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Abstract 

Background: RNA secondary structure prediction is an important research content 
in the field of biological information. Predicting RNA secondary structure with pseudo-
knots has been proved to be an NP-hard problem. Traditional machine learning meth-
ods can not effectively apply protein sequence information with different sequence 
lengths to the prediction process due to the constraint of the self model when 
predicting the RNA secondary structure. In addition, there is a large difference between 
the number of paired bases and the number of unpaired bases in the RNA sequences, 
which means the problem of positive and negative sample imbalance is easy to make 
the model fall into a local optimum. To solve the above problems, this paper proposes 
a variable-length dynamic bidirectional Gated Recurrent Unit(VLDB GRU) model. The 
model can accept sequences with different lengths through the introduction of flag 
vector. The model can also make full use of the base information before and after the 
predicted base and can avoid losing part of the information due to truncation. Intro-
ducing a weight vector to predict the RNA training set by dynamically adjusting each 
base loss function solves the problem of balanced sample imbalance.

Results: The algorithm proposed in this paper is compared with the existing algo-
rithms on five representative subsets of the data set RNA STRAND. The experimental 
results show that the accuracy and Matthews correlation coefficient of the method are 
improved by 4.7% and 11.4%, respectively.

Conclusions: The flag vector introduced allows the model to effectively use the infor-
mation before and after the protein sequence; the introduced weight vector solves the 
problem of unbalanced sample balance. Compared with other algorithms, the LVDB 
GRU algorithm proposed in this paper has the best detection results.

Keywords: Recurrent neural network, RNA secondary structure prediction, 
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Background
Ribonucleic acid(RNA), as the genetic carrier of living organisms, plays a very impor-
tant role in living organisms, especially in HIV and other viruses, its genetic informa-
tion is carried by RNA rather than DNA [1]. The function of RNA is usually determined 
by its spatial structure, which is usually divided into three levels. The primary structure 
of RNA refers to the arrangement order of four nucleotides. Because different bases 
cause different nucleotides, the primary structure of RNA is represented by four bases: 
A, C, G and U. The secondary structure of RNA refers to the planar structure formed 
by the interaction and folding of non-adjacent bases. Hairpin loop, bulge loop, inner 
loop, multi-branched loop, single-stranded regions, helix and pseudoknots are seven 
recognized secondary structural elements. At present, a large number of experiments 
have shown that the secondary structure of RNA is closely related to its function [2]. 
Therefore, studying the secondary structure of RNA is the first step for us to understand 
and study its function [3]. However, RNA molecules have the characteristics of difficult 
crystallization and fast degradation, the traditional methods of X-ray crystal diffraction 
and nuclear magnetic resonance to determine the secondary structure are not only time-
consuming, costly and expensive, but also not suitable for all RNA molecules [4].

At present, the prediction of RNA secondary structure is mainly divided into three cat-
egories: methods based on minimum free energy, methods based on sequence compari-
son and methods based on statistics. The minimum free energy model is generally used 
to predict the secondary structure of RNA under the condition that only the primary 
sequence of RNA does not have any prior knowledge [5, 6]. This model assumes that 
RNA will fold into a stable secondary structure with minimum free energy. Based on this 
idea, Akiyama et  al. proposed a weighted method combining thermodynamic method 
and machine learning [7]. This method avoids the over-fitting problem that may occur 
in the original model by adding regularization terms in the training process on the basis 
of the original machine learning model. Islam et al. proposed a model based on chemi-
cal reaction optimization algorithm (CRO) [8]. The model accelerates the prediction 
time to a certain extent by verifying and deleting repetitive stems into RNA sequences. 
Jin Li et al. proposed an RGRNA model based on stem replacement and growth, which 
improves the accuracy of RNA secondary structure prediction by using a combination 
optimization algorithm [9]. However, these methods still have two shortcomings: first, 
their prediction accuracy is relatively low, usually only between 50 and 70%; second, this 
method only considers the effect of pairing base pairs on free energy, it cannot predict 
RNA sequences with pseudoknots. However, pseudoknots are common structures in 
RNA sequences, so this method has obvious limitations. The method based on com-
parison sequence is to determine the secondary structure of RNA by comparing and 
analyzing a large number of homologous RNA molecular sequences. TurboFold II pro-
posed by Zhen Tan et al. is a way to predict RNA secondary structure based on multiple 
RNA homologous sequences. Compared with TurboFold [10], TurboFold II increases 
the comparison of multiple sequences. The aliFreeFold model proposed by Ouangra-
oua et al. is a method to speed up the prediction by calculating a suboptimal second-
ary structure generated by a representative structure for each sequence from a group 
of homologous RNA sequences when the number and divergence of homologous RNA 
increase and the prediction effect is not ideal. Among these methods, the method of 
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comparison before prediction is based on the premise that the structural conservative-
ness is greater than the sequence conservativeness. The prediction effect of this method 
strongly depends on the results of sequence comparison. The main idea of the simulta-
neous prediction and sequence comparison method is to cycle the sequence comparison 
and maximum base pair folding, which consumes the time and space resources of the 
computer. The method of prediction before comparison takes evolutionary information 
into account, but this method cannot predict RNA sequences with pseudoknots. Based 
on the idea of statistics, the problem can be transformed into the classification problem 
of base pairing results in sequences. Bellaousov S et al. proposed the ProbKnot method 
to predict the secondary structure of RNA by comparing the predicted structure and 
known structure of a large RNA sequence database containing less than 700 nucleo-
tides [11]. Rujira Achawanantakun et al. used the method of preserving the adjacency 
and nesting of structural features without considering the abstract shape of spiral and 
loop region length details, and used the method of support vector machine to predict 
the secondary structure of RNA, which can predict RNA sequences containing pseu-
doknots [12]. These algorithms have also achieved certain results, but there are some 
deficiencies. First, RNA base pairing is a complex biological process, and it is difficult to 
mine the information contained in the sequence by a simple formula or a shallow level 
of regular learning [13, 14]. Second, they are limited by the problem of their own model 
so that they can only accept fixed-length sequence information [15]. Third, due to the 
imbalance of positive and negative samples in the training data set, the trained model is 
likely to be locally optimal (Table 1).

In this paper, a variable-length dynamic bidirectional Gated Recurrent Unit(VLDB 
GRU) model is proposed to solve the above problems according to the characteristics 
of current RNA secondary structure prediction methods and their defects [16, 17]. 
The prediction of RNA secondary structure is based on sequence, namely, the force of 

Table 1 Training algorithm for dynamically adjusting loss function
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hydrogen bonds between the front and back bases may affect the effect of hydrogen 
bonds between other bases, while GRU neural network model is just good at dealing 
with sequence-based problems [18]. Therefore, GRU is chosen to be the main frame-
work of the algorithm in this paper. The algorithm ensures that RNA sequences with 
different sequence lengths can be accepted by setting the maximum recursion value and 
a flag marker vector, and solves the problem of imbalance between positive and nega-
tive samples by dynamically adjusting the loss function of each base through the weight 
vector.

Results
The prediction results on five data sets based on bidirectional recursive GRU algorithm 
(GRU in the Table 2.) and variable-length bidirectional recursive GRU algorithm (FLAG 
in the Table 2.) and VLDB GRU algorithm (VLDB in the Table 2.) are shown in Table 2. 
From the data in the Table  2, we can see three points of information. First, the three 
models perform best on SPR dataset and worst on ASE dataset. This result related to 
the maximum sequence length of the two data sets. As can be seen from the selection 
of data sets, the maximum sequence length on the SPR data set is 93, and the maximum 
sequence length on the ASE data set is 486. Since that maximum recursion value obtain 
by the recursive neural network is the maximum sequence length value of the data set, 
the greater the maximum sequence length of the data set, the great the maximum recur-
sion value of the recursive neural network and the greater the difficulty in learning the 
model. Secondly, the variable-length bi-directional recurrent neural network model has 
better prediction results than the bi-directional recurrent neural network model on five 
data sets, which shows that the method of introducing a flag vector is more reasonable 
and scientific than the simple method of sequence length supplement, and also makes 
the learned model more robust and robust. Thirdly, compared with FLAG model, VLDB 

Table 2 Experimental results based on VLDB GRU algorithm

The data in bold, italics, underline represent the optimal evaluation index values obtained by different algorithms on the 
same data set

Dataset Method SEN PPV ACC MCC

SPR GRU 0.777 0.687 0.707 0.421

FLAG 0.965 0.853 0.905 0.816

VLDB 0.962 0.885 0.921 0.845
ASE GRU 0.983 0.482 0.556 0.323

FLAG 0.806 0.532 0.645 0.36

VLDB 0.826 0.652 0.727 0.475
RFA GRU 0.971 0.563 0.661 0.451

FLAG 0.793 0.613 0.732 0.473

VLDB 0.811 0.699 0.778 0.558
SRP GRU 0.768 0.676 0.708 0.421

FLAG 0.798 0.653 0.697 0.408

VLDB 0.828 0.828 0.729 0.463
TMR GRU 0.974 0.498 0.63 0.434

FLAG 0.819 0.668 0.769 0.543
VLDB 0.796 0.669 0.765 0.529
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GRU model is the most prominent in ASE and SRP data sets, and has no obvious advan-
tages in TMR and SPR data sets last time in RFA data sets. Such data results are related 
to the number of paired bases and unpaired bases on each data set, because VLDB GRU 
model is an algorithm improvement to solve the problem of imbalance between paired 
bases and unpaired bases on the data set. As can be seen from Fig.  1, the difference 
between paired bases and unpaired bases on the five data sets is ASE, SRP, SPR, RFA 
and TMR from large to small. Among them, the situation of paired bases and unpaired 
bases on TMR data set is exactly opposite to that of the whole data set. Therefore, the 
method of introducing a weight vector has no obvious advantage on TMR data set, but 
the VLDB GRU model proposed in this paper can be seen to have a good effect on ASE 
and SRP data sets. Therefore, based on the above three points, the prediction effect of 
VLDB model in this paper is better than the other two models.

Comparison with other algorithms

The training algorithm (VLDB GRU) in this paper is compared with the existing support 
vector machine algorithm (SVM), ProbKnot algorithm, long shot-term memory (LSTM) 
algorithm and Cylofold algorithm on 5 data sets SPR, ASE, RFA, SRP and TMR. The 
experimental comparison results are shown in Table 3. The difference of various indexes 
in the experiment is shown in Figs. 2 and 3.

Case study

SRP_00256(PIR.SPE.) is one of the signal recognition particle ribonucleic acids. Its 
sequence has a primary length of 93. Such molecules can often recognize more than 
one codon of the same amino acid. Its 5’ end base is the modified base, A is modified 
to I(hypopurine), and it can pair with U, C and A. Therefore, the pairing of such RNA 
is much more complicated. Figure  4 (a) is a natural secondary structure diagram of 
SRP_00256, (b) is a secondary structure diagram of SRP_00256 predicted herein, and 
(c) is a secondary structure diagram of SRP_00256 predicted using ProbKnot method. 
Where black bases indicate correctly predicted paired or unpaired bases, and red 
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indicates incorrectly predicted paired or unpaired bases. Other case study figures can be 
assessed from http:// eie. usts. edu. cn/ prj/ curre ntdata/ index. html.

Table 3 Comparison with other algorithms

The data in bold, italics, underline represent the optimal evaluation index values obtained by different algorithms on the 
same data set

*Cylofold algorithm is unable to measure results on SPR data sets with many base deletion sequences

Dataset Method SEN PPV ACC MCC

SPR VLDB 0.962 0.885 0.921 0.845
SVM 0.788 0.856 0.834 0.667

ProbKnot 0.793 0.744 0.772 0.546

LSTM 0.703 0.71 0.687 0.372

Cylofold * * * *

ASE VLDB 0.826 0.652 0.727 0.475
SVM 0.712 0.663 0.68 0.361

ProbKnot 0.734 0.564 0.613 0.247

LSTM 0.81 0.739 0.574 0.786

Cylofold 0.66 0.575 0.65 0.299

RFA VLDB 0.811 0.699 0.778 0.558
SVM 0.151 0.748 0.581 0.182

ProbKnot 0.793 0.555 0.648 0.339

LSTM 0.794 0.54 0.561 0.141

Cylofold 0.667 0.551 0.584 0.177

SRP VLDB 0.828 0.7 0.729 0.463
SVM 0.682 0.566 0.581 0.167

ProbKnot 0.807 0.598 0.638 0.300

LSTM 0.824 0.665 0.625 0.123

Cylofold 0.673 0.563 0.184 0.589

TMR VLDB 0.796 0.669 0.765 0.529
SVM 0.498 0.684 0.68 0.34

ProbKnot 0.635 0.388 0.533 0.109

LSTM 0.85 0.538 0.569 0.18

Cylofold 0.526 0.433 0.561 0.106
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Fig. 2 Index difference between VLDB GRU and ProbKnot algorithms

http://eie.usts.edu.cn/prj/currentdata/index.html
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Discussion
As can be seen from Table 3, the VLDB GRU model has obvious advantages over the 
other two algorithms on the data set SPR. On the one hand, GRU is good at deal-
ing with the problem of correlation between front and back sequences. On the other 
hand, this model can accept sequences of different lengths without violently trun-
cating the length of the sequences. Because the weight vector method also gives the 
model a better accuracy. In addition, it can be seen that the VLDB GRU model also 
performs well on the data set ASE, but the index of each algorithm decreases com-
pared with that on the data set SPR, which is largely related to the characteristics of 
the ASE data set itself, because the proteins on the ASE data set are RNase P proteins, 
i.e., ribonuclease P, which contain a large number of bases, making the prediction of 
its secondary structure more difficult. From Figs. 2 and 3, we can see that VLDB GRU 
model has a great advantage over ProbKnot algorithm, SVM algorithm, LSTM algo-
rithm and Cylofold algorithm in prediction accuracy on each data sets, especially on 
data set TMR, the proposed method is 13% and 21.9% higher than ProbKnot algo-
rithm in ACC and MCC respectively. Therefore, compared with other algorithms, the 
VLDB GRU model proposed in this paper can indeed predict the secondary structure 
of RNA more accurately.

Conclusion
In this paper, a VLDB GRU model is designed based on the recurrent neural network 
model. On the one hand, this method improves the traditional processing method for 
RNA data sets containing sequences of different lengths by setting a flag vector for each 
base in the sequence, i.e. a simple and crude truncation method for the data sets, and 
effectively uses all information in the protein sequences. On the other hand, the method 
improves the accuracy of RNA secondary structure prediction. In addition, to solve the 
problem of imbalance between positive and negative samples, this paper adopts the 
method of setting a weight vector for each base. When calculating the loss function for 
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Fig. 3 Index Difference between VLDB GRU and SVM algorithms
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each base, the proportion of each base in the loss function is dynamically adjusted to 
avoid the situation that the model falls into local optimization and makes the trained 
model better. Experiments show that VLDB GRU model improves ACC by 4.7%, 9.1%, 
10.4% and 7.7%, respectively, compared with SVM, ProbKnot, LSTM and Cylofold algo-
rithms, which shows that the algorithm proposed in this paper can indeed better predict 
RNA secondary structure.

Methods
Data sets and measurements

In this paper, we choose ASE dataset of RNase P type, RFA dataset of Hammerhead 
Ribozyme type, SPR dataset of Transfer RNA type, TMR dataset of tmRNA type and 
SPR dataset of Signal Recognition Particle RNA type to predict RNA secondary struc-
ture. The reasons are as follows: first, these five RNA data sets are five typical RNA sec-
ondary structure prediction data sets; Secondly, these five kinds of RNA data sets all 
have pseudoknots, which is in line with our research problems; Finally, these five kinds 
of RNA data sets include the cases that the maximum length of sequences is far greater 
than the minimum length, the maximum length is close to the minimum length, and 
the paired bases are larger than, approximately equal to, and smaller than the unpaired 
bases. These five RNA data sets ensure the persuasiveness of our experimental results 
[19–21]. The statistics of each subset are shown in Fig.  5, where ‘Pseudoknots’ repre-
sent the number of pseudoknots in the dataset, ‘Average length’ represents the average 
length of the dataset sequence, ‘Max length’ represents the maximum sequence length 
of the dataset, and ‘Min length’ represents the minimum sequence length of the data-
set. The situation of paired bases and unpaired bases in each subset is shown in Fig. 1, 
where ‘paired’ represents the number of paired bases, ‘unpaired’ represents the number 
of unpaired bases, and ‘difference’ represents the difference between paired bases and 
unpaired bases.
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Fig. 4 SRP_00256 secondary structure diagrams
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In this paper, four indicators are used to evaluate models, i.e., sensitivity (SEN), speci-
ficity (PPV), Matthews correlation coefficient (MCC) and accuracy (ACC) to evaluate 
the model. MCC is an evaluation metrics that combines SEN and PPV [22, 23]. Their 
calculation methods are shown in Eq. (1).

where TP represents the number of correctly predicted base pairs; TN means correctly 
predicting the number of unpaired bases; FP indicates the number of bases predicted 
to be paired but not actually paired; FN indicates the number of bases predicted to be 
unpaired but actually paired. The value range of MCC is between -1 and 1, and the value 
range of the other three indicators is between 0 and 1. The larger these four indicators 
are, the better the prediction effect of the model is.

The prediction of RNA secondary structure.
Bases are combined units of RNA structure, and stable base pairs are formed by 

hydrogen bond interaction between bases [24]. Correct prediction of secondary 
structure is a strong guarantee for prediction of RNA tertiary structure. Pseudoknots 
are complex and stable structures in many biological cells. Pseudoknots refer to the 
phenomenon of crossing between paired base pairs, such as base i is paired with base 
j, base m is paired with base n, and the phenomenon that their position sequence 
number in RNA sequence satisfies i < m < j < n is called the existence of pseudoknots 

(1)





SEN = TP
TP+FN

PPV = TP
TP+FP

MCC = TP∗TN−FP∗FN√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

ACC = TP+TN
TP+TN+FP+FN

Fig. 5 The basic situation of subsets
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in the RNA sequence [25, 26]. Although not all RNA secondary structures have pseu-
doknots, pseudoknots has an important influence on the function of RNA. Therefore, 
in order to analyze the real structure of RNA, we must solve the problem of pseudo-
knots. At present, the prediction of RNA secondary structure with pseudoknots has 
received extensive attention, which is also a major problem in the prediction of RNA 
secondary structure.

From the perspective of machine learning, the prediction of RNA secondary structure 
is to extract the relevant primary information of RNA sequence. After data preprocess-
ing, the structured data is used as the input of machine learning model. Through model 
training, the matching of each base in RNA sequence can be predicted correctly to the 
greatest extent. This process can be seen as a supervised learning process with multiple 
classifications.

Feature selection and generation

According to Mathews et  al. [27], there is a positive correlation between the pairing 
probability of bases predicted by partition function and the pairing probability of real 
two bases. Therefore, this paper takes the output result of partition function as a part of 
the input features to improve the prediction accuracy of RNA secondary structure. In 
addition, the more frequently a base appears in the sequence, the greater the possibility 
of pairing with the base. Therefore, in this experiment, the input features are as follows:

1. Through the output of the partition function calculated by RNA structure software, 
an n*n output matrix will be obtained after a protein sequence with a length of n is 
calculated.

2. The probability that a certain type of base in the sequence appears in the sequence, 
and the frequency occupied by that type of base in the sequence are recorded and 
expressed by a one-dimensional vector.

3. Base type information. RNA primary structure can be represented by four bases: A, 
G, C and U. We use a four-dimensional vector to represent them. Tules are: A-0001, 
G-0010, C-0100, U-1000, others-0000.

Therefore, for each base, after selecting, transforming and expanding the data features, 
its input features can be regarded as an (N + 5)-dimensions vector, where N represents 
the maximum recursive value of the recurrent neural network, that is, the maximum 
length of the data set where the sequence is located.

The input of the model is a three-dimensional array X[i, j, k], and the first dimension i 
represents the i-th sequence in the data set, with the value range of 1 to batch_size; The 
second dimension j represents the j-th base of a certain sequence, and its value range 
is from 1 to N. The third dimension k represents the k-th feature of a base, with a value 
range of 1 to (N + 5). Where batch_size represents the number of training samples of the 
model each time, the value in this experiment is 200.

The output of the model is a two-dimensional array Y, Y [i, j] = 0 means that the (i + 1) 
base in the (i + 1)-th sequence is not paired with any base, otherwise it means that the 
(j + 1)-th base and the y[i, j]-th base in the (i + 1)-th sequence are paired.
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Bidirectional recursive GRU 

GRU is an improved algorithm proposed to overcome the traditional recurrent neural 
network’s inability to handle long-distance dependence well [28, 29]. The algorithm adds 
two gates, namely update gate and reset gate, whose expressions are as shown in Eq. (2).

Among them, x is the input of the model, and in this paper is the three-dimensional 
array X[i, j, k] described earlier. The input feature of each base corresponds to a recur-
sive cycle, and the total number of recursive cycles is the maximum sequence length n. 
r denotes a reset gate, which can decide which information to discard and which new 
information to add, z denotes an update gate, which determines the extent to which 
previous information is discarded, and h̃ and h denote a new hidden state and a cur-
rent hidden state, respectively. σ and tanh represent Sigmoid function and tanh func-
tion, respectively, which are the parameters that the model needs to train and follow. The 
graphical abstraction is shown in Fig. 6.

Considering that the formation of the secondary structure of RNA is a structure 
formed by the interaction of hydrogen bonds between bases, the sequence information 
before and after a base in the RNA sequence will have certain influence on the secondary 
structure, so the bidirectional recurrent neural network model is selected for training in 
this experiment. Bidirectional recurrent neural network is a composite recurrent neural 
network that combines a forward-learning recurrent neural network and a backward-
learning recurrent neural network. The calculation process is shown in Eq. (3).

The graphical abstraction of the bi-directional recurrent neural network is shown in 
Fig. 7. The weights w1 to w6 in the figure respectively represent the input to the forward 
and backward hidden layers, the forward and backward hidden layers to the hidden layer 
itself, and the forward and backward hidden layers to the output layer.

(2)





rt = σ(Wxrxt +Whrht−1 + br)
zt = σ(WXZxt +Whzht−1 + bz)
�ht = tanh (Wxhxt +Whh(rt × ht−1)+ hb)

ht = zt × ht−1 + (1− zt)× �ht

(3)ht =
−→
ht +

←−
ht
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0.99
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Fig. 6 GRU structure
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Variable length bidirectional recursive GRU 

Because the length of each RNA sequence is not consistent, the traditional way of trun-
cating the long sequence or simply completing the short sequence will lead to the loss of 
sequence information, resulting in the waste of information, or adding redundant infor-
mation to the sequence, both of which have a certain negative impact on the prediction 
of RNA secondary structure [30–32]. Therefore, in this paper, a flag vector is introduced 
to carry out zero filling processing on short sequences in the data preprocessing stage, 
but in the training stage, the filling part will be filtered when the loss function is calcu-
lated for each base. Thus not only all effective information of the sequences is utilized, 
but also the redundant information filled in is not allowed to interfere with the test [33]. 
The calculation process of the cross entropy of a sequence m in the variable-length bidi-
rectional recursive GRU model is as shown in Eqs. (4)–(6).

where the operator “ · ” represents multiplication of the corresponding positions of the 
vector.

From Eq. (5), it can be found that when n < i ≤ N, flag[i] takes a value of 0, which makes 
the values of flag[i] · lossm also takes a value of 0, i.e. the bases participating in the com-
pletion will not affect the value of loss function cross_lossm.

(4)cross_lossm =
∑n

i=1 flag[i] · lossm∑n
i=1 flag[i]

(5)flag[i] =
{
1, i ≤ n
0, n < i ≤ N

(6)lossm = −
n+1∑

j=1

y[i,j] · log
(
y[i, j]

)

0.8

0.85

0.9

0.95

1

36 50 64 76 88 92

sen ppv acc mcc

Fig. 7 Bidirectional recurrent neural network
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VLDB GRU 

Since the ratio between paired bases and unpaired bases in the RNA STRAND data set 
is 2:3 [34, 35], in the multi-classification processing mode of this experiment, the pairing 
number of each base will be given sepecally, so the ratio of the number of bases belong-
ing to each category is 2/n:2/n:…:2/n:3 [36–38]. This is a serious imbalance samples, and 
the model tends to classify more bases into the category of "unpaired" for higher accu-
racy [39, 40]. In order to avoid the model falling into this kind of local optimum, this 
paper sets a weight vector for each base. If the base is a single base and there is no base 
paired with it, it is assigned 1, otherwise, it is assigned to the sum of all bases in the 
sequence where the base is located. Thus, the calculation process of the cross entropy of 
a certain sequence m is shown in Eqs. (7) and (8). The training algorithm of VLDB GRU 
model is shown in Table 1.

where y and y_ represent the probability that the model predicts a certain category and 
the label of the sample respectively. The flag vector indicates whether a base at the posi-
tion, 1 indicates existence, 0 indicates inexistence. n is the length of the sequence. y_ is 
an array of n*(n + 1). When y_[i, j] is equal to 1, it means that the (i + 1) th base and the 

(7)cross_lossm =
∑n

i=1 flag[i] · weight[i] · lossm∑n
i=1 flag[i] · weight[i]

(8)weight[i] =





1, y_[i, 0] �= 0
n�

i=1

y_[i, 0], y_[i, 0] = 0
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(j) th base are paired, otherwise it means that they are not paired. When y_ is equal to 1, 
it means that the (i + 1) th base is not paired with any base.

x and y_ in Table 1 represent the input characteristics of bases and the real labels of 
bases respectively, and L[i] corresponds to the loss function of Eq. (7).

Model parameter setting

The model maps the feature vector corresponding to each base through the input layer 
to a group of n-dimensional vectors, which are used as the input of the bidirectional 
GRU model. The output of the bidirectional GRU model is followed by two full connec-
tion layers and one output layer to finally classify the data. At the same time, the neural 
network may fall into over-fitting, so dropout layer is added to solve this problem. The 
overall design framework of the model is shown in Fig. 8.

In the VLDB GRU model designed in this paper, variable length means that the lengths 
of RNA sequences to be predicted are inconsistent. Therefore, we select the maximum 
sequence length in each data set as the number of GRU recursions. Many experiments 
show that when the number of GRU hidden layer neurons is selected to be 50, the number 
of all connected layer neurons is selected to be 150, the learning rate is set to be 0.1, and 
the maximum number of iterations is set to be 2000, the result is better. The experimental 
results are shown in Figs. 9, 10, and 11, in which the y axis represents the prediction accu-
racy rate, and the x axis represents the set values of the number of layers of the full connec-
tion layer, the number of layers of the hidden layer, and the learning rate, respectively.
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Fig. 11 The relationship between various indicators and learning rate
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