-based and empirical techniques are 
used in the workflow to reduce manual intervention. In the following context, we dem-
onstrate the utility and feasibility of eQTLQC by performing an eQTL case study using 
real-world datasets generated by ROSMAP studies [22, 23].

Results
As shown in Fig. 1, we present a computational framework for data preprocessing and 
eQTL analysis. Rigorous quality control and normalization procedures are applied to 
gene expression data and genotype data, followed by standard eQTL mapping. In the 
following sections, we utilize this framework to process data from ROSMAP study [22, 
23], and also three other datasets for the purpose of robustness analysis, including May-
oRNAseq (Mayo) [24], MSBB [25] and CommonMind [26].

Preprocessing of gene expression data

Harmonization of multi‑source heterogeneous eQTL raw data

RNA-seq based gene expression data is usually generated in the following four RNA-seq 
processing stages and in different data formats: the raw reads stage (FASTA/FASTQ for-
mats), the read-aligned stage (SAM/BAM formats), feature-counted stage (read count 
format), or the standardized stage (RPKM/FPKM/TPM formats). The eQTL raw data 
could be at any of the four stages. And these data formats are heterogeneous and require 
different processing steps before eQTL mapping analysis.

The eQTLQC integrates several standard tools and in-house scripts to transform the 
data formats in the first three stages into the format of standardized stage (i.e. TPM). For 
expression data in FASTA/FASTQ formats, eQTLQC provides Bowtie [27], Bowtie2 [28] 
and Star [29] for reads alignment, and generates BAM files. For expression data in SAM/
BAM formats, eQTLQC utilizes the rsem-calculate-expression function in RSEM [30] 
to generate gene read counts. For expression data in read count format, we use in-house 
script to transform it into TPM formats. For data in the standardized stage, eQTLQC 
will perform rigorous quality control and normalization steps which will be described in 
the following context.

To illustrate the following steps, we will perform an eQTL case study starting from 
the gene read count table from ROSMAP study [22, 23], representing 60,554 genes 
and 370 neuropathologically healthy samples with clinical consensus diagnosis score 
≤ 3 (no/mild cognitive impairment). Three main function modules are implemented 
in eQTLQC, including (1) basic quality control module, which includes transforming 
read counts into TPM values, removing genes with low expression levels and excluding 
gender-mismatched samples; (2) detecting and removing sample outliers with problem-
atic gene expression profiles; (3) quantile normalization and adjusting covariates of gene 
expression profiles.
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Basic quality control on gene read counts

We first normalize read counts by gene length and sequencing library depth within-sam-
ple using TPM transformation. The TPM value of a gene reflects the relative transcrip-
tion abundance of this gene in a sample by measuring how many RNA molecules are 
derived from this gene in every million RNA molecules. The TPM transformation has 
been widely used in eQTL studies, such as GTEx study [8]. To be noted, we recommend 
users use the length of the union of exons as the gene length when performing TPM 
transformation. After TPM transformation, we identify and exclude genes with low 
expression levels. Users could exclude genes with TPM < a in ≥ b% samples or genes 
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with less than c reads in ≥ d% samples. Besides, users could only keep samples with > e 
million mapped reads and with > f % mappability. These parameters can be personalized 
using a configuration file in JSON format, and same as other parameters in the follow-
ing context. By setting a = 0.1, b = d = 80, c = 6, e = 10, f = 70 , there are 367 samples 
and 26,662 genes left after removing low-expressed genes or poor-aligned samples in 
ROSMAP.

Next, we identify samples with mismatched gender, which might be due to sam-
ple swap or mix-up. To achieve this purpose, we first predict the gender of the sample 
donator by measuring the expression profiles of two gender-specific genes, RPS4Y1 and 
XIST, which are specifically expressed in males and females respectively. Then, we com-
pare the predicted gender and user-given gender to identify mismatched samples. Usu-
ally, the gender-mismatched samples are identified manually based on the scatter plot. 
To avoid artificial biases, we automatically identify the abnormal samples using the sup-
port vector machine (SVM) classifier. Under the hypothesis that only a few samples have 
incorrect gender labels, we first train the SVM model using the expression profiles of 
RPS4Y1 and XIST as features and the given gender labels. Then, we predict the sample 
labels based on the trained model. Samples will be excluded if the predicted labels are 
different from the user-given labels. In the ROSMAP dataset, we did not detect gender-
mismatched samples, as shown in Fig. 2a.

Exclude sample outliers with problematic gene expression profile

Samples with problematic gene expression profiles might be caused by sample contami-
nation or failure of library preparation or RNA sequencing etc. In our pipeline, we use 
three approaches to measure the distance between samples and identify sample outliers, 
including Relative Log Expression (RLE) analysis, pair-wise correlation-based hierar-
chical clustering, and D-statistics analysis [9]. A spike-in sample with problematic gene 
expression profiles is manually added, generated by randomly permuting mean gene 
expression values of existing samples.

The RLE analysis is under the hypothesis that in a sample only a few genes have 
extreme expression levels, while most genes have similar expression levels across sam-
ples. Given a gene expression matrix G with genes in row and samples in column, the 
RLE analysis first subtracts the median expression levels of each gene from the origi-
nal expression value of all samples in each row. For each sample, the residual expres-
sion values of all genes should be centered at zero under the above hypothesis. Then, the 
RLE analysis makes boxplots for all samples based on residual gene expression values 
and sorts those boxplots or samples by the interquartile range (IQR) in increasing order 

Fig. 2  Expr_QC. Identification of outlying samples and normalization of RNA-seq based gene expression 
data. a Gene expression levels of two gender-specific genes: RPS4Y1 and XIST. b The RLE plot before data 
preprocessing. Aligned box-plots, in increasing order of IQR, represent residuals of gene expression for 
samples. c Hierarchical clustering of samples before data preprocessing. Color represents the batch of library 
preparation. d Distribution of D-statistics before data preprocessing. e Hierarchical clustering dendrogram 
after adjusting batch effects. f The RLE plot after data preprocessing. g Hierarchical clustering dendrogram 
after data preprocessing

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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from left to right, as shown in Fig. 2b. And samples at the rightmost part are likely to be 
outliers if they have an obvious larger IQR than other samples. As shown in Fig. 2b, the 
spike-in sample has the largest IQR in the RLE analysis. In eQTLQC, users can set the 
rightmost x% samples as candidate outliers.

Hierarchical clustering is also a widely used approach to exclude sample outliers. 
The similarity between each pair of samples is first measured by metrics such as Pear-
son’s correlation coefficient or Spearman’s correlation coefficient. The distance matrix, 
obtained by one minus similarity scores, is used to perform hierarchical clustering. 
Usually, samples with problematic expression profiles will be far from normal samples 
in the clustering dendrogram. As shown in Fig.  2c, we can see the spike-in sample is 
isolated in the dendrogram. Traditionally, the sample outliers will be manually picked 
out and excluded. To make this process automatic, we use a Mahalanobis distance-
based approach to identify outliers, which has been applied in GTEx project [8]. The 
Mahalanobis distance measures the distance between a point P and a distribution 
D in multi-dimensional space. In our context, we measure the Mahalanobis distances 
between each sample and the distribution of all samples. The chi-squared p value is cal-
culated for each sample in each cluster. Clusters with ≤ y% samples with Bonferroni-cor-
rected p values ≤ 0.05 will be marked as outlier clusters, and all samples included will be 
marked as candidate outliers. In the ROSMAP dataset, the spike-in sample is clustered 
into a single cluster with itself only and achieves the most significant adjusted p value 
( 3.4 ∗ 10−25 ), which should be excluded. And other clusters are not labeled as outliers 
based on the clustering analysis.

The third method to identify outliers is based on the distribution of D-statistics. The 
D-statistic of each sample is defined as the median Spearman’s correlation coefficients 
with other samples. Fig. 2d shows the distribution of D-statistics of all samples in the 
ROSMAP dataset, and samples locating at the leftmost tail of the distribution are likely 
to be outliers. We can see that the spike-in sample locates far from the peak of the distri-
bution. In eQTLQC, users can set the leftmost z% samples as candidate outliers.

Combining the analyses of above, our pipeline considers the intersection of candidate 
outliers reported by the three methods as the final set of sample outliers. In the ROS-
MAP dataset, by setting x = z = 5, y = 40 , only the spike-in sample is labeled as outlier 
and excluded.

Normalization and covariates adjustment

To eliminate technical noises existing in RNA-seq experiment, we first perform within-
sample inverse normal transformation by transforming TPM values to rank normalized 
values [2, 8]. In brief, the TPM values are first log10-transformed (adding a pseudoc-
ount of 10−4 ). Then, the measurements for each gene are transformed into normally dis-
tributed while preserving relative rankings (quantile normalization) and the mean and 
standard deviation of the original measurement.

We also perform cross-sample normalization to adjust known and latent covariates, 
which could bias the eQTL analysis. Common known covariates include technical arti-
facts such as batch effects, post-mortem interval (PMI) and RNA integrity number 
(RIN); and sample-relevant characteristics such as age, sex, and education length. Latent 
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covariates such as environmental factors and population stratification are usually hard 
to access. In eQTLQC, we use SVA to adjust the known and hidden covariates. To be 
specified, we use the combat function in SVA [31] to adjust the batch effects, and use the 
fsva function to adjust other known covariates and latent covariates. In the ROSMAP 
dataset, we adjusted age, sex, batch, PMI, RIN, and 22 surrogate variables detected by 
SVA.

Figure 2c shows the clustering dendrogram of samples before performing normaliza-
tion and covariates adjustment, where node color represents the batch information. We 
can see obvious batch effects where samples within the same batch tend to be in the 
same clusters. After the normalization and covariates adjustment, samples do not tend 
to be grouped according to batches as shown in Fig. 2e. Figure 2f and g show the RLE 
plot and clustering dendrogram respectively after the whole data preprocessing. We can 
see the improvement of data quality comparing with Fig. 2b and c, which are prior data 
preprocessing.

Quality control of genotype data

Rigorous quality control of genotype data is also critical in eQTL analysis. eQTLQC 
accepts genotype data in VCF or PLINK formats, which are most widely used. Ten rigor-
ous QC steps in both the SNP level and sample level are applied to improve data qual-
ity, as shown in Fig. 1. The QC procedures are based on published protocols and have 
been widely used in GWAS [32, 33] and eQTL studies [8], including our recent work [2]. 
Parameters were empirically set by default following the published protocols and can be 
adjusted by users in the configuration file. PLINK [34] will be used for performing the 
QC procedures, and VCF files will be transformed into PLINK format once provided. 
The genotype data of ROSMAP study are derived from WGS, consisting of 7,346,574 
markers (SNPs and small Indels). Genotypes of 343 subjects whose RNA-seq data are 
also available will be used in the following QC procedures.

Step 1: remove markers with excessive missing genotypes. The genotype missing rate 
reflects the data quality. Variants with systematically missing genotype values have 
no help toward the downstream analysis and might cause false-positive signals [19]. 
In eQTLQC, variants with genotype missing rate greater than or equal to 5% will be 
excluded by default. In the ROSMAP genotype dataset, 147,989 variants are excluded in 
this step.

Step 2: exclude subjects with excessive missing genotypes. Similar to Step 1, the genotype 
missing rate in subject-level should also be checked. Subjects with a high genotype miss-
ing rate may be due to poor quality of DNA samples or library preparation. In the case 
that genotype data is generated and combined from different sequencing platforms or 
microarray chips, the missing genotypes are also very common in samples. In eQTLQC, 
subjects with genotype missing rate < 5% will be left for further analysis. No subjects 
with excessive missing genotypes are excluded from the ROSMAP genotype dataset.

Step 3: identify gender-mismatched subjects. The gender of a subject can be inferred 
from genotypes of SNPs on chromosome X. In detail, for male samples, the homozy-
gosity rate of SNPs on chromosome X is expected to be 1, since male only has one copy 
of X chromosome. However, the homozygosity rate is much lower for female samples. 
Comparing sex information in clinical records, the samples with discordant gender 
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should be excluded, which might be due to sample contamination or plating errors [20]. 
In eQTLQC, the homozygosity rate of chromosome X is calculated based on all markers 
excluding the pseudo-autosomal region. And samples are labeled as female if homozy-
gosity rate < 0.2 , and labeled as male if homozygosity rate > 0.8 , empirically. Besides, 
eQTLQC requires at least 100 markers in default to enable this function. To be noted, 
the heterozygous haploid genotypes could be automatically set as missing in some geno-
type calling algorithms. In this case, eQTLQC cannot detect gender-mismatched sam-
ples based on homozygosity rate. In ROSMAP genotype data, all samples passed the 
gender checking.

Step 4: set the heterozygous haploid genotypes as missing. The variants on X chromo-
some in male samples should have haploid genotypes excluding the pseudo-autosomal 
region. The heterozygous haploid genotypes may exist in gender-mismatched samples, 
such as female sample labeled as male. After excluding gender-mismatched samples, 
described in Step 3, heterozygous haploid genotypes may be caused by sequencing or 
genotype calling errors, which should be removed. In this step, we set the heterozygous 
haploid genotypes as missing for all samples.

Step 5: remove markers violating the principle of Hardy–Weinberg Equilibrium (HWE). 
SNPs that have genotyping errors may significantly derive from the HWE and should be 
excluded. Given the frequencies of SNP alleles, allele A and B for instance, in a cohort, 
the expected frequencies of genotypes AA, AB and BB could be estimated under the 
HWE hypothesis. If the observed genotype frequencies of the SNP are far from the 
expected genotype frequencies, which could be evaluated by the Chi-squared test, we 
filter the SNP violating the principle of HWE. In eQTLQC, markers with HWE test p 
value < 10−6 will be identified and removed. In the ROSMAP dataset, 337,812 variants 
are removed in this step.

Step 6: remove markers with informative missingness. The failure of genotype calling 
may depend on genotypes, which can result in ’informative missingness’. For example, 
the successful calling rate of rare homozygous genotypes may be on average lower than 
heterozygous genotypes [19]. Bias will be introduced when estimating allele frequencies 
for SNPs with nonrandom missing genotypes [35]. In eQTLQC, we use the mishap test 
introduced in PLINK [34] to test whether the genotype missing status of a SNP can be 
predicted by neighbor SNPs. The mishap-test p value threshold is set to 10−9 by default 
in our pipeline, and 67 variants are removed in the ROSMAP genotype dataset.

Step 7: remove markers with low minor allele frequency (MAF). Due to factors like 
sample availability and cost, eQTL studies usually have sample sizes of dozens to thou-
sands. In studies of limited sample size, variants with smaller MAF may not result in 
robust association signals. Typically, most eQTL studies apply MAF ≥ 1–10% depending 
on their sample size. And the MAF cutoff should be set higher for studies with smaller 
sample sizes. For example, MAF ≥ 0.1 and 0.2 were applied in recent single-cell eQTL 
studies with sample size of 45 and 23 respectively [36, 37]. In eQTLQC, the default MAF 
lower bound is set to 5%. In ROSMAP dataset, 123,992 variants with MAF ≤ 0.05 are 
excluded in this step.

Step 8: exclude subjects with outlying heterozygosity rate. Heterozygosity rate is the 
proportion of heterozygous genotypes for an individual, which can reflect DNA sam-
ple qualities. Samples with excessive heterozygosity rates may be due to sample 
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contamination, and samples with reduced heterozygosity rates may indicate sample 
inbreeding [19]. The distribution of mean heterozygosity rates in a cohort can be used to 
identify subjects with outlying heterozygosity rates. In eQTLQC, we use the mean ± 4 
standard deviations of observed heterozygosity rates as the normal interval, and subjects 
with heterozygosity rates apart from the normal region will be excluded. Only independ-
ent SNPs are used for calculating heterozygosity rates. In the ROSMAP dataset, two out-
lying samples are removed in this step.

Step 9: identify related and duplicated subjects.  Related and duplicated samples violate 
the prerequisites of eQTL mapping analysis where the linear regression model is usually 
used. Identification of related or duplicated subjects is based on two metrics: identity by 
state (IBS) and identity by descent (IBD). For each pair of subjects, the IBS score can be 
observed as 0, 1, and 2 at a given marker by counting the number of shared alleles. In 
other words, IBS0 represents two different alleles, and IBS1 and IBS2 represent 1 and 2 
common allele(s) respectively. The shared allele(s) may be inherited from a recent com-
mon ancestor, and in this case, those shared alleles are called IBD. IBD can be estimated 
from genome-wide IBS scores [38]. The expectations of IBD equal to 1, 0.5, 0.25, and 
0.125 for duplicates or monozygotic twins, first-degree relatives, second-degree rela-
tives, and third-degree relatives, respectively. Since variation exists in practice due to 
population structures, genotyping errors, and complex LDs, the cutoff of IBD is slightly 
different. For individual pairs with IBD > 0.1875 (second-degree relatives or closer), one 
subject is randomly removed; and for individual pairs with IBD > 0.98 (duplicated sam-
ples or identical twins), both subjects will be excluded. In the ROSMAP dataset, six sam-
ples are excluded in this step.

Step 10: identify and exclude subjects with divergent ancestry. Population stratifica-
tion could bias the eQTL analysis as a major confounder, which needs to be adjusted 
by confounding adjustment approaches. Outlying subjects from divergent populations 
will enlarge the effect of population stratification and should be removed. To identify 
the population outlying samples, smartPCA [39] is employed in eQTLQC. To illustrate 
the population ancestry of ROSMAP samples, we first integrate ROSMAP genotypes 
and HapMap genotypes derived from four main populations: Yoruba trios from Ibadan, 
Nigeria (YRI), Utah residents of northern and western European ancestry (CEU), unre-
lated Japanese individuals from Tokyo, Japan (JPT) and Han Chinese individuals from 
Beijing, China (CHB). The top two principal components (PCs) are calculated from the 
integrated samples using LD-pruned SNP set and are shown in Fig. 3, where node color 
represents the population. As we can see, all samples in ROSMAP are classified into the 
CEU group. No population outliers were identified using SmartPCA. Besides, users can 
also select to output the top principal components derived from genotype profiles.

Genotype imputation. The genotype profiles that passed rigorous quality controls 
could be used for eQTL analysis. However, before preceding to eQTL analysis, geno-
type imputation is recommended for microarray-based genotype data, which usually 
has a limited number of markers. Excellent hidden Markov model (HMM)-based geno-
type imputation tools have been developed such as minimac3 [40], minimac2 [41], Bea-
gle [42] and IMPUTE2 [43]. As the genotype imputation needs intense computational 
resources to store the genome reference panel and perform imputation jobs, we did 
not implement this function module into our automatic pipeline. Instead, we provided 
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independent scripts for genotype imputation based on an online genotype imputation 
server, i.e., the Michigan Imputation Server (MIS) [40]. The MIS provides a user-friendly 
web interface, underlying which high-performance computing clusters are freely availa-
ble. And several state-of-the-art human genome reference panels are hosted on the plat-
form, such as HRC (consisting of 64,976 haplotypes) released by Haplotype Reference 
Consortium [44].

eQTL mapping

334 subjects passed the quality controls in the preprocessing of both gene expression 
data and genotype data. 37.7% subjects are male, with an average age of 85.8, average 
RIN of 7.2 and average PMI of 7.5  h. 26,663 genes and 6,736,714 variants with MAF 
≥ 0.05 were used for mapping eQTL associations after the preprocessing (Table 1).

The final eQTL mapping analysis is conducted using R Package MatrixEQTL [16]. 
By default, the additive linear model will be applied. And in cis-eQTL analysis, SNPs 
are included if their positions are within 1Mb with the TSS of a gene. And trans-eQTL 

Fig. 3  PCA. Population structure of ROSMAP cohort and HapMap cohorts

Table 1  Summary of eQTL mapping results. FDR is estimated using Benjamini–Hochberg procedure

Summary Threshods ROSMAP Mayo MSBB CommonMind

Effective sample size NA 334 103 65 200

Gene count NA 26,663 27,101 29,736 21,511

Variant count NA 6,736,714 6,932,711 6,937,313 6,703,202

Top PC count NA 3 3 3 3

Cis-eQTL associations P < 1 124,877,625 131,696,349 143,560,218 103,667,853

Trans-eQTL associations P < 10
−4 18,617,087 19,594,408 21,324,856 14,353,808

Cis-eQTL associations FDR < 0.05 3,132,119 516,977 124,675 404,182

Cis-eQTL count FDR < 0.05 1,515,726 326,652 78,690 306,100

Cis-gene count FDR < 0.05 21,173 7999 3373 6021

Trans-eQTL associations FDR < 0.05 163,821 23,200 13,000 9151

Trans-eQTL count FDR < 0.05 78,894 13,607 6454 8914

Trans-gene count FDR < 0.05 3079 745 394 203
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analysis includes SNP-gene associations if their distances are beyond this window. FDR 
reported by MatrixEQTL, using Benjamini–Hochberg procedure is used to measure 
the association significance. Besides, covariates could be adjusted in this step, such 
as the top PCs from genotype data, user-given confounders. In the ROSMAP dataset, 
we adjusted the top three PCs derived from genotype profiles since known and latent 
covariates related to gene expression profiles have been adjusted by SVA. 124,877,625 
cis-associations and 179,489,391,043 trans-associations were tested, and the p value 
distributions were shown in Fig. 4. 1,515,726 cis-eQTLs and 78,894-trans-eQTLs were 
detected with FDR ≤ 0.05,associated with 21,173 local egenes and 3079 distant egenes, 
respectively.

Robustness analysis

To evaluate the robustness of our pipeline, we conducted similar data preprocessing and 
eQTL mapping for the other three independent datasets: MayoRNAseq (Mayo) [24], 

A B

C D

Fig. 4  QQplot. Q–Q plots of local and distal eQTLs in ROSMAP, Mayo, MSBB and CommonMind studies. 
Theoretical (x-axis) p-values versus MatrixEQTL calculated p-values (y-axis) in − log 10 transformation were 
plotted for each dataset. Red points represent cis-eQTLs, and blue points represent trans-eQTLs. The grey line 
represents null line
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MSBB [25] and CommonMind [26]. These datasets were also from brain tissues, and 
only neuropathologically healthy subjects were used for analyses, resulting in 103, 65 
and 200 effective samples consisting of both gene expression and genotype data in each 
dataset respectively. The summaries of cis/trans-eQTL analyses are shown in Table  1. 
And the Q–Q plots of cis/trans-eQTL results of the four datasets are shown in Fig. 4.

To further evaluate the concordance among independent datasets, we compared the 
effect sizes ( β values) of variant-gene pairs among these datasets. The lower side of Fig. 5 
shows the β values of all shared variant-gene pairs between datasets with p value less 
than 0.05. The upper side indicates the Pearson’s correlations of lower scatter plots, and 
the red star sign indicates the significance of correlation. We can see most Pearson’s r 
values are larger than 0.9, representing strong concordance. These results indicate that 
our pipeline could generate robust eQTL signals in different datasets.

Conclusion and discussion
Advances in the development of tools and databases have accelerated the researches of 
complex diseases [45–47]. The eQTL analysis plays a key role in associating functional 
elements, such as coding or non-coding transcripts, with disease susceptibility variants. 
In this work, we propose eQTLQC, an eQTL analysis pipeline with automated preproc-
essing of both genotype data and gene expression data especially RNA-seq based. Our 
method aims to package the complex quality control, normalization, and eQTL mapping 
procedures required in eQTL analysis into a ’black box’ and leave users with a flexible 
interface to set up parameters and control the processing logic. For RNA-seq based gene 
expression data, eQTLQC accepts multiple data types and formats, such as Fastq, BAM, 
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Fig. 5  Betapairs. Effect sizes ( β values) of variant-gene pairs in eQTL results of ROSMAP, Mayo, MSBB and 
CommonMind studies
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gene read count, and normalized metrics (e.g., TPM/FPKM/RPKM). Several main func-
tional modules are followed, depending on the input data types, to transform the input 
data type into TPM metrics (or FPKM/RPKM if user provided). And rigorous quality 
control steps are applied to exclude problematic samples, such as gender mismatch, poor 
alignment. Data normalization and covariates adjustment are also applied to reduce data 
noises. For genotype data, eQTLQC support the widely-used VCF and PLINK formats. 
Ten rigorous quality control procedures are followed to exclude sample outliers and 
variant outliers. In our recent work [2], we have applied the core methods in eQTLQC 
to discover the genetic regulatory effects on both coding and non-coding transcripts. 
And in this work, we demonstrate its features and feasibility using the ROSMAP dataset. 
Furthermore, we demonstrated that eQTLQC is robust for eQTL mapping through case 
studies on multiple independent datasets.

Our work is also subject to several limitations. First, this pipeline has only been tested 
in the processing of the bulk RNA-seq dataset. For the single-cell RNA-seq based data, 
the data quality control and normalization methods are different from bulk RNA-seq, 
which should be further considered. Second, the order of some preprocessing steps 
is empirically set up. For example, the ’step 4: set the heterozygous haploid genotypes 
as missing’ should be downstream of ’step 3: identify and exclude subjects with mis-
matched sex’ as described in the Methods. However, the order of ’step 5: HWE-test’ and 
’step 6: Mishap-test’ can be switched. The optimal preprocessing order is still an open 
question for discussion. Although the current study packages the complex processing 
details into a black box, users are limited to use the built-in methods. With the rapid 
revolution of bioinformatics methods and tools, how to maintain the tool up-to-date is 
also challenging.

In the future, we plan to integrate specific data processing techniques for single-cell 
RNA-seq based eQTL analysis and improve the user experience by designing Graphical 
User Interface(GUI).

Methods
Overview of eQTLQC framework

Two main phases are included in the eQTLQC framework: the data preprocessing phase 
and eQTL mapping phase, as shown in Fig.  1. The data preprocessing, which largely 
affects the accuracy and reliability of eQTL analysis, includes rigorous preprocessing 
steps for two main data categories needed for eQTL analysis, i.e., gene expression data 
and genotype data. As gene expression data has various data types and data formats, 
eQTLQC can handle the FASTQ format of raw reads, BAM format of mapped reads, 
read count data type of alignment summaries, and also normalized metrics such as 
RPKM, FPKM, and TPM. The read alignment module, feature-count module, and nor-
malization module are executed depending on the imputed gene expression data formats 
(Fig. 1), resulting in a normalized gene expression matrix. Next, rigorous quality con-
trol steps will be applied to the normalized gene expression matrix to exclude outlying 
genes and samples. Then, quantile normalization and covariates adjustment (including 
known and hidden covariates) will be applied to the gene expression matrix to normal-
ize gene expression profiles and adjust the gene expression biases caused by covariates, 
respectively.
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In preprocessing of genotyping data, eQTLQC accepts widely used VCF and PLINK 
formats. Ten rigorous quality control steps are followed up to remove outlying vari-
ants and samples, including: (1) remove markers with excessive missing genotypes; (2) 
exclude subjects with excessive missing genotypes; (3) exclude subjects with gender-
mismatch; (4) remove markers with heterozygous haploid genotypes; (5) remove mark-
ers violating Hardy-Weinberg Equilibrium (HWE); (6) remove markers with informative 
missingness; (7) remove markers with low minor allele frequency (MAF); (8) exclude 
subjects with abnormal heterozygosity rate; (9) exclude related subjects; and (10) iden-
tify and exclude individuals with divergent ancestry. After these rigorous quality control 
steps, clean genotyping data together with clean gene expression data will be reformat-
ted to fit the requirement of MatrixEQTL, used in the eQTL mapping phase. In the fol-
lowing context, we will introduce the details of each step in the preprocessing of gene 
expression data and genotype data, and also the eQTL mapping phase based on real-
world datasets generated by ROSMAP studies.

Experimental datasets

The Religious Orders Study (ROS) [22] and Memory and Aging Project (MAP) [23] were 
two longitudinal cohort studies, aiming at studying aging and Alzheimer’s disease (AD). 
Participants enrolled in both studies were free of dementia at the beginning and agreed 
to longitudinal clinical recording and organ donation [48, 49]. CommonMind data 
were from CommonMind Consortium which provides large-scale, well-curated brain 
samples and relevant multi-omics datasets [26]. MayoRNAseq data were produced by 
Mayo Clinic Alzheimer’s Disease Genetics Studies (MCADGS) studying diseases such 
as AD, progressive supranuclear palsy (PSP) and pathologic aging (PA) [24]. MSBB study 
aimed at studying AD, and data were generated from postmortem brain tissue collected 
through the Mount Sinai VA Medical Center Brain Bank [25]. Post-mortem neuropatho-
logic evaluations were all performed upon the death of participants. RNA-seq data, 
genotype data and clinical data derived from ROSMAP studies as well as MayoRNAseq, 
MSBB and CommonMind were downloaded from the Synapse platform (www.​synap​se.​
org).
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