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Background
Proteins perform their corresponding biological functions by interacting with proteins 
or other molecules, among which the interactions between proteins are the most impor-
tant. As the carrier with life activities, protein plays an important role in every link with 
life, such as gene regulation, signal transduction, gene expression and other basic cellular 
functions in life activities [1]. The binding between the two proteins is mainly based on 
affinity. Studies have shown that only a few residues on the protein–protein interaction 
surface provide the majority of the binding free energy, and these residues are called hot 
residues [2, 3]. At the same time, these hot residues usually gather closely on the protein 
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interaction surface [4]. That is, hot residues often appear in the form of interaction clus-
ters on the interaction interface, and the residues in these clusters interact with each 
other to form a stable network structure, which is called the hot region. In drug design, 
the study of hot region plays a positive role in the prediction of protein functional sites, 
drug target and protein design [5, 6].

The study showed that the hot region in protein–protein interaction is composed of at 
least three hot spot residues, which on the protein interaction interface. Starting from 
the machine learning method, Xia [7] based on protein sequence, structure and neigh-
borhood features to extract feature, combined with maximum relevance and minimum 
redundancy algorithm, and create a hot spot prediction model based on Support Vector 
Machine (SVM). Then, Tuncbag [8] proposes an empirical model that combines accessi-
ble surface area and pairing propensity to predict hot spots residues, which improves the 
accuracy of hot spot residue prediction. To achieve better property based on structural 
features, Huang [9] designed an assembly learning method that combines SMOTE with 
data imbalance to predict hot spot residues. Hu [10] constructed a new learning hot spot 
prediction model based on protein sequence feature.

A better hot spot residue prediction model is beneficial to the prediction of hot region. 
Cukuroglu [11] analyzed hot region according to the characteristics of hot spot residues 
and the formation rules of hot region, and established a hot region database named Hot 
Region. Pons uses the small-world residue network to predict hot regions, using the 
small-world network method, and through the relationship between the residues, the 
residues can form an interconnected network [12]. Nan [13] used complex network and 
community detection methods to predict hot region in protein interactions. In the pro-
cess of predicting hot regions, some False Positives (FP) and False Negatives (FN) in the 
prediction results are corrected by using the topological characteristics of residues in the 
network, so as to improve the accuracy of predicting hot regions. An approach based 
on a new clustering algorithm called Local Community Structure Detecting (LCSD) to 
identify the hot regions was proposed  by Lin [14], with an enhanced maximum rele-
vance minimum redundancy algorithm to upgraded prediction performance in the fea-
ture selection process of hot spot prediction.

The prediction of hot spot residues in protein interaction is the first step for predict-
ing hot region. It is necessary to identify the hot spot residue as accurately as possible 
on the protein–protein interaction. Due to the limitation of amino acid mutation to ala-
nine in the data set and the imbalance between hot spots and non-hot spots in the data 
set, the prediction effect of hot spots and hot regions in protein–protein interaction is 
not significant. With the release of the SKEMPI2.0 dataset, there were twice as many 
mutations to alanine in the SKEMPI2.0 dataset as there were in the previous version 
of SKEMPI1.0 [15, 16]. From multiple perspectives, we extracted features according to 
protein sequence, structure and the relationship between amino acid and built several 
machines learning models to predict hot spots residues. The hot spot residue prediction 
results of different machine learning algorithms were analyzed, and DBSCAN cluster-
ing algorithm was combined to form hot spots [17]. The experiment results show that 
the combination of hot spot classification algorithm with higher recall rate and cluster-
ing algorithm with higher precision can effectively improve the accuracy of hot region 
prediction.
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Results
Dataset

The datasets used in this article are from up-to-date SKEMPI 2.0 databases (Struc-
tural database of Kinetics and Energetics of Mutant Protein Interactions). The data-
set encompasses the variation data of thermodynamic parameters and kinetic rate 
constant parameters before and after the mutation of amino acids to alanine, leucine 
and other different types of amino acids. The data in the SKEMPI2.0 dataset are all 
from experiments or authoritative published literature. Due to different experimental 
environments, mutations at the same site may have multiple different values of bind-
ing free energy in the database, so we use the average value of binding free energy to 
replace the repeated data and eliminate the empty data. After that, 180 protein com-
plexes  were obtained from the SKEMPI2.0 database, and the corresponding struc-
tural information of each complex was obtained from the PDB database (Protein Data 
Bank). Each protein complex consists of a stack of interface residues whose accessible 
surface area is reduced by more than 1 Å during the formation of the protein com-
plex. We defined hot and non-hot residues according to the energy changes in the 
alanine mutation experiment of these residues.

In SKEMPI2.0 data set, the average value of ∆∆G are used as the final result for the 
binding free energy of the same site under different experiments. At present, most of 
the research on hot spot residues adopts such a definition standard: In the alanine 
experiment, the interface residues with binding free energy change greater than 2 kcal 
/mol were regarded as hot spot residues, and the interface residues with binding free 
energy change less than 0.4 kcal /mol were regarded as non-hot spot residues, and the 
data that the binding free energy varies between 0.4  kcal/mol and 2.0  kcal/mol are 
discarded. We found that using 2.0 kcal/mol as the hot spot definition standard of the 
SKEMPI2.0 data set would cause the data to be extremely unbalanced, resulting in a 
sharp drop in the recall rate of the hot spot prediction model. The strategy of using 
1.0 kcal/mol as the threshold can make better use of the entire data set. Therefore, we 
define more than 1.0 kcal/mol as hot spot residues, and less than 1.0 kcal/mol as non-
hot spot residues.

Using 1.0  kcal/mol as the standard for defining hot and non-hot spots, we finally 
obtained 2326 interface residues from 180 protein complexes about SKEMPI2.0 data-
base, including 1513 non-hot and 813 hot spot residues. Table  1 shows the specific 
distribution of 20 amino acids in the data set, which indicates that amino acids with aro-
matic side chains are more likely to have hot spots residues and TYR, ARG, LYS, and 
GLU are easier to exist in the hot spot residues. Otherwise, TYR, SER, ARG, and GLU 
are more likely to appear in the interface residues.

More than two-fifths of the data in the SKEMPI 2.0 database come from the previ-
ous version SKEMPI 1.0. Since a lot of research has been done in SKEMPI 1.0, the main 
work in this article focuses on the dataset extended by SKEMPI 2.0. In order to enhance 
the stability of the prediction model, in the SKEMPI 2.0 expansion data, we added the 
protein complex containing the number of interface residues less than 3 into the train-
ing set, and put the remaining data of expansion data the test set. The rest of data in 
SKEMPI 2.0 is regarded as the testing set. Table 2 shows the detailed data of training set 
and test set.
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Experimental results

In the hot spot prediction stage, we need to predict the hot spot residues as precisely as 
possible. The optimal feature subset was obtained through feature selection by mRMR 
(Max-Relevance and Min-Redundancy) algorithm. The calculated score and details for 
each feature are in Additional file 1. In this section, we used several traditional machine 
learning methods to build the hot spot prediction model. such as RF (Random Forest), 
Xgboost (eXtreme Gradient Boosting Decision Tree), ANN (Artificial Neural Network) 
and SVM (Support Vector Machine) [18–21], and compared these widely used methods 
in hot spot research with Gaussian Bayes. For the ANN algorithm, we build a five-layer 
neural network, in which the activation function of each layer is ReLU (rectified linear 
units) [22]. Because neural networks have automatic feature fusion functions, in addi-
tion to ANN, other machine learning methods all use mRMR feature selection algorithm 
for feature selection in the feature selection process.

Table 3 shows the prediction results of different machine learning algorithms in the 
hot spot prediction experiment. According to Table 3, it can be concluded that the accu-
racy and precision of the Xgboost method is the best compared to other methods. The 
performance of GNB method on recall and F-measure is the highest. The experimental 

Table 1 Distribution of data in SKEMPI 2.0

Amino acid Non-hot spots Hot spots All residues Ratio of hot 
spots

property of side chain

SER 143 21 164 0.128 Hydroxyl-containing

CYS 6 1 7 0.143 Sulfur-containing

GLN 107 29 136 0.213 Amid

THR 114 31 144 0.214 Hydroxyl-containing

PRO 42 17 59 0.288 Cyclic

ASN 101 41 142 0.289 Amid

GLY 48 20 68 0.294 Aliphatic

VAL 70 30 100 0.3 Aliphatic

GLU 154 68 222 0.306 Acid

HIS 60 28 88 0.318 Basic aromatic

MET 23 11 34 0.326 Sulfur-containing

LYS 131 64 195 0.328 Basic

ARG 146 80 226 0.354 Basic

ASP 101 41 142 0.409 Acid

LEU 48 41 89 0.419 Aliphatic

ILE 72 52 124 0.461 Aliphatic

PHE 51 55 106 0.519 Aromatic

TYR 75 104 179 0.581 Aromatic

TRP 21 50 71 0.704 Aromatic

All 1513 813 2623 0.35 none

Table 2 Training set and testing set

Dataset Non-hot spots Hot spots All residues Complexes

Training set 864 390 1254 101

Testing set 649 423 1072 79
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data showed that GNB could correctly predict more hot spot residues, and Xgboos 
could correctly predict more non-hot spot residues. Due to hot spot residues are fewer 
than non-hot spot residues on the training set, the accuracy of GNB is lower than that 
of Xgboost. The more hot spots residues are predicted, the more hot regions we can get 
during clustering process.

After the hot spot residue prediction, DBSCAN clustering algorithm was used to 
predict the hot region. The clustering results are presented in Table 4. The F-measure 
represents the balance between recall and precision, using F-measure as the evaluation 
criterion, the two parameters “Min” and “ε” in the DBSCAN algorithm are determined 
by the grid search method. Experiment results show that the hot region prediction 
model combined with GNB and DBSCAN algorithms is significantly better than other 
methods. The Fig.  1 showed that the number of hot spot residues correctly predicted 
by GNB in a single hot region of 47 standard hot regions is close to the performance of 
other algorithms. The more true positive hot spot residues are predicted, the more hot 
region will be correctly constructed. Otherwise, few hot spots will cause the recall rate 
of hot region prediction to decrease. Besides, because of the lack of true positive resi-
dues, some hot regions are incorrectly clustered in the process of forming true positive 
hot regions with relatively unconstrained parameters.

Standard hot regions and predicted hot regions

In this paper, we define the standard hot region according to Keskin [23]. The definition 
of a standard hot region: Each hot region is composed of at least three hot spot resi-
dues, each hot spot residue is assumed to be a regular sphere, and the Cα atom of each 
hot spot residue is considered to be the center of the sphere. Calculate the radius of the 
sphere from the volume of the hot spot residue sphere [24]. If the distance between the 

Table 3 Comparison of results with different methods to predict hot spots

The highest value in each column is shown in bold

Methods Hot Spot

Accuracy Recall Precision F-measure

GNB 0.674 0.792 0.561 0.657
SVM 0.696 0.6 0.618 0.609

Xgboost 0.726 0.596 0.672 0.632

RF 0.693 0.596 0.615 0.605

ANN 0.715 0.679 0.632 0.655

Table 4 Comparison of results with different methods to predict hot regions

The highest value in each column is shown in bold

Methods Hot Region

Recall Precision F-measure

GNB 0.766 0.923 0.809
SVM 0.617 0.725 0.667

Xgboost 0.574 0.6 0.587

RF 0.617 0.644 0.63

ANN 0.596 0.538 0.567
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centers of two spheres (two Cα-atoms of two hot spots) is less than the sum of the radius 
of the two spheres plus a tolerance distance (2 Å), the two hot spot residues are flagged 
to be clustered and to form a network in the hot region. The prediction accuracy of the 
prediction model for different amino acid mutations is compared with the standard hot 
regions. Finally, 47 standard hot regions were detected. For detailed results, see Addi-
tional file 2.

Because of a hot region contains at least three hot spot residues, and the maximum 
distance between two contacting amino acids in the same hot region is 9.5 Å, in the pro-
cess of setting the parameters of "Min" and "ε" of DBSCAN algorithm, we set "Min" to be 
greater than 3 and set "ε" to be less than 9.5 Å. According to the results of all methods 
clustering, when "Min" is 3 and "ε" is 9.5 Å, the DBSCAN algorithm could achieves the 
optimal F-measures in other methods except the GNB. However, under this parameter 
setting, GNB recognizes more non-hot spots as hot spots. With "Min" set to 4 and "ε" 
set to 8.5 Å, the GNB could more accurately label non-hot spot as noises. The clustering 
algorithm will perform well when the factors that form hot regions are improved.

Methods
The hot spot residue that was predicted by different machine learning algorithm are 
clustered to form hot region with DBSCAN algorithm. Then, we evaluate the hot region 
prediction by comparing hot regions from predicted models with the standard hot 
regions in dataset.

Binding free energy changes

Data on single amino acids mutated into alanine was extracted from the SKEMPI 2.0 
(https:// life. bsc. es/ pid/ skemp i2/) which contains affinities of wild type complexes and 
affinities of mutated complexes measured by biological experiments in the scientific 
literature. Because binding free energy changes of multiple mutated residues has not 
been accumulated based on such single mutated residues, more samples from multiple 
mutated samples cannot be deduced. The data with affinity could not be measured were 

Fig. 1 Distribution of hot spots in hot regions. The x-axis corresponds to the 47 standard hot regions in 
Additional file 2. The height of the bar shows the number of hot spots in those 47 standard hot regions and 
the number of true positive hot spots in the predicted hot regions

https://life.bsc.es/pid/skempi2/
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deleted. We calculate the bind free energy of amino acid mutations according to Formula 
(1), where the binding affinity ( Kd ) is determined according to biological experiments 
such as Surface Plasmon Resonance and Isothermal Titration Calorimetry [25, 26], and 
R is the gas constant (8.314/4184) kcal/(K*mol) (1 kcal = 4.184 kJ) and T is the experi-
mental temperature (in the range of 273  K to 323  K). The change of bind free energy 
( ��G ) can be calculated based on the  �Gmut and �Gwt , which be calculated from 
Eqs. (1), (2).

Feature selection

In this paper, the structural information on protein complexes is from PDB (Protein 
Data Bank) [27]. We extracted features including solvent accessible surface area, protru-
sion index, relative accessible surface area, binding sites and the depth index with aimed 
amino acid from PSAIA [28], and calculate RctASA, RctmPI by formula (3), (4), conser-
vation scores from the ConSurf server [29], the attributes of amino acid side chains, the 
hydrophobic index, and the interaction numbers between two amino acids. The detailed 
features are shown in Additional file 1. The additional file indicated that the attribution 
of the amino acid side chain is a discrete variable, we encode the feature with one-hot, 
which is a feature extraction method that can deal with discontinuous numerical fea-
tures. In total, we collected 83 features from protein structural, sequence and energy. 
Since not every feature contributes the same to the model, we determined the optimal 
feature subset by combining mRMR algorithm (minimum Redundancy Maximum Rel-
evance) [30]; the mutual information I (x, y) is labeled as:

and the maximum correlation criterion and the minimum redundancy criterion are 
defined as:

(1)�G = −RT ln(Kd)

(2)��G = �Gmut −�Gwt

(3)RctASA =

[unbound total ASA]− [bound total ASA]

[unbound total ASA]

(4)RctmPI =
[unbound total mean PI]− [bound total mean PI]

[unbound total mean PI]

(5)I
(
x, y

)
=

∫∫
P
(
x, y

)
log

P
(
x, y

)

p(x)p
(
y
)dxdy

(6)maxD(F , c),D =

1

F

∑

Xi∈F

I(Xi, c)

(7)min R(F),R =

1

F2

∑

Xi,Xj∈F

I
(
Xi,Xj

)
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According to the training set, a feature list is produced. To discover the highest F-score 
combination, we applied incremental feature selection and got a rank of all features in 
descending order. Every time we combined the feature ranked at the top with its next 
one to obtain the F-measure in machine learning models, then selected the set of fea-
tures with the best F-measure.

Prediction of hot regions

There are non-hot spot residues and hot spot residues in the dataset. However, we 
needed to detect as many hot spots as possible in the hot regions which contain hot spot 
residues.

Naïve Bayes classifier

We constructed a Gaussian Naïve Bayes classifier given a set of training examples with 
class labels and then used the model to distinguish between non-hot spot residues and 
hot spot residues [31–33]. One example is a tuple of features (x1, x2, . . . , xn) of one sam-
ple  (xi) and the class label c of the sample, so X is all samples and C is the classification 
variable. In our experiment, we assumed that there are two classes: c = 0 (non-hot spot 
residue) and c = 1 (hot spot residue). According to the Bayes Rule, the probability of one 
sample E = (x1, x2, . . . , xn) , being class c of sample E is:

Sample E is classified as class 1 if and only if fb(E) is more than 1, otherwise, sample E 
will be classified as class 0:

where fb(E) is called a Bayesian classifier.
Assuming that all features are independent given the value of the class variable, that is

the resulting classifier is then:

The function fnb(E) is called a Naïve Bayesian classifier, or simply Naïve Bayes (NB). 
When we used the Gaussian distribution to calculate the p(xi|C) , the classifier becomes 
Gaussian Naïve Bayes. Given probability distribution is under Gaussian distribution, the 
function is:

(8)p(c|E) =
p(E|c)p(c)

p(E)

(9)fb(E) =
p(C = 1|E)

p(C = 0|E)
≥ 1

(10)p(E|c) = p(x1, x2, . . . , xn|c) =

n∏

i=1

p(xi|c)

(11)fnb(E) =
p(C = 1)

p(C = 0)

n∏

i=1

p(xi|C = 1)

p(xi|C = 0)

(12)g(xi,µ, σ) =
1

√

2πσ
e
−

(xi−µ)
2σ2
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Support vector machine

A support vector machine constructs a hyper-plane or set of hyper-planes in a high 
or infinite-dimensional space, which can be used for classification, regression or other 
tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest 
distance to the nearest training data points of any class (so-called functional margin), 
since in general the larger the margin the lower the generalization error of the classifier. 
Given training dataset D =

{(
x1, y1

)
, . . . ,

(
xn, yn

)}
 the goal of the classification is to find 

a maximum-margin hyperplane wtx + b = 0.
Used as the output of SVM in binary classification:

optimized objective function:

where N is sample size, W is the output adjustable parameter vector of support vector 
machine, K

(
xj , xi

)
 is kernel function.

The objective function J is to ensure the optimality of classification, and the constraint 
condition is to ensure the correctness of classification. In order to eliminate the influ-
ence of noise and abnormal samples, relaxation variables are introduced as follows:

Xgboost

Xgboost (eXtreme Gradient Boosting) is one type of ensemble learning. The boosting 
method, by combining multiple weak learners, gives the final learning result. We used 
the theory of regression tasking to build the optimal Boosting model, regardless of the 
classification or regression.

The objective function consists of two parts, the first part is used to measure the dif-
ference between the predicted score and the real score, and the second part is the regu-
larization term.

The newly generated tree is to fit the residual error predicted last time, that is, when t 
trees are generated, the prediction score can be written as:

(13)f (x,W ) = sgn

(
N∑

i=1

wiK (xj , xi)+ b

)

(14)

J = WTW = �W�
2

s.t.: yJ

[
N∑

i=1

wiK
(
xj , xi

)
+ b

]
≥ 1, j = 1, . . . ,N

(15)J =
1

2
WTW + C

N∑

i=1

ξj

(16)yj

[
N∑

i=1

wiK
(
xj , xi

)
+ b

]
≥ 1− ξj , j = 1, . . .N , ξj ≥ 0

(17)Obj =

n∑

i=1

l
(
yi, ŷi

)
+

K∑

k=1

�
(
fk
)
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where t is the number of leaf nodes, and w is the fraction of leaf nodes. Gamma can con-
trol the number of leaf nodes; a lambda can control the number of leaf nodes so they do 
not get too large as this avoids overfitting.

According to (17) (18) the objective function:

in Xgboost is used to approximate it using its Taylor second-order expansion at ft = 0 . 
Therefore, the objective function is approximate:

where gi is a derivative, and hi is the second derivative.
The objective function can be simplified as:

Random forest

The advantage of a random forest algorithm is that it combines several weak classifiers 
into one strong classifier, which can resist the over-fitting of the decision tree by using a 
voting mechanism. Random forest has a strong generalization ability and high efficiency 
and accuracy for multidimensional data classification. The Gini coefficient is defined as 
follows:

where pk is the probability that the sample is in class k. The probability of misclassifi-
cation is (1-pk). The Gini was calculated for each feature in each sample, and then we 
selected the feature with the optimal Gini coefficient, theta θ∗.

where θi represents the feature of the i in the sample.

Artificial neural network

An artificial neural network (ANN) is a computational model based on the structure 
and functions of biological neural networks. Information that flows through the network 
affects the structure of the ANN because a neural network changes or learns, based on 
the input and output. We constructed networks containing five layers with activation 
function rectified linear units (ReLu) and the input layer size corresponds to the 83 fea-
tures obtained from feature selection.

(18)ŷ
(t)
i = ŷ

(t−1)
i + ft(γi)

(19)Obj(t) =

n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft(Xi)

)
+�

(
ft
)

(20)Obj(t) ≃

n∑

i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gift(Xi)+

1

2
hif

2
t (xi)

]
+�

(
ft
)

(21)Õbj
(t)

≃

n∑

i=1

[
gift(Xi)+

1

2
hif

2
t (xi)

]
+�

(
ft
)

(22)Gini(p) =

K∑

k=1

pk(1− pk) = 1−

K∑

k=1

p2k

(23)θ∗ = minGini(θi)
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Evaluation

In this paper, we adopt the following general evaluation indicators to evaluate the per-
formance of the prediction model for hot spots and hot region.

When predicting hot spots, the following notations are used:

True Positive (TP): The number of hot spots in predicted hot regions and also in 
standard hot regions;
False Negative (FN): The number of hot spots that are not in predicted hot regions 
but in standard hot regions;
False Positive (FP): The number of hot spots in predicted hot regions but not in 
standard hot regions;
Precision represents the accuracy of the hot spot prediction, and Recall represents 
the coverage of predicted hot spots in standard hot regions. With a good balance 
between Precision and Recall, the F-measure offers a better overall accuracy of hot 
spot prediction.

However, for prediction of hot regions, the following notations are used:

True Positive (TP): The number of hot regions in predicted hot regions and also in 
standard hot regions;
False Negative (FN): The number of hot regions that are not in predicted hot regions 
but in standard hot regions;
False Positive (FP): The number of hot regions in predicted hot regions but not in 
standard hot regions;

Similarly, Precision represents the accuracy of the hot region prediction, and Recall 
represents the coverage of predicted hot regions in standard hot regions. With a good 
balance between Precision and Recall, the F-measure offers a better overall accuracy in 
predicting hot regions than using either Precision or Recall solely.

Cluster

Cluster analysis is abbreviated as clustering, which is the process of dividing a data 
object into subsets. Each subset is a cluster. The clustering process makes the objects in 
the clusters similar to each other, but not similar to the objects in other clusters. Because 
the hot spot residues in protein–protein interactions are not evenly distributed on the 
interface of protein interactions, they are tightly gathered in a dense area. We use the 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to 
predict hot spots based on the characteristic that hot spot residues gather on the protein 

(24)Recall = TP/(TP+ FN)

(25)Precision = TP/(TP+ FP)

(26)F-measure = 2 ∗ Recall ∗ Precision/(Recall+ Precision)
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interaction interface in a flowing structure. The DBSCAN algorithm is suitable to cluster 
this kind of data. There are two hyperparameters “Min” and “ε” to be measured in this 
algorithm. “Min” represents the density of residue measured by the number of residues 
of it, and “ε” represents the radius of residue O as the center of a circle.

For a dataset D composed of residues with the parameters of “Min” and “ε”, the 
residues with more than or equal to “Min” will be regarded as the core residue in its 
ε-neighborhood. After checking all residues, the core residues and their ε-neighborhood 
residues will make up the dense regions, which are the clusters we need.

The detailed process about clustering is that all residues should be defined as “unvis-
ited” in the first stage. Then, we need to select randomly one residue p as the center 
of the circle and calculate the number of residues in its neighborhood to distinguish 
whether the residue is a core residue or not. If it is a core residue, we labelled the resi-
due as “visited” and selected the neighborhood residues as the next detected objects. If 
existing core residues are in them, the process continues until the cluster C cannot be 
extended. Then we return to the beginning, select randomly one residue p in the remain-
ing residues that was labeled as “unvisited” as the center of a circle, and repeat the pro-
cess until all residues are “visited”. Eventually, we will obtain several clusters.
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Discussion
Comparison of prediction results visualization

We assumed that a hot region is predicted correctly only when 60 percent of hot spot 
residues in the standard hot regions occur in the predicted hot region. Therefore, if the 
results predicted by GNB are clustered to form a hot region that are regarded as true 
positive hot regions, the evaluation of the results of other machine learning methods for 
recall will be reduced, and the increase of mistaken hot regions will lead to the evalua-
tion of precision is decrease. We visualized the hot spot residues and predicted hot spot 
residues of the protein complex 3HQY with PyMol software [34] in Fig. 2. In the protein 
complex 3QHY, there are 16 hot spot residues in the standard hot region. The GNB algo-
rithm can correctly predict 15 true positive hot spot residues in the standard hot region 
and only two non-hot spot residues come within the predicted hot region. In addition to 
ANN, other models have higher accuracy for non-hot spot residues, but cannot predict 
more hot spot residues in the standard hot region, so the recall is low. ANN can cor-
rectly predict 14 hot spot residues in the standard hot region, but a non-hot spot residue 
was incorrectly predicted as a hot spot residue.

Conclusion
In this paper, we collect alanine mutations data from the latest presented SKEMPI 2.0 
database. When we use 1.0 kcal/mol as the threshold for hot spot and non-hot spot 
residues, it shows that amino acids of aromatic are more likely to become hot spots 
residues. Furthermore, hot spot residues are 70.4% from TRP. In the first stage, we 
used the mRMR algorithm to rank the importance of every feature based on mutual 

Fig. 2 Visual prediction results with PyMol of 3HQY using different methods. All residues are in chain B. Red 
spheres are predicted correctly in the standard hot region, Blue spheres are not predicted in the standard hot 
region, yellow spheres are mistaken as hot spot residues



Page 14 of 15Hu et al. BMC Bioinformatics          (2021) 22:522 

information and RctmPI is the most important feature. In the next stage of predict-
ing hot spot residues, the performance of all methods about F-measure is close, but 
Gaussian Naïve Bayes (GNB) has the best performance for recall, so that hot regions 
can be made up of enough true positive hot spot residues. In the final stage, the 
DBSCAN algorithm was selected to cluster the data for forming hot regions.

The combined method with Gaussian Naïve Bayes (GNB) and DBSCAN can effec-
tively improve hot region predictions. Though several machine learnings methods 
are applied to test the performance, the limitation of the method is barely biological 
experiments involved. Thus, the next step is to collect and apply more biological data 
to verify the model.
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