
Boosting tissue‑specific prediction of active
cis‑regulatory regions through deep learning
and Bayesian optimization techniques
Luca Cappelletti1, Alessandro Petrini1, Jessica Gliozzo1, Elena Casiraghi1, Max Schubach2, Martin Kircher2 and
Giorgio Valentini1,3,4,5*

From The 8th International Work-Conference on Bioinformatics and Biomedical Engineering
Gran Canaria, Spain. 30 September-2 October 2020

Abstract

Background: Cis-regulatory regions (CRRs) are non-coding regions of the DNA that
fine control the spatio-temporal pattern of transcription; they are involved in a wide
range of pivotal processes such as the development of specific cell-lines/tissues and
the dynamic cell response to physiological stimuli. Recent studies showed that genetic
variants occurring in CRRs are strongly correlated with pathogenicity or deleterious-
ness. Considering the central role of CRRs in the regulation of physiological and patho-
logical conditions, the correct identification of CRRs and of their tissue-specific activity
status through Machine Learning methods plays a major role in dissecting the impact
of genetic variants on human diseases. Unfortunately, the problem is still open, though
some promising results have been already reported by (deep) machine-learning based
methods that predict active promoters and enhancers in specific tissues or cell lines by
encoding epigenetic or spectral features directly extracted from DNA sequences.

Results: We present the experiments we performed to compare two Deep Neural
Networks, a Feed-Forward Neural Network model working on epigenomic features,
and a Convolutional Neural Network model working only on genomic sequence,
targeted to the identification of enhancer- and promoter-activity in specific cell lines.
While performing experiments to understand how the experimental setup influences
the prediction performance of the methods, we particularly focused on (1) automatic
model selection performed by Bayesian optimization and (2) exploring different data
rebalancing setups for reducing negative unbalancing effects.

Conclusions: Results show that (1) automatic model selection by Bayesian optimiza-
tion improves the quality of the learner; (2) data rebalancing considerably impacts the
prediction performance of the models; test set rebalancing may provide over-optimis-
tic results, and should therefore be cautiously applied; (3) despite working on sequence
data, convolutional models obtain performance close to those of feed forward models
working on epigenomic information, which suggests that also sequence data carries

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Cappelletti et al. BMC Bioinformatics 2022, 23(2):154
https://doi.org/10.1186/s12859‑022‑04582‑5

BMC Bioinformatics

*Correspondence:
valentini@di.unimi.it

1 AnacletoLab, Dipartimento
di Informatica, Università degli
Studi di Milano, Milan, Italy
2 Berlin Institute of Health
at Charité, Universitätsmedizin
Berlin, Berlin, Germany
3 European Laboratory
for Learning and Intelligent
Systems (ELLIS), Berlin, Germany
4 CINI National Laboratory
of Artificial Intelligence
and Intelligent Systems (AIIS),
Rome, Italy
5 Data Science Research Center,
Università degli Studi di Milano,
Milan, Italy

http://orcid.org/0000-0002-5694-3919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04582-5&domain=pdf

Page 2 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

informative content for CRR-activity prediction. We therefore suggest combining both
models/data types in future works.

Keywords: Neural networks, Deep learning, Prediction of cis-regulatory region,
Bayesian optimization

Background
Non-coding DNA regions, which account for 98% of the whole human genome, were
regarded as “junk DNA” in the past. However, their importance is now established in the
scientific community, given the discovery of non-coding cis-regulatory regions (CRRs)
that regulate the transcription of neighbouring genes, therefore determining spatio-tem-
poral patterns of gene expression [1, 2].

Indeed CRRs are involved in the development of different tissues and/or cell types,
in the definition of gene expression patterns during the cell life, e.g. by determining the
precise moment of transcription and its intensity, and in the dynamical response to
changes in physiological conditions [3].

Genome-wide association studies (GWAS) discovered thousands of variants asso-
ciated with diseases and traits enriched in non-coding sequences [4, 5]. These results
have been confirmed and refined by recently proposed machine learning methods for
the detection of deleterious and pathogenic variants in non coding regions [6–8], as well
as by other research works that showed that cis-regulatory variants are involved in both
common and rare human diseases [9–11].

Based on the aforementioned studies, an essential research question for understand-
ing the functional impact of genetic variants on human diseases, as well as the mecha-
nisms underlying the modulation of gene expression, regards not only the identification
of CRRs, but also their activation status, which is specific to each cell type [12, 13] and
is one of the key mechanisms for cell type differentiation [14]. In other words, genetic
variants in tissue-specific CRRs show a different effect depending on the activity of the
CRRs where they are located. Indeed, variants occurring in active CRRs can exert their
full potential deleterious or pathogenic effect when they are located in tissue-specific
active regulatory regions.

To advance knowledge about the identification of cis-regulatory elements in differ-
ent cell types or tissues [15, 16], and to map TF binding sites and histone modifications
across cell types and tissues, several lines of research have been proposed, which exploit
multiple high-throughput technologies [17–21]. These experiments resulted in notable
projects (the ENCODE project [19], the FANTOM project [22], and the Roadmap Epig-
enomics Project [23], see “Related work” section) specifically aimed at identifying CRRs
in different tissues and cells lines, mapping their epigenomic landscape.

However, the experimental identification of CRRs requires approaches that are
expensive and time-consuming, and researchers are still far from obtaining a compre-
hensive map of CRRs across all cell types, disease statuses and developmental stages.
This problem paved the way to a novel research line, where machine learning (ML)
techniques are specifically developed to identify the location of enhancers and pro-
moters and their activity status (active versus inactive). ML techniques represent a
crucial tool for this task, given the successful results obtained by ML models in prob-
lems where human reasoning has difficulties in reaching a promising solution [24].

Page 3 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

In a first attempt to tackle these tasks, initial approaches applied unsupervised learn-
ing techniques [25, 26], driven by the limited availability of reliable annotations that
were insufficient to guide a supervised learning approach. Unfortunately, the simplic-
ity of the exploited techniques did not allow to achieve acceptable enhancer predic-
tion results (accuracy around 26%) [27], so that the interest switched towards boosted
supervised learning models [28], and random-forest classifiers [29]. Subsequently,
when the FANTOM5 Consortium [30] published large-scale and high-resolution
CRRs locations [31], ensembles of support vector machines were proposed [32], and
opened the way to the usage of more advanced models such as deep neural networks
(see e.g. [33, 34]) which are able to uncover the underlying information and high-level
patterns hidden by complex multi-dimensional manifolds.

In this study, we extend our preceding work [35], and build upon two relevant
state-of-the-art works (see “Related work” section), named DECRES [34] and Deep-
Enhancer [33], respectively. In DECRES [34] authors applied deep learning models
[36] to CRR-activity prediction tasks, and reduced negative effects due to high data
unbalancing by a peculiar data re-sampling strategy, where also the test set is re-bal-
anced (“Effect of different dataset-balancing setups” section).

DeepEnhancer [33] leverages Convolutional Neural Networks (CNN, “Meth-
ods” section), and obtained promising performance by processing one-hot-encoded
sequence data for recognizing enhancers against background sequences, which high-
lighted the feasibility of sequence-based deep learning classifiers.

Our experiments on CRRs activity prediction are primarily aimed at: (1) investi-
gating the influence of the model selection phase on the obtained performance; (2)
understanding whether genomic sequences allow to obtain reasonable CRR activ-
ity prediction results; (3) understanding the effects of different data re-balancing
strategies.

Indeed, as clarified at the beginning of “Methods” section, the design, development
and training of deep neural networks is a challenging task driven by a high number of
(architectural, as well as training) hyperparameters [36, 37] whose setting influence not
only the models’ computational complexity but also their performance [37]. Therefore,
the model selection phase is a crucial step in the design of deep neural models, and sev-
eral automatized optimization algorithms have been proposed (“Related work” section),
among which “Bayesian Optimization” proved its efficiency and effectiveness [38–40].

In particular, we applied Bayesian optimization to find the optimal architecture and
hyperparameters of two deep neural network meta-models (a Feed-Forward Neu-
ral Network—FFNN-model, and a CNN model) and we comparatively evaluated: (1)
the optimized models versus their fixed counterparts; (2) the FFNN models versus
the CNN models; (3) the CNN models and their most related literature model (Deep-
Enhancer [33]); (4) the results obtained when performing/avoiding train and/or test set
re-balancing.

Our results show that: (1) model selection by Bayesian optimization has the poten-
tial of improving performance, when using both genome version hg19 (GRCh37) and
genome version hg38 (GRCh38); (2) sequence data analyzed through CNN models
achieve results close to those obtained by FFNN trained on epigenomic data, there-
fore suggesting that also sequence data carries fundamentally informative content; (3)

Page 4 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

training and test set balancing should be cautiously performed since they can introduce
biased or overoptimistic results.

The paper is organized as follows: in “Related work” section we report state-of-the-art
methods strongly related to our approach; in “Results” section we report results com-
puted by the deep learning models described in the “Methods” section when applied
to the datasets detailed in the “Datasets” section, and by using the experimental setup
described in the “Experimental setup” section. The “Discussion” section summarizes and
critically analyzes the main results of our research. Concluding remarks and future per-
spectives are reported in the “Conclusions” section.

Related work

In the last years, several projects highlighted that cell differentiation in humans is heavily
controlled by the complex interaction of promoters and enhancers (jointly referred to as
CRRs), which generally act by the binding of regulatory proteins (transcription factors).

Given their key role in human diseases [41], CRRs have been object of thorough
investigation by genomic studies and biochemical experiments using high-throughput
technologies. More precisely, experimentation in this field involves the detection of epi-
genomic features (e.g. TFs binding, presence of histone modifications, open chromatin
regions, etc) which are associated with functional non-coding regions for inferring can-
didate cis-regulatory elements. Thanks to a fast and consistent decrease of the cost of
these analytic methods, several consortia, including ENCODE [19], collected and aggre-
gated the results of biochemical assays that used a wide range of high-throughput tech-
nologies. This resulted in large publicly available databases which now contain over one
million putative enhancers over 147 cell types. These resources raised the research inter-
est devoted to the development of new in-silico methods for the identification of CRRs,
as well as their tissue-specific activity level and the possible impact of variants occurring
in them. In particular, the FANTOM Project used CAGE (Cap Analysis of Gene Expres-
sion) technologies to map transcription initiation sites in 1816 human and 1016 mouse
samples [22, 31]. The ENCODE and FANTOM projects differ for the kind of data they
provide. ENCODE leveraged a massive array of genomic assays to capture transcrip-
tomic and epigenomic data. Conversely, FANTOM focused mainly on the transcriptome
by exploiting CAGE assays, relying on other published works to infer features like chro-
matin status [42]. Another important project, the Roadmap Epigenomics [23] consid-
ered 111 representative primary human tissues and cells and provided their epigenomic
description, similarly to the ENCODE effort. A list of currently available databases for
learning and understanding gene expression regulation is available in [15].

Recently, several deep learning models achieved state-of-the-art prediction results
in different studies regarding regulatory regions in the human genome [33, 34, 43]. In
particular, DeepEnhancer [33] (see “DeepEnhancer” section) uses CNNs to identify
cell-specific enhancers from only sequence data; BiRen [44] similarly uses a hybrid deep
learning architecture that integrates a gated recurrent unit-based bidirectional recurrent
neural network and a CNN to predict human and mouse enhancers from sequence data.

Considering that approaches employing only DNA sequence do not take into
account the regulatory mechanisms encoded in the epigenomic data (e.g. the state of
the chromatin structure), PEDLA [43] predicts enhancers by using an extensive set of

Page 5 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

heterogeneous data, comprising different epigenomic, sequence, and conservation data,
and a novel hybrid architecture integrating a deep neural network and a hidden Markov
model. Interestingly, PEDLA iteratively learns from 22 training cell types/tissues and
achieves high accuracy when predicting across 20 independent test cell types/tissues,
showing high and consistent generalization performances across samples.

To improve the aforementioned methods by explicitly taking into account whether
CRRs are active in the considered cell-lines/tissues, DECRES [34] labels the activity of
CRRs by using annotation data extracted from FANTOM [30], and uses a wide set of
epigenomic features from ENCODE [19], CpG islands, and phastCons evolutionary
conservation scores [45] as input of several deep learning models, among which FFNN
models, to identify not only the presence of enhancers and promoters, but also if they
are active in a specific human cell-line. DECRES not only outperformed state-of-the-art
unsupervised methods in all the considered tasks, but also allowed extending the FAN-
TOM enhancer atlas by adding 16,988 bidirectionally transcribed loci, which allowed
creating the so far most complete collection of CRRs in the human genome. Though
interesting, DECRES exploits an experimental set-up where both the training and the
test sets are balanced, which is quite uncommon. Indeed, when treating highly unbal-
anced sets, the training set is generally balanced to avoid the creation of a model which
overfits the over-represented class, but the test set is kept unbalanced to avoid biasing
the performance estimation.

When developing a classifier model and, in particular, a neural network, a crucial step
regards the model selection task, that is, the choice of the specific neural network archi-
tecture (the number of hidden layers, their respective number of neurons, and the acti-
vation functions for each layer) and the setting of the learning hyperparameters (e.g. the
optimizer algorithm, batch size, learning rate, and so on).

Though different automatic model selection techniques have been presented in liter-
ature (e.g. greedy search [46], sequential search [47], random search [48], grid search
[49], particle swarm optimization approaches [50], genetic programming approaches
[51], “Spectral approach” [52]), no well-accepted and unified method has been defined.
For this reason, model selection is generally performed manually, by relying on past
experiences, or empirically by consecutive tests, or automatically, by applying one
of the aforementioned approaches to explore the hyperparameter space in a bounded
domain, i.e. to search for the setting that minimizes (or maximizes) a user-defined objec-
tive function estimating the learner performance. One such approach is “grid search”
which exhaustively evaluates the objective function for every possible hyperparameter
combination in the bounded domain of the search space. Although being effective and
highly parallelizable, grid search suffers from major drawbacks such as high compu-
tational costs exponentially increasing with the dimensionality of the hyperparameter
space. For this reason, alternative approaches have been proposed in recent years. For
instance, “random search” [48] efficiently explores the hyperparameter space by evaluat-
ing a sequence of randomly extracted points. The “spectral approach” [52] applies the
Fourier transform to search the maximum or minimum of the objective function in the
frequency domain.

Another well-known approach is Bayesian optimization [38–40], which efficiently
exploits Bayes theorem to direct the search towards a (local) minimum/maximum of an

Page 6 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

objective function (the a posteriori estimation) that is often expensive to be optimized.
Briefly, Bayesian optimization assumes a prior distribution of the loss function, and this
prior is constantly updated by evaluating new observations. New points are selected
by a proper pivot function called “Acquisition function” which regulates the criteria of
“exploration versus exploitation”, so that the evaluation of the new point will provide a
better overlook of the loss function (exploration) or a better identification of a maxi-
mum/minimum (exploitation). More details about Bayesian optimization are reported
in “Bayesian optimization” section.

Due to the promising results achieved by applying Bayesian optimization to complex
black box optimizations [53–55], and given its lower computational time when com-
pared to grid search or random search, we have used it for the automatic selection of our
classification models, which are described in the following sections.

Results
In this Section we firstly overview the experiments using the FFNN models (Sec-
tion fixed-FFNN and Bayesian-FFNN) and the CNN models (Section fixed-CNN and
Bayesian-CNN) processing the dataset for genome version hg19/GRCh37 (hg19 data-
set, detailed in the “Hg19-dataset” section, Table 1-top), which allowed to: (1) show that
model selection through Bayesian optimization improves performance (“Bayesian opti-
mization improves prediction of active regulatory regions" section) and that CNN mod-
els trained on sequence data obtain promising performance; (2) perform a comparison
between our Bayesian CNN model trained on DNA sequence data and with the Deep-
Enhancer [33] state-of-the art model (“Bayesian CNN is competitive with DeepEnhance”
section); (3) show the effect of different balancing setups (“Effect of different dataset-
balancing setups” section). Next, in “Bayesian optimization also improves performance
on hg38-dataset" section we report the FFNNs and CNNs performance obtained by

Table 1 For each dataset (on columns) we report the number of samples per class, as well as the
cardinality of the dataset composed solely by enhancers and promoters (rows “Total E+P”) for
genome version hg19 (Top table) and genome version hg38 (Bottom table)

Column “Total” allows comparing the total cardinality of CRRs across the hg19 and the hg38‑datasets. Since we also have
non‑CRRs regions for genome version hg19, row “Total” in the top table reports the total number of samples per cell line in
the hg19 dataset

Genome version Labels HepG2 K562 GM12878 Total HelaS3

hg19 Active enhancer (AE) 1465 894 2878 5237 1847

Inactive enhancer (IE) 34,556 34,392 28,156 97,104 32,179

Active promoter (AP) 11,467 10,076 10,816 32,359 10,759

Inactive promoter (IP) 96,184 82,829 73,891 252,904 79,004

Total E + P 143,672 128,191 115,741 387,604 123,789

Active exon (AX) 9931 9033 8226 9123

Inactive exon (IX) 19,071 20,261 19,078 22,071

Unknown (UK) 79,417 78,081 80,004 81,502

Total 25,209 235,566 223,049 236,485

hg38 Active enhancer (AE) 7177 5524 11,589 24,290

Inactive enhancer (IE) 56,108 57761 51,696 165,565

Active promoter (AP) 14,092 12,524 14,036 40,652

Inactive promoter (IP) 85,789 87,357 85,845 258,991

Total E + P 163,166 163,166 163,166 489,498

Page 7 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

experiments on the dataset for genome version hg38/GRCh38 (hg38-dataset, detailed
in “Hg38-dataset” section, Table 1-bottom), which allows validating the model selection
effectiveness on a wider sample set available for this genome assembly.

In the remaining part of this work, the regions considered in the following experi-
ments, and detailed in “Datasets” section will be denoted as IE and AE for inactive and
active enhancers, IP and AP for inactive and active promoters, and ELSE for regions
which are either active (AX) or inactive exons (IX) or unknown/uncharacterized regions
(UK), respectively.

Experimental setup

In our experiments, we used both the hg19 and hg38 human genome reference assem-
bly. We firstly run our experiments on the hg19 datasets provided by the authors of [34]
(“Hg19-dataset” section) to allow a fair comparison with respect to their state-of-the-art
work. Next, considering that several works in the biomedical field have transitioned to
the hg38 assembly, and wishing to provide a more robust and reliable evaluation of the
methods we are proposing, we also analyzed the hg38 datasets (“Hg38-dataset” section).

Following the above-mentioned notation, the three experiments on the hg19 dataset
replicate the five binary classification tasks proposed in [34]: (1) IE versus IP, (2) AP ver-
sus IP, (3) AE versus IE, (4) AE versus AP, (5) AE + AP versus ELSE, by using FFNN
models processing the epigenomic features provided by the authors [34], and CNN
models processing one-hot-encoded sequence data. We then replicated the same experi-
ments with the hg38-dataset, using sequence, epigenetic and labelling data for the hg38
human genome assembly. In this last setting, the fifth prediction task (AE + AP versus
ELSE) was modified, so as to use only CRRs (AE + AP versus IE + IP) and avoid using
regions very different from CRRs (AX, IX and UK), to potentially ease the recognition
task.

Table 2 shows the unbalancing ratios for each prediction task on hg19 datasets (top),
with average over the four classes ranging from 2.57 (IE versus IP) to 22.32 (AE versus
IE), which differ from those for the hg38-dataset (bottom), with an average unbalance
over the three classes from 1.57 (IE versus IP) to 7.58 (AE versus IP).

All the models were trained and tested by using random stratified holdouts with an
80/20 split, that is, 80% of each class was used as the training set and the remaining 20%
was reserved for the test set. We have executed 10 holdouts for the experiments on the
hg19 dataset and extended the holdouts number to 20 for the experiments on the hg38
dataset. Where not otherwise stated, the prediction tasks were executed without execut-
ing data-balancing steps, where neither the training set nor the test set were re-balanced,
so that their original distribution is maintained. The data-balancing is used exclusively
when reproducing the experimental setup from [34].

Model selection through Bayesian optimization was performed on the training set by
using additional stratified internal holdouts, with a train/validation ratio of 80/20 . With
this setting, Bayesian Optimization aims at maximizing performance (measured by
AUPRC) on the validation sets.

Before processing, the epigenomic data are normalized using “MinMax” scaling
between 0 and 1.

Page 8 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

We measured performance by using the Area Under the Receiver-Operating Curve
(AUROC) [56] and the Area Under the Precision-Recall Curve (AUPRC) [57] over all the
test sets in the holdouts. While AUROC is a standard performance evaluation metrics in
machine learning, AUPRC was added because this performance metric is more appro-
priate when dealing with unbalanced datasets [58–60].

The statistical validation of the performance comparison (AUROC or AUPRC) of two
different models, when applied to the same train/test holdouts, was performed by using
the one-sided Wilcoxon signed rank-test at a 0.01 significance level (i.e. 99% confidence
level or p value p < 0.01) [61–63].

To further gain insights into the separability of the data in the different prediction tasks
and in the two genome versions, we projected the test sets for both the FFNN models
(epigenomic features) and CNN models (sequence data), and for all the cell lines and
genome versions, on the first two components of the lower dimensional space computed
by t-SNE [64].1 As an example, the projections of the test matrices with holdout from
the cell line GM12878 are shown in Figs. 1, 2, and 3 for genome version hg19 (a, c, e, g)
and genome version hg38 (b, d, f, h), respectively. Comparing all the t-SNE projections of
epigenomic data (a, b, e, f) to those of sequence data (c, d, g, h), epigenomic data always

Table 2 Top Table: Unbalanced setup (first to fifth column): for each dataset and each task (first to
fifth row from top to bottom) executed on data from genome version hg19, we report the class
unbalancing ratio, computed as the ratio between the cardinality of the most-represented class and
the cardinality of the less-represented class. Bottom table: the unbalancing ratios describing the
unbalancing for data in hg38 are shown

The fifth column (Average) shows the average unbalancing ratio over all the four cell lines, when the unbalanced setup
is used. Task AE versus IE and task AE + AP versus else are, on average, the most unbalanced. Full‑balanced setup (sixth
column): the unbalancing ratio in each task is equal for all the cell lines. The comparison between the averages (over each
cell lines) of the unbalancing factors (fifth and sixth columns) shows the striking difference between the two unbalancing
modes.

Genome version Task Unbalancing ratios for different setups

Unbalanced setup Full-
balanced
setup [34]

HepG2 HelaS3 K562 GM12878 Average All cell lines

hg19 IE versus IP 2.78 2.46 2.41 2.62 2.57 1

AP versus IP 8.39 7.34 8.22 6.83 7.70 2

AE versus IE 23.59 17.42 38.47 9.78 22.32 2

AE versus AP 7.83 5.83 11.27 3.76 7.17 1

AE + AP versus else 18.49 17.76 20.47 15.29 18.00 8

Avg per cell line 12.22 10.16 16.17 7.66 11.55 2.8

Unbalanced setup

HepG2 K562 GM12878 Average

hg38 IE versus IP 1.53 1.51 1.66 1.57

AP versus IP 6.09 6.98 6.12 6.39

AE versus IE 7.82 10.46 4.46 7.58

AE versus AP 1.96 2.27 1.21 1.81

Avg per cell line 4.35 5.30 3.36 4.34

1 For computing the t-SNE we used the tsne-Cuda implementation available at https:// github. com/ Canny Lab/ tsne- cuda.

https://github.com/CannyLab/tsne-cuda

Page 9 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

shows a higher separability than sequence data. For hg19-data, the highest class overlap
is visible for both epigenomic and sequence data in the task IE versus IP (see Fig. 1a, c),
suggesting that this task will be the most difficult for both FFNN and CNN models. On
the other side, the largest class separability (for both epigenomic and sequence data) is
observed on hg38-data for tasks involving the separation of promoters from enhancers
(IE versus IP in Fig. 1b, d, and AE versus AP in Fig. 1f, h). The other tasks involving the

Fig. 1 Top row: t-SNE projections of task IE versus IP: epigenomic data (a, b) and sequence data (c, d) for,
respectively, hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line. Bottom
row: t-SNE projections of task AE versus AP: epigenomic data (e, f) and sequence data (g, h) for, respectively,
hg19 dataset (e, g) and hg38-dataset (f, h) on one hold-out of the GM12878 cell line

Fig. 2 Top row: t-SNE projections of task AP versus IP: epigenomic data (a, b) and sequence data (c, d) for
hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line, respectively. Bottom
row: t-SNE projections of task AE versus IE: epigenomic data (e, f) and sequence data (g, h) for hg19 dataset
(e, g) and hg38-dataset (f, h) on one hold-out of the GM12878 cell line, respectively

Page 10 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

separation of active from non-active regulatory regions (AP versus IP—Fig. 2-b, d, and
AE versus IE—Fig. 2f, h, and AE + AP versus IE + IP in Fig. 3b, d) show a higher class
overlap with respect to data for hg19, for both epigenomic and sequence data.

Bayesian optimization improves prediction of active regulatory regions

Our first goal was to investigate the effect of model selection on FFNN and CNN mod-
els’ generalization performance and inspect whether a systematic exploration of the
hyperparameter space leads to better classification results. To this end, we compared the
fixed FFNN model, fixed-FFNN, to the optimized FFNN model, Bayesian-FFNN, and,
similarly the fixed CNN model, fixed-CNN , to the optimized CNN, Bayesian-CNN, by
performing the five classification tasks reported in “Experimental setup” section and [34]
on the hg19 dataset (Tables 1, 2). For each of the five classification tasks, and each of the
four models (fixed-FFNN versus Bayesian-FFNN and Bayesian-CNN versus Bayesian-
FFNN), the mean AUPRC and AUROC computed over the testing holdouts (see “Exper-
imental setup” section) and over the cell lines are shown, respectively, in the left and in
the right Fig. 4. Paired Wilcoxon rank-signed test (at the 0.01 significance level) [61–63]
was applied to detect statistically significant differences between the distributions of the
AUPRC and AUROC values obtained by the fixed and optimized models.

Concerning FFNN, the Bayesian-FFNN outperforms the fixed-FFNN in all the con-
sidered tasks and cell lines, achieving a statistically significant difference for the AUPRC
metric (Wilcoxon test, p− value < 0.01). Similarly, also the Bayesian-CNN outperforms
the fixed-CNN, achieving a statistically significant difference for the AUPRC metric
(Wilcoxon test, p− value < 0.01).

Likewise, for the AUROC metric performance, the Bayesian-FFNN and Bayesian-
CNN consistently outperform their fixed counterpart (Wilcoxon test, p− value < 0.01),
except for the “AE + AP versus else” task, where the fixed-FFNN achieves performance

Fig. 3 Top row: t-SNE projections of task AE + AP versus IE + IP: epigenomic data (a, b) and sequence data
(c, d) for, respectively hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line.
Bottom row: t-SNE projections of task AE + AP versus ELSE: epigenomic data (e) and sequence data (g)
shown only for hg19 dataset

Page 11 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

statistically indistinguishable from the Bayesian-FFNN. The overall results show that
model selection through Bayesian optimization boosts both AUPRC and AUROC per-
formance in most of the considered tasks.

CNN models achieve performance close to FFNN models

When comparing the performance of the Bayesian-FFNN models to those of the Bayes-
ian-CNN models, Wilcoxon test confirmed the superiority of AUPRC and AUROC
achieved by Bayesian-CNN models in one task (IE versus IP), on two tasks (AE ver-
sus AP, AE + AP versus ELSE for AUPRC, and AP versus IP, AE + AP versus ELSE for
AUROC) the two models showed not statistically significant differences, while in the
other two tasks (AP versus IP, AE versus IE for AUPRC; AE versus IE, AE versus AP for
AUROC) the Bayesian-FFNN models showed a better performance.

Bayesian CNN is competitive with DeepEnhancer

Interestingly, Bayesian-CNN model working on sequence data showed promising
results. To validate its effectiveness in CRR-activity prediction, we compared them to
our implementation of the best performing DeepEnhancer model (the 4conv2pool-
4norm net, see “DeepEnhancer” section). In [33] the authors state that, though the
DeepEnhancer networks have been developed for recognizing enhancers against back-
ground genome, they may be used for similar tasks; thus we tested Bayesian-CNN and

Fig. 4 Comparison between fixed learning models and Bayesian models on data for genome version hg19.
The plotted AUPRC (left) and AUROC (right) values are averaged over all the four cell lines and the multiple
holdouts. Black bars represent standard deviations

Page 12 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

DeepEnhancer (4conv2pool4norm) by using the four cell lines for hg19 to perform only
the three classification tasks directly involving enhancers (IE versus IP, AE versus IE, and
AE versus AP).

Both the models were assessed by using 10 holdouts over all the 4 datasets for hg19.
Figure 5 shows, for each of the three tasks, the mean AUPRC (left) and the mean
AUROC (right). One-sided Wilcoxon test confirmed that the differences visible in Fig. 5,
for both AUPRC and AUROC, are statistically significant. Such performance further
supports the results from the first experiment (“Bayesian optimization improves pre-
diction of active regulatory regions" section), showing that model selection by Bayesian
optimization allows to outperform state-of-the-art models. Further, these results show
that a CNN model trained on genomic sequence alone may achieve an accurate classifi-
cation performance for CRR activity prediction.

Effect of different dataset-balancing setups

To solve the class unbalance problem, Li et al. [34] implemented a fully-balanced setup,
where the construction of the training and test set (with train/test ratio 80%/20%) is fol-
lowed by an under-sampling step of both the train and test splits, to decrease the effect
of class unbalancing. In particular, each class in the training and test set must have no
more than 3000 examples, while a specific proportion among classes is enforced accord-
ing to these ratios: (AE:AP:AX:IE:IP:IX:UK=1:1:1:2:2:1:10). Note that, in this way the
class imbalance reported in the top of Table 2 is significantly reduced.

To understand the effect of such peculiar re-balancing, in this Section we trained and
tested Bayesian-FFNN and Bayesian-CNN on the hg19 dataset by using the same exper-
imental setting described for the previous experiments and by repeating all the predic-
tion tasks under: (1) the aforementioned fully-balanced setup, (2) a balanced setup,
where only the training set is balanced to have classes with equal cardinality (set to 3000
samples here to obtain an objective comparison), and (3) the unbalanced setup, where
no re-sampling is performed to maintain the original class distribution.

For a detailed comparison of the achieved performance, the top (bottom) of Table 3
reports the average (over all the cell lines and the two Bayesian FFNN and CNN meth-
ods) of the AUPRC (AUROC) values achieved for each task (on rows) by using differ-
ent balancing modes (on columns). In the last row the average AUPRC (AUROC) values
over all the tasks are reported for each balancing set-up. The statistical significance of
the difference in the average AUPRC (and AUROC) values between different balancing
set-ups was assessed by the Wilcoxon rank-signed test with p < 0.01 . In the last column

Fig. 5 Comparison between Bayesian-CNN and DeepEnanhcer models on data for genome version hg19.
AUPRC (left) and AUROC (right) values are averaged over the 10 multiple holdouts and the four cell lines.
Black bars represent standard deviations

Page 13 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

of Table 3, we report the Wilcoxon p value computed when comparing AUPRCs where
the difference is not statistically significant. Precisely, for each task in Table 3, character
* marks not significantly different values (AUPRC or AUROC) according to a Wilcoxon
test, while bold text highlights the highest AUPRC (AUROC). Figure 6 summarizes the
comparison between the different balancing set-ups.

Observing the AUPRCs in Table 3 (see also Fig. 7), we note that the balanced experi-
mental set-up is the one obtaining the worst performance in all the tasks; a similar
behaviour is visible in the AUROCs (bottom table), though in this case the differences
are often not statistically significant. On the AUPRC, the Wilcoxon test confirms that,
on average, the full-balanced setup produces higher AUPRC scores (AE versus IE, AE
versus AP, AE + AP versus ELSE) or, anyway, scores that are comparable to the best per-
forming setup (IE versus IP and AP versus IP).

Bayesian optimization also improves performance on hg38-dataset

Figure 8 compares the AUPRC and AUROC performance of the Bayesian models
(Bayesian-FFNN and Bayesian-CNN) with their fixed counterparts (fixed-FFNN and
fixed-CNN), averaged over 20 holdouts, trained and evaluated on the hg38 dataset. The
Wilcoxon signed-rank test (p < 0.01) confirmed that the Bayesian models always out-
perform their fixed counterparts in both the AUPRC and AUPRC metrics, in all the con-
sidered tasks and cell lines, confirming the results obtained with hg19 data.

By comparing Figs. 8 and 4, we observe that we obtain better results with the hg38-
dataset than those achieved with hg19 data when we classify promoters versus enhanc-
ers (i.e. IE versus IP and AE versus AP tasks), but worse results when we classify active
versus inactive CRRs (i.e. AP versus IP, AE versus IE and AE + AP versus ELSE).

Table 3 For each balancing (columns) and task (rows), we report the average AUPRCs (top table)
and average AUROCs (bottom table) obtained by the two Bayesian classifiers (the average is
computed over the four cell lines)

Character * marks not statistically different pairs and, in this case, the last column reports the computed p value > 0.01. Bold
text highlight the best performance, when this is statistically different from all the other values

Task Balanced Full-balanced Unbalanced Wilcoxon

AUPRC
IE versus IP 0.627 0.787* 0.791* 0.251

AP versus IP 0.745 0.884* 0.901* 0.066

AE versus IE 0.660 0.885 0.814

AE versus AP 0.834 0.945 0.856

AE + AP versus else 0.671 0.882 0.824

All tasks 0.707 0.877 0.837

AUROC
IE versus IP 0.82* 0.819* 0.903 0.046

AP versus IP 0.919 0.931 0.960
AE versus IE 0.893* 0.921 0.9205* 0.052

AE versus AP – 0.960* 0.956* 0.249

0.952* – 0.956* 0.035

AE + AP versus else 0.929* 0.956 0.925* 0.066

All tasks 0.903 0.917 0.933

Page 14 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

The optimal Bayesian-FFNN architectures chosen for the task AE versus IE for cell line
GM12878, for both the hg19 and hg38 datasets, are visualized, respectively in Fig. 10a, c.
The two models look similar in their pyramidal shape (the number of units in each dense
layer decreases from input to output); however, as noted in section fixed-FFNN and
Bayesian-FFNN, while the pyramidal shape is constrained in the Bayesian-FFNN meta-
model developed for the hg19 dataset, that for the hg38 dataset could allow building
both pyramidal and rectangular architectures.

The optimal Bayesian-CNN architectures selected for the task AE versus IE for cell
line GM12878, for both the hg19 and hg38 human genome assemblies, are visualized in,
respectively, Fig. 10b, d.

Fig. 6 Comparison between different balancing set-ups on data for genome version hg19. The AUPRC (top)
and mean AUROC (bottom) values obtained by Bayesian-FFNN (right) and Bayesian-CNN (left) when the three
balancing set-ups are used are averaged over the four cell lines and the ten holdouts. Black bars represent
standard deviation

Page 15 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

Fig. 7 Comparison between the three balancing setup on hg19 dataset. The barplot on the left shows the
mean AUPRC averaged over the Bayesian models (Bayesian-FFNN and Bayesian-CNN), the four cell lines, and
the ten holdouts. On the right, mean AUROC is averaged over the Bayesian models, cell lines, and holdouts.
Black bars represent standard deviations

Fig. 8 Comparison between fixed and Bayesian models on the data for genome version hg38. AUPRC values
(left) and AUROC values (right) are averaged over the 10 multiple holdouts and the three available cell lines.
Black bars represent standard deviations

Page 16 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

Discussion
The present work aims at providing further knowledge in the field of CRR activity pre-
diction. More precisely, the experiments presented in “Results” section have been
designed to: (1) compare the performance obtained by using FFNN models process-
ing epigenomic features to that obtained by CNN models working on sequences; (2)
understand whether model tuning can improve the prediction performance; (3) provide
insights about the different rebalancing procedures exploited at the state-of-the-art to
handle the data imbalance issue; (4) validate the results obtained with the two genome
datasets: the first one based on the hg19/GRCh37 genome version while the second on
the hg38/GRCh38 version.

In particular, results reported in “CNN models achieve performance close to FFNN
models” section show that the analysis of sequence data through CNN leads to results
comparable to those obtained with FFNN and epigenomic features, and suggests that a
multimodal approach integrating the information carried by both the data types could
achieve increased performance.

Further, experimental results achieved on both the hg19 and hg38 datasets show that
a proper choice of the model hyper-parameters through Bayesian optimization allows
improving the model generalization capability by systematically increasing the perfor-
mance of non optimized fixed models.

The different results obtained with hg19 and hg38 data sets can be explained by
their different distributions. Indeed t-SNE plots reveal that active versus inactive CRRs
(Figs. 2, 3) in hg38 data show larger overlaps than in hg19 data. This can be in turn
explained by the fact that hg38 on the one hand includes more CRR samples and on
the other hand the FANTOM5 labeling (active versus inactive) significantly changed
between the two human genome assemblies (see “Datasets” section for more details).

Moreover, with the hg38-dataset, differently from the hg19 dataset, the Bayesian-
FFNN approximately doubles the AUPRC performance of the Bayesian-CNN in the
active versus inactive tasks (Figs. 4, 8). This behaviour is expected, since it is well-known
that epigenetic data are more informative than sequence data in distinguishing AP ver-
sus IP or AE versus IE.

Figure 9 shows the distribution of the validation AUPRC values achieved by the FFNN
and CNN models generated during the Bayesian optimization process for the different
considered tasks and cell lines. The performance of the different deep neural network
models can quite largely vary dependently of the choice of the hyperparameters, thus
confirming that Bayesian optimization is crucial to improve performance. Moreover,
observing the obtained plots, we may note that the Bayesian-FFNN distributions (Fig. 9,
continuous line) have a unique local maxima, while those computed while optimizing
the Bayesian-CNN meta-model (Fig. 9, dashed line) contain up to three local maxima.
This may partially motivate the slower convergence we observed when optimizing
the Bayesian-CNN meta-model. On the other side, Bayesian-FFNN generally rapidly
reaches convergence to a local maxima.

The best parameters selected by the Bayesian optimization procedure depend on
the task and the considered cell line, which suggest the existence of different under-
lying structures. Examples of the Bayesian-FFNN and Bayesian-CNN architec-
tures selected by Bayesian optimization for the task AE versus IE applied to cell line

Page 17 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

GM12878 on the hg19 and the hg38 datasets are shown in Fig. 10. Full results about
the best selected hyperparameters for each task and cell line are available in the
github site (see Availability of data and materials).

The potentials of Bayesian models trained on sequence data have also been con-
firmed by the comparison with DeepEnhancer, a state-of-the-art approach for active
enhancer region prediction [33] which similarly leverages CNNs trained on sequence
data.

It has to be finally pointed out that results are also strongly dependent on the cho-
sen experimental setup. Indeed, crucial experimental choices, such as the dataset
rebalancing technique, may positively bias the obtained results, therefore produc-
ing optimistic estimates of the model performances. In particular results reported in
“Effect of different dataset-balancing setups” section show that (1) training set rebal-
ancing should be carefully designed in order to avoid loosing discriminative informa-
tion, which would result in decreased performance; (2) test set rebalancing should not
be performed since it produces over-optimistic, unreliable results.

Regarding training set rebalancing, referring to Table 3 and Fig. 7, we believe that
the low performance of the balanced setup may be due to the fact that the training
set re-balancing is performed by sub-sampling, which discards a (sometimes) large
amount of training samples. This reduces the information made available to the
learner for training; as a result, the learner has difficulties in effectively learning the

Fig. 9 Distributions of the Validation AUPRC sampled during Bayesian optimization of the
Bayesian-FFNN meta-models (continuous lines) and Bayesian-CNN meta-models (dashed lines), when trained
on the hg38 dataset. Different colors correspond to different cell lines. a Active Enhancers versus Active
Promoters (AE versus AP); b Active Enhancers versus Inactive Enhancers (AE versus IE); c Active Promoters
versus Inactive Promoters (AP versus IP); d Inactive Enhancers versus Inactive Promoters (IE versus IP); e Active
Enhancers and Promoters versus Inactive Enhancers and Promoters (AE + AP versus IE + IP)

Page 18 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

inter- and intra-class variability, therefore resulting in a reduced generalization capa-
bility. Though this reduction affects both balanced and full-balanced modes, in the
latter case the test set is also reduced in size, hence minimizing the impact of misclas-
sification. Moreover, since the unbalanced setup works on all the available training
cases, the learner sees all the training set variability and this may be the reason why
the unbalanced mode scores sometimes better than the full-balanced, and always bet-
ter than the balanced mode (Figs. 6, 7).

Test set balancing may be responsible for the high scores registered by the fully-bal-
anced setup; hence, we believe that more realistic results are obtained by a complete
unbalanced setup, since in a real-world setting there is no way to balance the test set, as
labels to be predicted are not known.

Conclusions
In this work we presented experiments aimed at investigating the usage of deep neural
network models for predicting CRR activity.

In particular, we implemented a FFNN, which works on CRRs annotated with epig-
enomic features and conservation scores, and a CNN, which processes the same CRRs
coded by their genomic sequence.

Given such setting, we firstly showed that model selection through Bayesian optimiza-
tion has the potential for improving the classification results computed by both archi-
tectures. This result was proved on the CRRs dataset provided by the authors of [34],
and validated on epigenomic and sequence data from genome version hg38/GRCh38.
Bayesian optimization is also fundamental to improve CNN results, as shown by our

Fig. 10 Models selected by Bayesian optimization for the AE versus IE task, cell line GM12878, for genome
assembly hg19: a FFNN; b CNN, and for genome assembly hg38: c FFNN; d CNN. Group 2 in c and groups 1, 3
and 4 in d are void since no hidden layers have been selected by the Bayesian optimization procedure

Page 19 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

experimental comparison of Bayesian-CNN with the current state of the art Deep-
Enhancer model [33]. To the best of our knowledge, this is the first time that the Bayes-
ian optimization approach is used to tune deep learning models to predict CRRs.

To analyze the effect of the dataset balancing performed in the DECRES [34] work,
we experimented different rebalancing techniques, showing that balancing the test set
may lead to an over-optimistic estimation of the generalization performances of the
model. From the experimental results, we infer that balancing set-ups must be carefully
designed to avoid incurring misleading model evaluations due to biases induced in the
data distributions.

Results obtained with hg38 show that the task of predicting active versus inactive
regions, for both promoters and enhancers, is still an open problem. We obtained an
average AUPRC greater than 0.5 and an AUROC grater than 0.8 for the AE versus IE
task, showing that there is room to further improve performance.

Since the promising results achieved with genomic sequences suggest that also this
data type carries salient information, we plan to develop multimodal architectures where
two specialized neural branches, a Bayesian-FFNN branch and a Bayesian-CNN branch,
will separately extract the information from, respectively, epigenomic and sequence
data, and their resulting embedded data representations will be integrated at a higher
level by a merging fully connected neural module producing the final output.

Methods
To detect active CRRs using either epigenomic data or genomic sequences we developed
two (deep [65, 66]) neural network models: FFNN models are applied to one dimen-
sional vectors containing epigenomic features, while CNN models are applied to process
a two-dimensional sparse vector representing the one-hot-encoded genomic sequence
data.

In particular FFNN models [36] are a class of weighted acyclic graphs composed of
layers of neurons (an input layer, a number of hidden layers, and an output layer) inter-
connected by weighted edges, where the weight of each edge is learnt during the training
phase.

FFNN operate by feed-forward propagating the signals from the input layer, to all the
consecutive hidden layers, and then to the output layer. In more detail, while the input
layer, is used to ingest the input vectors and diffuse them to the next hidden layer, each
neuron in the generic hidden layer performs a weighted sum of the signals it receives
from the preceding layer, where the weights are those relative to the edges transporting
the signal itself. The weighted sum is then input to an activation function (e.g. ReLU, sig-
moid, tanh [67]), which computes the neuron activation by normalizing the computed
value and introducing non-linearity. In the output layer each neuron is associated to a
prediction (class) and its activation defines the neuron response for that prediction.

The aforementioned structure (architecture) of FFNN models is characterized by
(architectural) hyperparameters that define the network depth (number of hidden lay-
ers) and its extent (the number of neurons for each layer). In neural networks, the model
parameters (i.e. the weights) are automatically learnt from the data through the back-
propagation algorithm, while all the other parameters, i.e. the number of hidden layers

Page 20 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

and the number of hidden neurons, or the learning rate, that are not directly learnt dur-
ing backprogation are usually called model hyperparameters.

CNNs [36] are neural networks that use convolutions instead of full vector and matrix
multiplication as in FFNNs, and are designed to work on n-dimensional signals, e.g.
images, where the relationship between neighboring elements must be accounted for.

CNNs essentially apply consecutive filtering operations to the input signals and their
strength is due to their ability to automatically infer the optimal filter weights, that is the
weights maximizing performance on the training data. In the context of DNA sequence
processing this means that CNNs are able to identify motifs in a fully automated way,
thus allowing to find binding sites of transcription factors that regulate the expression of
genes. More details on CNNs are available, e.g. in [36].

Both models basically apply the backpropagation algorithm to learn the weights, in
order to optimize an objective function that in classification problems is typically rep-
resented by Binarized or Multi-class cross-entropy [68]). To this aim, several optimizing
algorithm may be chosen (e.g. Stochastic Gradient Descent—SGD, Root Mean Square
Propagation—RMSProp, Adaptive Moment Estimation—Adam, Nesterov-accelerated
Adaptive Moment Estimation—Nadam, and many others [69]), which are guided by a set
of hyperparameter values (e.g. learning rate, momentum, batch-size, maximum number
of epochs, early stopping patience), which are often manually set to suggested default
values or are set based on previous experience.

In this work, the Nadam optimizer [70] is used to find the weight values optimizing
the binary cross-entropy (BCE) loss over the training set, which is computed as:

where yi is the true label for sample i and ŷi is the predicted label.
The aforementioned description clarifies that the design and development of deep

neural network models is not trivial, since a high-number of (architectural and training)
hyperparameters must be properly set.

In this section we describe the models we developed in order to assess the usage of
Bayesian optimization (“Bayesian optimization” section) in the model selection phase for
the task of CRR activity classification.

In particular we firstly developed FFNN and CNN models defined by fixed hyperpa-
rameters, whose values are chosen according to previous state-of-the-art studies [34],
which will be referred to as “fixed” models. Starting from the fixed models, we devel-
oped “Bayesian” models whose “optimized” hyperparameter values are chosen by
Bayesian optimization in a search space that includes the points corresponding to the
hyperparameters of the fixed FFNNs. In this way, we obtained two “fixed” models, i.e.
fixed-FFNN and fixed-CNN, and two “Bayesian” models, i.e. Bayesian-FFNN and Bayes-
ian-CNN, fully described in Sections fixed-FFNN and Bayesian-FFNN and fixed-CNN
and Bayesian-CNN.

While the fixed-FFNN models have been developed based on previous research works
[34] and may be used as baseline models for comparison with their Bayesian version,
to provide an exhaustive evaluation of CNN models trained on raw sequence data we
exploited the best performing DeepEnhancer model, described in “DeepEnhancer”
section.

BCE(yi, ŷi) = −(y log(ŷi)+ (1− y) log(1− ŷi))

Page 21 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

All the models were developed using Keras [71] with TensorFlow backend [72].

Bayesian Optimization

The idea behind Bayesian optimization is that a function (the “objective function”),
characterized by high cost for the evaluation of each point of a bounded domain, can
be approximated by building a probabilistic model (the “Surrogate function”) which is
cheaper to query. Optimization can then be performed by substituting the objective
with the surrogate function providing at the same time a possible minimum or maxi-
mum for the latter.

As the surrogate function represents an “a priori” distribution of the objective func-
tion, given some observation points obtained by evaluation of the objective, it is possible
to exploit Bayes’s rule to generate an “a posteriori” estimation of the (objective) function
and then update the probabilistic model (surrogate function). Candidates of observation
points are suggested through an appropriate “Acquisition function” which uses the infor-
mation gained by the probabilistic model (estimated by the already observed points) for
suggesting the next candidate.

Depending on the task, different acquisition functions may be used, but their com-
mon trait is that they all act upon the criteria of “exploration versus exploitation”, so that
the sequence of suggested points will provide a better overlook of the objective function
(exploration) or a better identification of its maximum/minimum (exploitation). A com-
prehensive review of possible acquisition functions is available at [73].

We used the Python packages Ray [74] and HyperOpt [75] to implement Bayesian
optimization in our deep neural network framework available at https:// github. com/
Anacl etoLAB/ meta_ models.

fixed‑FFNN and Bayesian‑FFNN

We initially addressed the prediction of active regulatory regions by developing a fixed-
FFNN model, whose architecture and learning hyperparameters have been chosen by
considering the work described in [34], where authors developed a successful neural
network and applied grid search to automatically select the architecture and learning
hyperparameters.

Precisely, in our fixed-FFNN (schematized in Table 4A) the neural network architec-
ture is composed by cascading three fully-connected layers composed of 16, 4 and 2 neu-
rons with ReLU [76] activation function, respectively. A final layer structured as a single
neuron with sigmoid activation function acts as output layer, computing the final binary
predictions. During network training, weight values were adjusted by Stochastic Gradi-
ent Descent technique with fixed learning rate of 0.5, learning rate decay of 0.1, l2 regu-
larizer of 0.0, no momentum and a maximum of 64 epochs. While the number of layers,
the activation functions, and the optimization technique are those selected by grid
search in [34], the values of the learning rate, the learning rate decay, and l2 regularizer
were chosen by performing a brief manual tuning of the learning hyperparameters, since
in [34] the exact ratings for such parameters were not reported. Moreover, after con-
sidering both the suggestions reported in [34] and the research works reported in [77,
78], where authors observed that high ratings for batch-size decrease the generalization

https://github.com/AnacletoLAB/meta_models
https://github.com/AnacletoLAB/meta_models

Page 22 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

Table 4 FFNN hyperparameter space explored with hg19 and hg38 data through Bayesian
optimization. A. Architecture and learning hyperparameters of the fixed-FFNN; B. Architecture and
hyperparameter space of the Bayesian-FFNN models trained on the hg19 dataset; C. Architecture
and hyperparameter space of the Bayesian-FFNN models models trained on the hg38 dataset

In Tables B and C, for each otpimized hyperparameter, the search hyperparameter space is shown, where square brackets
are used for continuous hyperparameter spaces, while curly brackets are used for discrete ones. “Dense” refers to fully
connected layers

Layers Units Activation

A: fixed-FFNN
Dense 16 ReLU

Dense 4 ReLU

Dense 2 ReLU

Output 1 Sigmoid

Learning parameters
 Learning rate 0.5

 Learning rate decay 0.1

 l2 regularizer 0.0

 Batch size 32

 Optimizer SGD

 Max no. of epochs 64

Layers Hyperparameter space Activation

B: Bayesian-FFNN (hg19 dataset)

No. of dense layers {0, 1, 2, 3}

No. of units layer 1 {256, 128, 64, 32, 16, 8, 4, 2} ReLU

No. of units layer 2 {128, 64, 32, 16, 8, 4, 2} ReLU

No. of units layer 3 {64, 32, 16, 8, 4, 2} ReLU

Output 1 Sigmoid

Learning parameters
 Learning rate [0.1, 0.5]

 Learning rate decay [0.01, 0.2]

 l2 regularizer [0, 0.1]

 Batch size [32, 256]

 Optimizer SGD

 Max no. of epochs [32, 1000]

C: Bayesian-FFNN (hg38 dataset)

Groups n = 4

No. of hidden layers, composing the group {0, . . . , 3}

No. of units of the dense layer {0, . . . , 256} ReLU

Dropout [0, . . . , 0.5]

Output 1 Sigmoid

Learning parameters
 Learning rate [0.1, 0.5]

 Learning rate decay [0.01, 0.2]

 l2 regularizer [0, 0.1]

 Batch size [32, 256]

 Optimizer SGD

 Max no. of epochs [32, 1000]

Page 23 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

capability of the network, we chose a fixed and relatively small value for the batch size
parameter (32).

Exploiting the knowledge derived from experiments performed with the fixed-
FFNN, we initially performed experiments on the hg19 dataset by developing a Bayes-
ian-FFNN whose strength lies in the automatic model selection through Bayesian
optimization.

To attain a fair comparison with the deep neural networks proposed in [34], Bayesian-
FFNN adopted a similar hyperparameter space (Table 4B). We substituted the compu-
tationally expensive grid search with Bayesian optimization [79], which maximizes the
mean AUPRC computed over the validation sets of 10 internal holdouts (see “Experi-
mental setup” section).

According to the experiments on the hg19 dataset, the architecture chosen by Bayes-
ian optimization for the Bayesian-FFNN was often at the higher boundary of the search
space. Indeed, the chosen models were often composed by three fully connected layers
each composed by the maximum allowable number of units (256, 128, and 64). On the
other side, the learning parameters were selected in the lower spectrum of the continu-
ous search interval for all parameters but for the maximum number of epochs.

These results suggested to explore a larger hyperparameter space and to this end for
the hg38 data, we decided to develop more complex Bayesian-FFNN models, which
could allow exploring a wider search space (Table 4C).

In more detail, the novel meta-model is composed till to n = 4 groups having each one
from 0 to 3 hidden layers, where a value equal to 0 means that the layer will be removed.
Each dense hidden layer has batch normalization and ReLU activation, its width is cho-
sen by Bayesian optimization in the discrete range {0, 256} , and the considered layer is
dropped if the optimal width equals 0. Finally a dropout layer is added to regularize the
output of each group, and also the dropout rate is chosen (in the range [0, 0.5]) by Bayes-
ian optimization; again, if the chosen rate value equals 0, the dropout layer is removed.

Note that the described Bayesian-FFNN meta-model architecture for the hg38 data-
set allows to span a wide search space, which includes the search space of the Bayes-
ian-FFNN meta-model for hg19 as a subset. In particular, while the hg19 meta-model
constraints the final architecture to have a pyramidal shape, with decreasing number of
neurons from the input to the output layer, the meta-model for hg38 may also allow to
build a rectangular shape, where consecutive layers have the same width.

fixed‑CNN and Bayesian‑CNN

Similar to the experiments run on FFNN, for CNN we experimented with the usage of a
fixed architecture, to assess whether this approach may effectively recognize active regu-
latory regions, and an optimized architecture with hyperparameters chosen by Bayes-
ian optimization, to discover whether Bayesian optimization may improve performance
obtained by processing genomic sequences.

The fixed-CNN model is outlined in Table 5A. The core of the network is composed by
three consecutive blocks, each composed by three (consecutive) convolutional layers fol-
lowed by one 1-dimensional max/average pooling layer. The number of units in the three
convolutional layers of each block, as well as the filter sizes, are fixed. A filter size of 5 for
the first three convolutional layers was chosen as this represents a reasonable motif size

Page 24 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

Table 5 CNN hyperparameter space explored with hg19 and hg38 data through Bayesian
optimization. A. Architecture and learning hyperparameters of the fixed-CNN; B. Architecture and
hyperparameter space of the Bayesian-CNN models trained on the hg19 dataset; C. Architecture and
hyperparameter space of the Bayesian-CNN models models trained on the hg38 dataset

Layers Type Units Kernel Activation Notes

A: fixed-CNN
3 Convolutional 64 5 ReLU –

1 Max pooling 1D – – – size 2

3 Convolutional 128 3 ReLU –

1 Max pooling 1D – – – size 2

3 Convolutional 128 3 ReLU –

1 Average pooling 1D – – – –

1 Dropout – – – Probability 0.5

2 Dense 10 – ReLU –

1 Dropout – – – Probability 0.5

1 Dense 1 – Sigmoid –

Learning param-
eters

 Learning rate 0.002

 Batch size 256

 Optimizer Nadam

 Epochs 100

Layers Type Units Kernel Activation Notes

Hyperparameter
space

Hyperparameter
space

B: Bayesian-CNN (hg19 dataset)
3 Convolutional +

batch norm
{32, 64, 128} 5 ReLU –

1 Max pooling 1D – – – Size 2

1 Convolutional +
batch norm

{32, 64, 128} {5, 10} ReLU –

1 Max pooling 1D – – – Size 2

1 Flatten – – – –

1 Dense {10, 32, 64} – ReLU –

1 Dropout – - - – Probability 0.1

1 Dense {10, 32, 64} – ReLU –

1 Dropout – – – Probability 0.1

1 Dense 1 – Sigmoid –

 Learning
parameters

 Learning rate 0.002

 Batch size 256

 Optimizer Nadam

 Epochs 100

 Layers Hyperparameter
space

Activation

C: Bayesian-CNN (hg38 dataset)
No. of convolutional
groups

[0 . . . 2]

No. of hidden convolu-
tional layers, compos-
ing the group

{0, . . . , 3} ReLU

Page 25 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

[80]. All neurons in each layer have ReLU activation function with the exception of the
output layer where the output neuron has sigmoid activation. The Nadam algorithm [70]
adjusts the weight values, the learning rate is set to 0.002, and the batch size equals 256
examples.

Bayesian optimization was firstly experimented by using the hg19 dataset to perform
model selection. Precisely, Bayesian optimization was used to choose the best architec-
ture (number of convolutional groups from 1 to 3, and, for each layer, a number of filters
lower than that of the fixed-CNN model) that maximizes the mean AUPRC computed
over the validation sets of the 10 internal holdouts (“Experimental setup” section). The
resulting Bayesian-CNN has a meta structure shown in the bottom of Table 5B. The
meta-model uses the default Nadam learning learning rate (0.002) and batch size (256).

When running experiments on the hg38 dataset, in line with the experiments on
the FFNN models, we re-designed the Bayesian-CNN meta-model to allow exploring
a wider search-space. The novel meta-model and the wider hyperparameter space are
schematized in Table 5C; the meta-model allows developing models with nconv ∈ {0, 2}
convolutional blocks and ndense ∈ {0, 2} dense blocks, where both the values of nconv and
ndense are chosen by Bayesian optimization. Each convolutional block is composed from
0 to 3 convolutional layers with batch normalization and ReLU activation, followed by a
2D max pooling layer and a dropout layer. The dense blocks are composed by a fully con-
nected layer with batch normalization and ReLU activation, followed by a dropout layer.
The hyperparameter space explored by the Bayesian-CNN is detailed in Table 5C.

Table 5 (continued)

 Layers Hyperparameter
space

Activation

No. of filters in the
convolutional layer

[0 . . . 128]

2D kernel size in the
convolutional layer

[2 . . . 8] × [1, 2]

Max pooling 2D [1 . . . 8] × [1, 2]

Dropout [0 . . . 0.5]

No. of dense groups [0 . . . 2]

No. of hidden dense
layers, composing the
group

{0, . . . , 3} ReLU

No. of units in dense
layer

[0 . . . 64]

Dropout [0 . . . 0.5]

Output 1 Sigmoid

Learning parameters
 Learning rate 0.002

 l1 regularizer 0.0001

 l2 regularizer 0.0001

 Batch size 256

 Optimizer Nadam

 Epochs 100

In Tables B and C, for each otpimized hyperparameter, the search hyperparameter space is shown, where square brackets
are used for continuous hyperparameter spaces, while curly brackets are used for discrete ones. “Max Pooling 1D” and “Max
Pooling 2D” refer, respectively, to max‑pooling 1D and 2D layers, “Average Pooling 1D” refers to average‑pooling 1D layer,
“Dropout” refer to dropout layers, and “Batch Norm” refers to batch normalization layer

Page 26 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

DeepEnhancer

To compare the Bayesian-CNN model to a state-of-the-art model, we implemented
the 4conv2pool4norm DeepEnhancer network [33]. 4conv2pool4norm recognizes
enhancers from background sequences by processing, one-hot-encoded genomic
sequences through a 1D-CNN with four convolutional layers, where the input
sequence has a window size W = 300, the first two convolutional layers have 128
1D-kernels (window size = 1× 8) while the third and fourth layers have 64 1D-ker-
nels (window size = 1× 3); all layers are followed by a batch normalization layer,
while a max-pooling layer is applied only after the second and the fourth layers. After
the fourth layer, two dense layers with ReLU activation (256 and 128 neurons, respec-
tively), and interleaved with a dropout layer (ratio 0.5), perform the processing that
brings it to an output layer with two neurons and softmax activation, so that each neu-
ron is regarded as a probability score predictor for one class (enhancer versus back-
ground sequences). Of note, to prove the effectiveness of the proposed architecture,
in [33] authors present experiments by using new DeepEnhancer models obtained by:
removing the batch normalization layer (4conv2pool model); removing the batch nor-
malization and the max-pooling layer (4conv model); adding two more convolutional
layers with 16 1D kernels (window size = 1× 2) to both the 4conv2pool4norm and
the 4conv2pool, therefore obtaining 6conv3pool6norm and 6conv3pool. All the com-
parison showed that 4conv2pool4norm is the best performing architecture.

In our experiments, the implemented 4conv2pool4norm model was used to process
the same one-hot encoded sequence data (“Datasets” section) used to train and test
our CNN models, and the 2-way output layer was substituted with an output layer
composed by a single neuron with sigmoid activation, in line with our FFNN and
CNN models. The implemented 4conv2pool4norm model was then trained and tested
for each of the CRR activity prediction tasks detailed in “Experimental setup” section
where training exploited the hyperparameters detailed in [33] for the 4conv2pool-
4norm: Adam optimizer [81], an initial learning rate set to 10−4 , which decreases
according to learning rate decay, a maximum of 30 epochs with an early stopping
strategy to speed up the training.

Datasets
In this Section, we detail the datasets for genome version hg19/GRCh37 (hg19-data-
set, “Hg19-dataset” section) and for genome version hg38/GRCh38 (hg38-dataset,
“Hg38-dataset” section).

Hg19-dataset

The dataset for genome version hg19 contains regions belonging to GM12878,
HelaS3, HepG2, K562 cell lines, where enhancers and promoters were labeled based
on tags per million (TPM) data in the Cap Analysis of Gene Expression (CAGE) data-
set downloaded from FANTOM5 [31]. In particular, the following labels were set,
which refer to transcriptionally active or inactive enhancers and promoters:

Page 27 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

• AE and IE indicate that the regions is, respectively, an active or inactive enhancer,
where active means that the enhancer is transcribed with (TPM>0).

• AP and IP are assigned to active or inactive promoters, where an active (inactive) pro-
moter is defined when TPM > 5 (TPM=0).

• AX and IX identify active or inactive exons, respectively. The class of the exon was
defined based on exon transcription levels from RNA-seq data downloaded from
ENCODE. In particular, if the peak-max of the exon is greater than 400 the label is
AX, the exon is inactive (IX) if it is equal to zero.

• UK is the label for unknown/uncharacterized exons and DNase I open regions not
contained in FANTOM5.

Under this setting, epigenomic data for training FFNN models were extracted from the
ENCODE project [19], and CpG islands and phastCons scores were extracted by com-
puting the mean value of the feature signal which falls within a 200 bps bin centered at
each labelled region. Since the activity of CRRs is strongly influenced by chromosome
accessibility (regulated through the interplay between histone modifications and binding
of specific TFs) [82], histone and TFs ChIP-seq profiles, open chromatin (DNase-seq,
FAIRE-seq) data and chromatin conformation (ChIA-PET) data were used as epig-
enomic features in this study (see ENCODE Data Standards2 for an overview about the
mentioned high-throughput technologies). Moreover, phastCons and CpG island scores
were considered because CRRs are known to be evolutionary conserved [83] and levels
of DNA methylation are predictive of CRRs [84]. Such data is the same used by DECRES
FFNN [34] and were provided by DECRES authors themselves.3

The CNN models (“Methods” section) were trained and tested by using genomic
sequence data obtained for genome version hg19 from the UCSC repository dataset4 In
particular, each genomic region is represented by a sequence of 200 nucleotides, which
might be the usual A, C, G, and T nucleotides, or an unknown nucleotide (identified by
N). The obtained 200 bps sequences were encoded using the one-hot encoding scheme.

To provide an overview of the unbalanced class distribution in each cell line, the top
part of Table 1 shows the overall cardinality and the class distribution for each cell line
from hg19. The available cell lines differ in sample cardinalities, with class AE being
always the less represented (cardinality of AE is 5% of the cardinality of IE, 16% of AP,
and 2% of IP).

Hg38-dataset

To validate our results on genome version hg38, we used a pipeline similar to that pre-
sented for hg19 (“Hg19-dataset” section) and downloaded only regions catalogued
as enhancers and promoters from FANTOM5 for three of the cell lines used for hg19
(GM12878, HepG2, K562). We discarded the HelaS3 cell line, whose epigenomic features
in ENCODE were mostly deprecated. In this case, we downloaded epigenomic data from
ENCODE reflecting again the need to use data describing histone and TFs (ChIP-seq)

2 ENCODE Data Standards at https:// www. encod eproj ect. org/ data- stand ards/.
3 ENCODE Data at ftp:// hgdow nload. cse. ucsc. edu/ golde nPath/ hg19/ encod eDCC; ENCODE Fold-Change Data is
described here https:// sites. google. com/ site/ anshu lkund aje.
4 UCSC repository dataset at https:// genome. ucsc. edu/.

https://www.encodeproject.org/data-standards/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC
https://sites.google.com/site/anshulkundaje
https://genome.ucsc.edu/

Page 28 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

profiles, open chromatin states (DNase-seq, ATAC-seq) and DNA methylation informa-
tion (WGBS). Unfortunately, FAIRE-seq, ChIA-PET, CpG and phastCons data were not
available from ENCODE for the hg38 genome version, however we added to our dataset
further profiles describing open chromatin regions (ATAC-seq) and DNA methylation
(WGBS). Interested readers can refer to ENCODE Data Standards [2] for details about
the mentioned omics technologies. To label activity in the downloaded CRRs, similar
to the hg19 dataset, we thresholded the TPM values. In line with the hg19 dataset [34],
active (inactive) enhancers were defined as enhancers with TPM > 0 (TPM = 0). Active
(inactive) promoters were defined as promoters with TPM > 5 (TPM ≤ 5), which differs
from the thresholding strategy used for the hg19 dataset, where regions with 0 < TPM
≤ 5 had undefined activity (“Hg19-dataset” section). In this way, we obtained active
enhancers (AE), active promoters (AP), inactive enhancers (IE), and inactive promoters
(IE) for genome version hg38. Under this setting, epigenomic features for genome ver-
sion hg38 were downloaded from ENCODE,5 while the genomic sequence was down-
loaded from the UCSC repository.6

To provide an overview of the new class distribution for the available cell lines, we
show the total sample cardinality and the cardinality of each class (AE, AP, IE, IP) for
each cell line at the bottom of Table 1. Differently from hg19, the cell lines in hg38-data-
set have equal sample cardinalities.

In particular hg19 dataset has, on average, the 79% of enhancers and promoters with
respect to hg38-dataset (comparison between rows “Total E+P” in Table 1). Further,
Wilcoxon signed-rank test (p value p < 0.01) confirmed the statistically significant dif-
ference between the distributions of TPM values (tags per million, “Datasets” section)
composed by samples present in both datasets, which is reflected in differences in the
sample-activity labeling. In particular, when considering samples active in one or both
datasets, 12% of them have opposite activity labels.

To automate the genome assembly retrieval process, we developed a GitHub package
available at https:// github. com/ LucaC appel letti 94/ ucsc_ genom es_ downl oader, which is
also available through the UCSC repository at https:// genome- euro. ucsc. edu/ util. html.

Abbreviations
CRR Cis-regulatory region
DNA Deoxyribonucleic acid
GWAS Genome-wide association studies
ML Machine learning
FFNN Feed forward neural network
CNN Convolutional neural network
CAGE Cap Analysis of Gene Expression
RNA Ribonucleic acid
DECRES DEep learning for identifying Cis-Regulatory ElementS
AE Active enhancer
IE Inactive enhancer
AP Active promoter
IP Inactive promoter
AX Active exon
IX Inactive exon
UK UnKnown/uncharacterized
AUROC Area Under the Receiver-Operating Curve
AUPRC Area Under the Precision-Recall Curve
t-SNE t-distributed Stochastic Neighbor Embedding

5 ENCODE Data at ftp:// hgdow nload. cse. ucsc. edu/ golde nPath/ hg38/ encod eDCC.
6 UCSC repository dataset at https:// genome. ucsc. edu/.

https://github.com/LucaCappelletti94/ucsc_genomes_downloader
https://genome-euro.ucsc.edu/util.html
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/encodeDCC
https://genome.ucsc.edu/

Page 29 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

About this supplement
This article has been published as part of BMC Bioinformatics Volume 23 Supplement 2, 2022: Selected articles from the
8th International Work-Conference on Bioinformatics and Biomedical Engineering. The full contents of the supplement
are available online at https:// bmcbi oinfo rmati cs. biome dcent ral. com/ artic les/ suppl ements/ volume- 23- suppl ement-2.

Author’s contributions
All the authors contributed to this paper. LC, AP and JG performed data curation and the experiments. EC, MS, MK, GV
followed the conceptualization and methodology of this work and supervised the project. JG, EC, GV wrote the original
draft of this paper. LC implemented the code to perform the experiments. All authors read and approved the final
manuscript.

Funding
The funding body had no roll in the design of the study and collection, analysis, and interpretation of data and in writing
the manuscript. This work is partially funded by the PSR 2020 project “Machine Learning and Data Analytics for Genomic
Medicine”, Università degli Studi di Milano. Publication costs are funded by the Berlin Institute of Health at Charité –
Universitatsmedizin Berlin.

Availability of data and materials
The Python software library that implements the Bayesian-FFNN and the Bayesian-CNN models and the experiments
performed in this paper are available in the GitHub repository at https:// github. com/ Anacl etoLAB/ crr_ predi ction.The
pipeline that retrieves and combines the data relative to the hg38 human genome assembly are available at https://
github. com/ Anacl etoLAB/ epige nomic_ datas et. The data relative to hg19 human genome assembly from [34] are
partially available at https:// github. com/ yifeng- li/ DECRES while the full data was made available to us upon request. The
neural network configurations, as well as the performance and training history of all the evaluated models for all the
holdouts are entirely available at: https:// github. com/ Anacl etoLAB/ crr_ predi ction/ tree/ main/ resul ts.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 17 January 2022 Accepted: 20 January 2022

References
 1. Mora A, Sandve GK, Gabrielsen OS, Eskeland R. In the loop: promoter–enhancer interactions and bioinformatics.

Brief Bioinform. 2016;17(6):980–95.
 2. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell.

2008;134(1):25–36.
 3. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT. The human

transcription factors. Cell. 2018;172(4):650–65.
 4. Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding genome: involvement of micro-

RNAs and long non-coding RNAs in disease. Biochim et Biophys Acta (BBA)-Mol Basis Dis. 2014;1842(10):1910–22.
 5. Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, Calin GA. Junk DNA and the long non-coding RNA

twist in cancer genetics. Oncogene. 2015;34(39):5003–11.
 6. Schubach M, Re M, Robinson PN, Valentini G. Imbalance-aware machine learning for predicting rare and common

disease-associated non-coding variants. Sci Rep. 2017;7:29–59. https:// doi. org/ 10. 1038/ s41598- 017- 03011-5.
 7. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants through-

out the human genome. Nucleic Acids Res. 2019;47(D1):886–94. https:// doi. org/ 10. 1093/ nar/ gky10 16.
 8. Petrini A, Mesiti M, Schubach M, Frasca M, Danis D, Re M, Grossi G, Cappelletti L, Castrignanò T, Robinson PN,

Valentini G. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
GigaScience. 2020. https:// doi. org/ 10. 1093/ gigas cience/ giaa0 52.

 9. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, et al.
Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.

 10. Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, Dickerson KE, Chen M, Chen W, Shao Z, Ni M, Xu J. Noncoding variants
connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. Cancer Discov.
2020;10(5):724–45. https:// doi. org/ 10. 1158/ 2159- 8290. CD- 19- 1128.

 11. McClymont SA, Hook PW, Soto AI, Reed X, Law WD, Kerans SJ, Waite EL, Briceno NJ, Thole JF, Heckman MG, Diehl
NN, Wszolek ZK, Moore CD, Zhu H, Akiyama JA, Dickel DE, Visel A, Pennacchio LA, Ross OA, Beer MA, McCallion AS.
Parkinson-associated SNCA enhancer variants revealed by open chromatin in mouse dopamine neurons. Am J Hum
Genet. 2018;103(6):874–92. https:// doi. org/ 10. 1016/j. ajhg. 2018. 10. 018.

 12. Corradin O, Scacheri PC. Enhancer variants: evaluating functions in common disease. Genome Med. 2014;6(10):85–
85. https:// doi. org/ 10. 1186/ s13073- 014- 0085-3.

Published: 12 December 2022

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-23-supplement-2
https://github.com/AnacletoLAB/crr_prediction
https://github.com/AnacletoLAB/epigenomic_dataset
https://github.com/AnacletoLAB/epigenomic_dataset
https://github.com/yifeng-li/DECRES
https://github.com/AnacletoLAB/crr_prediction/tree/main/results
https://doi.org/10.1038/s41598-017-03011-5
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/gigascience/giaa052
https://doi.org/10.1158/2159-8290.CD-19-1128
https://doi.org/10.1016/j.ajhg.2018.10.018
https://doi.org/10.1186/s13073-014-0085-3

Page 30 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

 13. Gao T, Qian J. Eagle: an algorithm that utilizes a small number of genomic features to predict tissue/cell type-spe-
cific enhancer-gene interactions. PLoS Comput Biol. 2019;15(10):1007436–1007436. https:// doi. org/ 10. 1371/ journ al.
pcbi. 10074 36.

 14. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of
cell identity and disease. Cell. 2013;155(4):934–47. https:// doi. org/ 10. 1016/j. cell. 2013. 09. 053.

 15. Coppola CJ, Ramaker CR, Mendenhall EM. Identification and function of enhancers in the human genome. Hum
Mol Genet. 2016;25(R2):190–7. https:// doi. org/ 10. 1093/ hmg/ ddw216.

 16. Liu Y, Yu S, Dhiman VK, Brunetti T, Eckart H, White KP. Functional assessment of human enhancer activities using
whole-genome starr-sequencing. Genome Biol. 2017;18(1):219. https:// doi. org/ 10. 1186/ s13059- 017- 1345-5.

 17. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Varnai C, Thiecke MJ, et al.
Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters.
Cell. 2016;167(5):1369–84.

 18. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL,
Ecker JR, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045.

 19. Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–
74. https:// doi. org/ 10. 1038/ natur e11247.

 20. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B. A map of the cis-
regulatory sequences in the mouse genome. Nature. 2012;488(7409):116–20. https:// doi. org/ 10. 1038/ natur e11243.

 21. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, Jager PLD, Bennett DA, Hou-
mard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE. Genome-
wide chromatin state transitions associated with developmental and environmental cues. Cell. 2013;152(3):642–54.
https:// doi. org/ 10. 1016/j. cell. 2012. 12. 033.

 22. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F, Ishikawa-Kato S,
et al. Gateways to the fantom5 promoter level mammalian expression atlas. Genome Biol. 2015;16(1):22.

 23. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, et al.
Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317.

 24. Casiraghi E, Malchiodi D, Trucco G, Frasca M, Cappelletti L, Fontana T, Esposito AA, Avola E, Jachetti A, Reese J, et al.
Explainable machine learning for early assessment of covid-19 risk prediction in emergency departments. IEEE
Access. 2020;8:196299–325.

 25. Ernst J, Kellis M. Chromhmm: automating chromatin-state discovery and characterization. Nat Methods.
2012;9(3):215–6. https:// doi. org/ 10. 1038/ nmeth. 1906.

 26. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised pattern discovery in human chromatin
structure through genomic segmentation. Nat Methods. 2012;9(5):473–6. https:// doi. org/ 10. 1038/ nmeth. 1937.

 27. Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. High-throughput functional testing of encode segmentation
predictions. Genome Res. 2014;24(10):1595–602.

 28. Lu Y, Qu W, Shan G, Zhang C. Delta: a distal enhancer locating tool based on adaboost algorithm and shape features
of chromatin modifications. PLoS ONE. 2015;10(6):0130622–0130622. https:// doi. org/ 10. 1371/ journ al. pone. 01306 22.

 29. Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J, Birney E, Bickel P, Snyder M, Gerstein M.
Classification of human genomic regions based on experimentally determined binding sites of more than 100
transcription-related factors. Genome Biol. 2012;13(9):48. https:// doi. org/ 10. 1186/ gb- 2012- 13-9- r48.

 30. Andersson R, Gebhard C, Miguel I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner
E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin
N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF,
Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki
H, Hayashizaki Y, Müller F, Forrest ARR, Carninci P, Rehli M, Sandelin A, Consortium TF. An atlas of active enhancers
across human cell types and tissues. Nature. 2014;507(7493):455–61. https:// doi. org/ 10. 1038/ natur e12787.

 31. Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A, Kanamori-
Katayama M, Kawashima T, Kojima M, Kubosaki A, Manabe R-I, Murata M, Nagao-Sato S, Nakazato K, Ninomiya N,
Nishiyori-Sueki H, Noma S, Saijyo E, Saka A, Sakai M, et al. Fantom5 cage profiles of human and mouse samples. Sci
Data. 2017;4(1):170112. https:// doi. org/ 10. 1038/ sdata. 2017. 112.

 32. Kleftogiannis D, Kalnis P, Bajic VB. Deep: a general computational framework for predicting enhancers. Nucleic Acids
Res. 2015;43(1):6–6. https:// doi. org/ 10. 1093/ nar/ gku10 58.

 33. Min X, Zeng W, Chen S, Chen N, Chen T, Jiang R. Predicting enhancers with deep convolutional neural networks.
BMC Bioinform. 2017;18(13):478. https:// doi. org/ 10. 1186/ s12859- 017- 1878-3.

 34. Li Y, Shi W, Wasserman WW. Genome-wide prediction of cis-regulatory regions using supervised deep learning
methods. BMC Bioinform. 2018;19(1):202. https:// doi. org/ 10. 1186/ s12859- 018- 2187-1.

 35. Cappelletti L, Petrini A, Gliozzo J, Casiraghi E, Schubach M, Kircher M, Valentini G. Bayesian optimization improves
tissue-specific prediction of active regulatory regions with deep neural networks. In: Springer (ed.) Bioinformatics
and biomedical engineering, IWBBIO 2020. Lecture notes in computer science; 2020. https:// doi. org/ 10. 1007/ 978-3-
030- 45385-5_ 54

 36. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http:// www. deepl earni ngbook. org
 37. Probst P, Boulesteix A-L, Bischl B. Tunability: importance of hyperparameters of machine learning algorithms. J Mach

Learn Res. 2019;20(53):1–32.
 38. Swersky K, Snoek J, Adams RP. Multi-task bayesian optimization. In: Burges CJC, Bottou L, Welling M, Ghahramani Z,

Weinberger KQ, editors. Advances in neural information processing systems 26. Lake Tahoe, Nevada, USA: Curran
Associates Inc; 2013. p. 2004–12.

 39. Rasmussen CE, Williams CKI. Gaussian Processes for machine learning (adaptive computation and machine learn-
ing). Cambridge: The MIT Press; 2005. p. 272.

 40. Malkomes G, Schaff C, Garnett R. Bayesian optimization for automated model selection. In: Lee D, Sugiyama M,
Luxburg U, Guyon I, Garnett R (eds) Advances in neural information processing systems, vol 29. Barcelona, Spain:
Curran Associates Inc; 2016.

https://doi.org/10.1371/journal.pcbi.1007436
https://doi.org/10.1371/journal.pcbi.1007436
https://doi.org/10.1016/j.cell.2013.09.053
https://doi.org/10.1093/hmg/ddw216
https://doi.org/10.1186/s13059-017-1345-5
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11243
https://doi.org/10.1016/j.cell.2012.12.033
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1038/nmeth.1937
https://doi.org/10.1371/journal.pone.0130622
https://doi.org/10.1186/gb-2012-13-9-r48
https://doi.org/10.1038/nature12787
https://doi.org/10.1038/sdata.2017.112
https://doi.org/10.1093/nar/gku1058
https://doi.org/10.1186/s12859-017-1878-3
https://doi.org/10.1186/s12859-018-2187-1
https://doi.org/10.1007/978-3-030-45385-5_54
https://doi.org/10.1007/978-3-030-45385-5_54
http://www.deeplearningbook.org

Page 31 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

 41. Liu Z, Merkurjev D, Yang F, Li W, Oh S, Friedman MJ, Song X, Zhang F, Ma Q, Ohgi KA, et al. Enhancer activation
requires trans-recruitment of a mega transcription factor complex. Cell. 2014;159(2):358–73.

 42. de Hoon M, Shin JW, Carninci P. Paradigm shifts in genomics through the fantom projects. Mammalian Genome.
2015;26(9–10):391–402.

 43. Liu F, Li H, Ren C, Bo X, Shu W. Pedla: predicting enhancers with a deep learning-based algorithmic framework. Sci
Rep. 2016;6(1):28517. https:// doi. org/ 10. 1038/ srep2 8517.

 44. Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, Shu W. BiRen: predicting enhancers with a deep-learning-based model
using the DNA sequence alone. Bioinform. 2017;33(13):1930–6. https:// doi. org/ 10. 1093/ bioin forma tics/ btx105.

 45. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Rich-
ards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res.
2005;15(8):1034–50.

 46. Pasini ML, Yin J, Li YW, Eisenbach M. A greedy constructive algorithm for the optimization of neural network archi-
tectures. CoRR abs/1909.03306 2019. arXiv: 1909. 03306.

 47. Talathi SS. Hyper-parameter optimization of deep convolutional networks for object recognition. In: 2015 IEEE
international conference on image processing (ICIP), pp. 3982–3986; 2015. IEEE

 48. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13(1):281–305.
 49. Pontes FJ, Amorim G, Balestrassi PP, Paiva A, Ferreira JR. Design of experiments and focused grid search for neural

network parameter optimization. Neurocomputing. 2016;186:22–34.
 50. Sinha T, Haidar A, Verma B. Particle swarm optimization based approach for finding optimal values of convolutional

neural network parameters. In: 2018 IEEE congress on evolutionary computation (CEC), pp. 1–6; 2018. IEEE.
 51. Yildiz AR. A comparative study of population-based optimization algorithms for turning operations. Inf Sci.

2012;210:81–8.
 52. Hazan E, Klivans A, Yuan Y. Hyperparameter optimization. In: 6th international conference on learning representa-

tions, ICLR 2018; 2018.
 53. Garnett R, Osborne MA, Roberts SJ. Sequential Bayesian prediction in the presence of changepoints. In: Proceedings

of the 26th annual international conference on machine learning. ICML ’09, pp. 345–352. ACM, New York, NY, USA;
2009. https:// doi. org/ 10. 1145/ 15533 74. 15534 18.

 54. Martinez-Cantin R, de Freitas N, Brochu E, Castellanos J, Doucet A. A Bayesian exploration–exploitation approach for
optimal online sensing and planning with a visually guided mobile robot. Auton Robots. 2009;27(2):93–103. https://
doi. org/ 10. 1007/ s10514- 009- 9130-2.

 55. Cappelletti L, Fontana T, Donato GWD, Tucci LD, Casiraghi E, Valentini G. Complex data imputation by auto-encoders
and convolutional neural networks-a case study on genome gap-filling. Computers. 2020;9(2):37.

 56. Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care (London, England).
2004;8(6):508–12. https:// doi. org/ 10. 1186/ cc3000.

 57. Boyd K, Eng KH, Page CD. Area under the precision-recall curve: point estimates and confidence intervals. In:
Blockeel H, Kersting K, Nijssen S, Železný F, editors. Machine learning and knowledge discovery in databases. Berlin:
Springer; 2013. p. 451–66.

 58. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74. https:// doi. org/ 10. 1016/j.
patrec. 2005. 10. 010.

 59. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84. https:// doi. org/ 10.
1109/ TKDE. 2008. 239.

 60. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the roc plot when evaluating binary classi-
fiers on imbalanced datasets. PLoS ONE. 2015;10(3):1–21. https:// doi. org/ 10. 1371/ journ al. pone. 01184 32.

 61. Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3. https:// doi. org/ 10. 2307/ 30019
68.

 62. Pratt JW. Remarks on zeros and ties in the Wilcoxon signed rank procedures. J Am Stat Assoc. 1959;54(287):655–67.
https:// doi. org/ 10. 2307/ 22825 43.

 63. Derrick B, White P. Comparing two samples from an individual likert question. Int J Math Stat. 2017;18(3).
 64. Maaten Lvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
 65. Kriegeskorte N, Golan T. Neural network models and deep learning. Curr Biol. 2019;29(7):231–6.
 66. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications.

Neurocomputing. 2017;234:11–26.
 67. Sibi P, Jones SA, Siddarth P. Analysis of different activation functions using back propagation neural networks. J

Theor Appl Inf Technol. 2013;47(3):1264–8.
 68. Janocha K, Czarnecki W. On loss functions for deep neural networks in classification. Schedae Informaticae. 2017.

https:// doi. org/ 10. 4467/ 20838 476SI. 16. 004. 6185.
 69. Dogo E, Afolabi O, Nwulu N, Twala B, Aigbavboa C. A comparative analysis of gradient descent-based optimization

algorithms on convolutional neural networks. In: 2018 international conference on computational techniques,
electronics and mechanical systems (CTEMS), pp. 92–99 . IEEE 2018.

 70. Dozat T. Incorporating Nesterov momentum into adam; 2015.
 71. Chollet F et al. Keras. GitHub; 2015.
 72. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J,

Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu, Y, Zheng X. Tensorflow: a sys-
tem for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design
and implementation. OSDI’16, pp. 265–283. USENIX Association, USA; 2016.

 73. Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the human out of the loop: a review of Bayesian
optimization. Proc IEEE. 2016;104(1):148–75. https:// doi. org/ 10. 1109/ JPROC. 2015. 24942 18.

 74. Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang E, Elibol M, Yang Z, Paul W, Jordan MI et al. Ray: a distributed
framework for emerging AI applications. In: 13th USENIX symposium on operating systems design and implemen-
tation (OSDI 18); 2018. p. 561–577.

https://doi.org/10.1038/srep28517
https://doi.org/10.1093/bioinformatics/btx105
http://arxiv.org/abs/1909.03306
https://doi.org/10.1145/1553374.1553418
https://doi.org/10.1007/s10514-009-9130-2
https://doi.org/10.1007/s10514-009-9130-2
https://doi.org/10.1186/cc3000
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.2307/2282543
https://doi.org/10.4467/20838476SI.16.004.6185
https://doi.org/10.1109/JPROC.2015.2494218

Page 32 of 32Cappelletti et al. BMC Bioinformatics 2022, 23(2):154

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 75. Bergstra J, Yamins D, Cox DD. Making a science of model search: hyperparameter optimization in hundreds of
dimensions for vision architectures. In: Proceedings of the 30th international conference on machine learning—vol-
ume 28. ICML’13. JMLR.org, Atlanta, GA, USA; 2013. p. 115–123.

 76. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th interna-
tional conference on international conference on machine learning. ICML’10. Omnipress, Madison, WI, USA; 2010. p.
807–814.

 77. LeCun Y, Bottou L, Orr G, Müller K. Efficient backprop. Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics), vol. 7700 LECTURE NO; 2012. p. 9–48. https:// doi.
org/ 10. 1007/ 978-3- 642- 35289-8-3.

 78. Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP. On large-batch training for deep learning: generaliza-
tion gap and sharp minima. CoRR abs/1609.04836; 2016. arXiv: 1609. 04836.

 79. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In: Proceedings of
the 25th international conference on neural information processing systems—volume 2. NIPS’12. Curran Associates
Inc., USA; 2012. p. 2951–2959.

 80. Alcántara-Silva R, Alvarado-Hermida M, Díaz-Contreras G, Sánchez-Barrios M, Carrera S, Galván SC. Pisma: a visual
representation of motif distribution in DNA sequences. Bioinform Biol Insights. 2017;11:1–9. https:// doi. org/ 10. 1177/
11779 32217 700907.

 81. Kingma DP, Ba J. Adam: a method for stochastic optimization 2017. arXiv: 1412. 6980.
 82. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet.

2019;20(4):207–20.
 83. Noonan JP, McCallion AS. Genomics of long-range regulatory elements. Annu Rev Genom Hum Genet.

2010;11:1–23.
 84. Hwang W, Oliver VF, Merbs SL, Zhu H, Qian J. Prediction of promoters and enhancers using multiple DNA methyla-

tion-associated features. BMC Genom. 2015;16(7):1–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-35289-8-3
https://doi.org/10.1007/978-3-642-35289-8-3
http://arxiv.org/abs/1609.04836
https://doi.org/10.1177/1177932217700907
https://doi.org/10.1177/1177932217700907
http://arxiv.org/abs/1412.6980

	Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related work

	Results
	Experimental setup
	Bayesian optimization improves prediction of active regulatory regions
	CNN models achieve performance close to FFNN models
	Bayesian CNN is competitive with DeepEnhancer
	Effect of different dataset-balancing setups
	Bayesian optimization also improves performance on hg38-dataset

	Discussion
	Conclusions
	Methods
	Bayesian Optimization
	fixed-FFNN and Bayesian-FFNN
	fixed-CNN and Bayesian-CNN
	DeepEnhancer

	Datasets
	Hg19-dataset
	Hg38-dataset

	References

