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Abstract 

Background: The widely spreading coronavirus disease (COVID-19) has three major 
spreading properties: pathogenic mutations, spatial, and temporal propagation pat-
terns. We know the spread of the virus geographically and temporally in terms of 
statistics, i.e., the number of patients. However, we are yet to understand the spread at 
the level of individual patients. As of March 2021, COVID-19 is wide-spread all over the 
world with new genetic variants. One important question is to track the early spread-
ing patterns of COVID-19 until the virus has got spread all over the world.

Results: In this work, we proposed AutoCoV, a deep learning method with multiple 
loss object, that can track the early spread of COVID-19 in terms of spatial and temporal 
patterns until the disease is fully spread over the world in July 2020. Performances in 
learning spatial or temporal patterns were measured with two clustering measures and 
one classification measure. For annotated SARS-CoV-2 sequences from the National 
Center for Biotechnology Information (NCBI), AutoCoV outperformed seven baseline 
methods in our experiments for learning either spatial or temporal patterns. For spatial 
patterns, AutoCoV had at least 1.7-fold higher clustering performances and an F1 score 
of 88.1%. For temporal patterns, AutoCoV had at least 1.6-fold higher clustering perfor-
mances and an F1 score of 76.1%. Furthermore, AutoCoV demonstrated the robustness 
of the embedding space with an independent dataset, Global Initiative for Sharing All 
Influenza Data (GISAID).

Conclusions: In summary, AutoCoV learns geographic and temporal spreading pat-
terns successfully in experiments on NCBI and GISAID datasets and is the first of its kind 
that learns virus spreading patterns from the genome sequences, to the best of our 
knowledge. We expect that this type of embedding method will be helpful in charac-
terizing fast-evolving pandemics.
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Background
In December 2019, a new virus, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) broke out as coronavirus disease 2019 (COVID-19), and in March 2020, 
the World Health Organization (WHO) declared a pandemic [1–3]. Various vaccines are 
being developed as a result of the efforts of numerous scientists to overcome COVID-
19, but the effectiveness of vaccines against the newly occurring mutations is not well 
established yet [4–6]. As of August 2020, more than 21 million people were infected 
with SARS-CoV-2 across the world. In the United States, with the largest number of 
infections, 5.23 million or 1.7% of the U.S. population were infected [7]. As the virus has 
spread, the number of sequenced SARS-CoV-2 genomes increased and the sequence has 
been analyzed mainly for point mutations. Mutation-based studies classified the class 
of SARS-CoV-2 according to the type of variants and reported that COVID-19 in early 
Asia and Europe were caused by different types of viruses [8, 9]. In addition, the basic 
reproductive number ( R0 ), which indicates the degree of transmission of the disease, 
showed that different types of variants had different rates of spread [10]. As of March 
2021, COVID-19 is wide-spread all over the world with new genetic variants. Once the 
virus becomes globally widespread, it is very difficult to track the spreading patterns of 
COVID-19 because of external factors such as the global lockdown and vaccinations. 
However, while the virus is being spread, i.e., early stage of a disease epidemic, it might 
be possible to track spreading patterns in terms of spatial and temporal characteristics.

According to Nextstrain’s August 2020 SARS-CoV-2 situation1 reports, the virus has 
mutated over time as the virus spreads to different regions [11]. Different strains of 
the virus evolve as the virus spreads to different regions over time (see the Additional 
file 1: Fig. S2). Based on the observations, there is no doubt that SARS-CoV-2 genome 
sequences have different characteristics depending on regions and time but are not yet 
fully understood. In this paper, we define such unknown information in terms of spa-
tial patterns and temporal patterns, respectively. Thus, understanding the spatial and 
temporal characteristics of virus spreading patterns is a very important task. However, 
our knowledge so far is limited to simply measuring how many patients have occurred 
geographically and temporally. Beyond the simple statistics, the spread at the level of 
individual patients can be investigated through an embedding space with spatial and 
temporal features.

The main goal of our study is to investigate the tracking of COVID-19 in terms of 
biological perspectives. When external factors such as global lockdown and vaccina-
tion are enforced, it is difficult to investigate the spreading potentials of COVID-19 
per se, thus we analyzed the early spread pattern of COVID-19 using the SARS-CoV-2 
sequences up to July 2020. In this work, we propose a deep learning method, Auto-
CoV that can track the early spread of COVID-19 (Fig. 1). Tracking the virus spread-
ing patterns of spatial and temporal characteristics was achieved by an auto-encoder 
based latent representation deep learning model. Since there are quite a number of 
mutations in a virus sequence, a sequence is preprocessed using k-mer, also known 
as n-gram in natural language processing for information theoretic filtering. Then, 
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the input to AutoCoV is a set of informative k-mers for a virus sequence with spa-
tial or temporal information. By augmenting an auxiliary classifier and a center loss 
objective function on the auto-encoder, we guided the latent representation to learn 
the spatial and temporal patterns. Formally, AutoCoV optimizes three objective func-
tions, such as reconstruction loss, classification loss, and center loss, as shown in 
Eq. 9. In this paper, we used SARS-CoV-2 sequences from two different datasets: the 
National Center for Biotechnology Information (NCBI) and the Global Initiative for 
Sharing All Influenza Data (GISAID) [12–14]. As a result, we showed that our model 
outperformed baselines on an experiment of annotated SARS-CoV-2 sequences 
in the NCBI dataset. An extensive ablation study showed the contributions of each 

Fig. 1 The overall framework of the AutoCoV model. a Preprocessing of SARS-CoV-2 sequences: We 
transform the virus sequences into a k-mer vector. After frequency normalization and information theory 
based k-mer filtering, we obtain an informative k-mer frequency matrix as inputs for AutoCoV. b The 
architecture of AutoCoV: It consists of three modules for learning the spatial and temporal patterns of 
SARS-CoV-2. Auto-Encoder Network generates latent representations that reconstruct the input matrix. 
Classifier Network guides the latent representations to identify the spatial and temporal patterns. Center Loss 
module complements the Classifier Network to create a more dense and well-separated embedding space. c 
The output of AutoCoV: The embedding space generated by AutoCoV aims to imply the spatial and temporal 
patterns of SARS-CoV-2
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component and strategy used in AutoCoV. Furthermore, we demonstrated the robust-
ness of the embedding space generated by AutoCoV using the NCBI dataset against 
an independent GISAID dataset.

Related works

Since the first outbreak of the COVID-19 virus in 2019, numerous papers have been 
published. Early papers conducted biological evolutionary and structure analysis of 
SARS-CoV-2 [15, 16]. As the number of SARS-CoV-2 genome sequences increased, 
mutation-based research was conducted and cluster analysis was performed on 
sequences with the same mutation [17, 18]. Some papers statistically summarized spatial 
and temporal features according to the types of mutations [9, 19, 20]. Recently, many 
studies have been conducted using machine learning technologies, for examples, diag-
nosing COVID-19 using medical images by applying convolutional neural network 
(CNN) [21–23], predicting antiviral drugs using natural language processing (NLP) [24], 
or using deep neural network (DNN) [25] to form a drug repurposing perspective. In 
addition, research on the current outbreak status and spread of COVID-19 using demo-
graphic or mobility data [26, 27], and the impact of external factors such as global lock-
down policies were also studied [28, 29]. However, there have been no studies on the 
spatial and temporal spread of COVID-19 utilizing the SARS-CoV-2 sequence.

Analyzing long biological sequences at the character level, i.e. single resolution, is a 
very difficult task. Although single nucleotide-based analysis may utilize more rich infor-
mation about the sequences, large amounts of features may lead to the curse of dimen-
sionality, especially in the long length of biological sequences. Therefore, it is important 
to use an appropriate encoding method that can reflect biological meaning while reduc-
ing the dimension of the sequence. There are simple but widely used methods of express-
ing the characteristics of the sequences such as one-hot encoding or k-mer encoding. 
One-hot encoding of the sequence data is straightforward and it has the advantage of 
preserving the positional information of the sequence, whereas the encoding length 
depends on the length of the sequence [30, 31]. K-mer encoding, on the other hand, 
loses positional information, but it has the same encoding length for a fixed value of k, 
and has the advantage of being able to learn the local context of a biological sequence 
[32–35]. In the case of SARS-CoV-2 genome sequences, the sequences are very similar 
to each other both in length and of nucleotide compositions and only a small number of 
variants determine the pathogenic properties of the virus. There is also a study on the 
possibility of additional mutations occurring around mutations [36]. Therefore, in this 
study, we used a k-mer based approach to encode the sequence to focus on the local con-
text of the sequence rather than the location information.

There are many existing machine learning algorithms for biological sequences that uti-
lize the k-mer information as input features of models in various ways and learn embed-
ding vectors of the k-mers or the sequence itself. For example, word2vec [37] or doc2vec 
[38] based models were proposed such as BioVec [37], dna2vec [39], or Super2Vec [40]. 
Hybrid approaches of CNN and recurrent neural network (RNN) were also proposed 
to capture local contexts of k-mers and long-range interactions within the sequence 
[41, 42]. However, most existing methods are designed for short-length of biological 
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sequences and these methods have difficulty in learning embedding vectors of long-
length sequences such as SARS-CoV-2.

Results
Dataset

SARS-CoV-2 sequences were obtained from two different databases: NCBI Virus [43–
45] (http:// www. ncbi. nlm. nih. gov/ genome/ virus es/) and GISAID (http:// www. gisaid. 
org). From NCBI Virus, we collected 7,031 sequences including SARS-CoV-2 reference 
sequence NC_045512, as of July 17, 2020. NCBI Virus sequences had spatial and tempo-
ral labels based on collected continent and date. And each sequence was fully annotated 
with information about the location of the genes. From GISAID, we collected 61,210 
sequences, as of July 17, 2020. GISAID sequences had spatial and temporal labels as well 
as subclass labels based on pathogenic mutations defined by the GISAID nomenclature 
system.

Experimental setup

For input data of the model, we used 5210 sequences commonly contained in NCBI 
Virus and GISAID. Each sequence was about 30,000 bases in length and had spatial and 
temporal labels. For the spatial label, the sequences were divided into four classes based 
on the collected continents: ‘Asia’, ‘Oceania’, ‘Europe’, and ‘North America’. For the tem-
poral label, the sequences were divided into three classes based on March 2020, when 
the spike protein mutation occurred [8, 9]. Based on March 2020, when the D614G 
mutation in which Aspartic acid (D) at position 614 of spike protein mutated to Gly-
cine (G) occurred, the sequence before March 2020 in which there was no D614G muta-
tion is labeled as ‘Early’ and the sequence in March 2020 in which the D614G mutation 
occurred is labeled as ‘Middle’. And the sequences after March 2020, when the D614G 
mutation has spread around the world, are labeled as ‘Late’. Mutations in non-protein-
coding regions were also important [46, 47], but due to different sequencing tech-
niques and sequencing lengths of each sequence, there were lost in some sequences. 
Thus, only the protein-coding regions from ORF1ab to the N gene were used for qual-
ity control of the sequence. Among the sequences only from GISAID, we excluded low-
quality sequences such as sequences with lowercase nucleotide or more than 100 N’s, 
so we used 23,979 as an external dataset to test the robustness of the embedding space 
learned from the NCBI dataset (Detailed GISAID dataset preprocessing is described in 

Table 1 The summary of datasets (as of 2020-07-17)

Each dataset has three categories of SARS‑CoV‑2 characteristics: Pathogenic mutations (Subclass), Spatial, Temporal. The 
value in the parenthesis denotes the number of sequences. The detailed information about Subclass label was described in 
Additional file 1: Table S1

NCBI (5,210) GISAID w/o NCBI (61,210)

Subclass S (1,246), L (266), V (130),
G (463), GR (418), GH (2,687)

S (4,328), L (3,856), V (4,418),
G (14,982), GR (19,316), GH (14,310)

Spatial Asia (454), Oceania (403),
Europe (280), North America (4,073)

Asia (3,805), Oceania (2,151),
Europe (41,365), North America (13,889)

Temporal Early (178), Middle (2,632),
Late (2,400)

Early (1,175), Middle (25,058),
Late (34,977)

http://www.ncbi.nlm.nih.gov/genome/viruses/
http://www.gisaid.org
http://www.gisaid.org


Page 6 of 18Sung et al. BMC Bioinformatics          (2022) 23:149 

Additional file 1). The details of datasets are listed in Table 1. We split NCBI dataset into 
training, validation, test data split with 80:10:10 ratio with preserving the spatial/tem-
poral label ratio and performed the stratified split 10 times. In the case of learning spa-
tial patterns, class labels are ‘Asia’, ‘Oceania’, ‘Europe’, and ‘North America’ for supervised 
learning. Similarly, in the case of learning temporal patterns, class labels are ‘Early’, ‘Mid-
dle’, and ‘Late’. All reported figures and tables in this section were created using the test 
data only. Detailed structures and hyper-parameters of models are described in Fig. 2 
and Additional file 1.

Baseline methods

The performances of AutoCoV on learning spatial and temporal patterns were com-
pared with seven baselines belonging to the three categories: ‘Dimension Reduction’, 
‘Unsupervised’, and ‘Supervised’. In case of ‘Dimension Reduction’, three conventional 
dimension reduction techniques were used such as Principal Component Analysis 
(PCA) [48], t-Stochastic Neighbor Embedding (t-SNE) [49], and Uniform Manifold 
Approximation and Projection (UMAP) [50]. The input data of the three methods was 
the same k-mer frequency matrix as AutoCoV. In case of ‘Unsupervised’, two sequence 
embedding methods such as dna2vec [51] and seq2vec [39] were utilized. In the case 
of ‘Supervised’, two well-known deep learning models for nature language process-
ing were utilized with augmentation of a classifier network (CF), which was similar 

Fig. 2 The structure of AutoCoV. It consists of three modules: auto-encoder, classifier, and center loss. For 
each layer, the number of neurons is shown beside the corresponding layer



Page 7 of 18Sung et al. BMC Bioinformatics          (2022) 23:149  

with AutoCoV: Seq2Seq+CF [52] and BERT+CF [53]. In the contrast with ‘Dimen-
sion Reduction’, the baselines of ‘Unsupervised’ and ‘Supervised’ used the raw genome 
sequences of SARS-CoV-2 as the input data. Details are described in the Additional 
file 1.

Evaluation metrics

Learning the spatial or temporal patterns of SARS-CoV-2 means that in the embed-
ding space generated by the model, sequences of the same labels are well clustered 
and sequences of different labels are well separated while well predicting labels of 
the sequences. Given the spatial or temporal labels of the sequence as ground truth, 
we used two clustering metrics and one classification metric to measure how well 
the model learn spatial or temporal pattern in embedding space. The first cluster-
ing metric is label homogeneous score (LHS) that measures the purity of class labels 
within the cluster [54]: LHS(Y ; Ỹ ) where Y is true class labels and Ỹ  is predicted 
class labels by assigned the cluster in the space. The other metric is mutual infor-
mation score (MI) that measures the dependence between target patterns and axes 
( Dim1 and Dim2 ) of 2D embedding space: I(Y ;Dim1,Dim2) . Lastly, the classification 
metric is the F 1 score of K-Nearest Neighbors classifier (neighbors = 10) where the 
neighbors are the sequences in the train data. All three metrics are ranged from 0.0 to 
1.0 and the higher values represent the good performance. Details about the metrics 
are described in the Additional file 1.

Table 2 Performance comparison results (mean ± std)

Three dimensional reduction methods (PCA, t‑SNE, UMAP), two unsupervised methods (dna2vec, seq2vec), and three 
supervised methods (Seq2Seq+CF, BERT+CF, AutoCoV) are compared, and the bold values represent the best performance 
among them. In both patterns, AutoCoV outperforms the baselines in all metrics

Method LHS MI F1

Spatial

 Dimension
 Reduction

PCA 0.280 ± 0.040 0.357 ± 0.050 0.739 ± 0.012

t-SNE 0.215 ± 0.043 0.226 ± 0.034 0.690 ± 0.017

UMAP 0.237 ± 0.030 0.448 ± 0.031 0.837 ± 0.011

 Unsupervised dna2vec 0.204 ± 0.035 0.108 ± 0.046 0.736 ± 0.019

seq2vec 0.149 ± 0.041 0.238 ± 0.030 0.689 ± 0.018

 Supervised Seq2Seq+CF 0.131 ± 0.030 0.099 ± 0.013 0.689 ± 0.017

BERT+CF 0.155 ± 0.054 0.327 ± 0.034 0.734 ± 0.013

AutoCoV 0.529 ± 0.051 0.773 ± 0.045 0.881 ± 0.012

Method LHS MI F1

Temporal

 Dimension
 Reduction

PCA 0.147 ± 0.065 0.198 ± 0.040 0.665 ± 0.024

t-SNE 0.140 ± 0.052 0.184 ± 0.033 0.384 ± 0.031

UMAP 0.146 ± 0.053 0.329 ± 0.047 0.671 ± 0.027

 Unsupervised dna2vec 0.117 ± 0.053 0.087 ± 0.030 0.616 ± 0.021

seq2vec 0.111 ± 0.048 0.156 ± 0.018 0.464 ± 0.015

 Supervised Seq2Seq+CF 0.116 ± 0.066 0.075 ± 0.013 0.474 ± 0.027

BERT+CF 0.091 ± 0.058 0.181 ± 0.048 0.559 ± 0.037

AutoCoV 0.355 ± 0.067 0.554 ± 0.065 0.761 ± 0.023
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Performance comparison of learning embedding spaces

We conducted experiments for learning spatial and temporal patterns of SARS-CoV-2. 
As qualitative results, Fig. 3 shows 2D embedding spaces of SARS-CoV-2 in the view of 

[Spatial]

[Temporal]

(a)

(b)

Fig. 3 Comparison of spreading pattern visualizations. 2D embedding spaces of baselines and AutoCoV are 
illustrated on a the spatial patterns and b the temporal patterns. The data fold with the median performance 
out of 10 folds was used as input to AutoCoV for the figures. The axes of each figure are set by the axes of 
training data
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each pattern. As quantitative results, Table 2 provides the results of the three metrics 
on each embedding space. From both results, AutoCoV outperformed the baselines in 
terms of learning the spreading patterns of the virus. We further investigated AutoCoV 
performance with two additional experiments: effects of different k-mer sizes and abla-
tion study. From comparative experiments on varying lengths of k ranging from 1 to 7, 
we showed that when k is 6, it can cover the performance aspect of the model and the 
aspect of biological prior knowledge. Furthermore, in an ablation experiment to meas-
ure the contribution of each component of AutoCoV, we showed that AutoCoV, when all 
components were incorporated, has the best performance. Details of the two additional 
experiments are in the Additional file 1.

Visualization of spatial and temporal patterns

For learning an embedding space representing spatial patterns, AutoCoV constructed 
the space that successfully distinguishes Asia and North America (Fig. 3a and Additional 
file 1: Figs. S3(a)–(b) and S4(a)–(b)). Interestingly, the AutoCoV was the only one that 
could infer the spatial spread of SARS-CoV-2. Figure 4a showed that viruses were well-
separated and well-clustered according to continents in the AutoCoV spatial embedding 
space, and the spread pattern of the virus from Asia through Europe and Oceania to 
North America could be inferred through the embedding space. This trend was simi-
lar to the current outbreak of SARS-CoV-2 until August, and it was consistent with the 
August 2020 report of NextStrain [11]. In addition, without using subclass labels, Auto-
CoV also learned subclass characteristics simultaneously (Additional file  1: Fig. S5a). 
Among the baselines, UMAP showed reasonable spatial patterns, but the same regions 
were not well clustered. The other baselines showed results with all regions being mixed.

For learning an embedding space representing temporal patterns, AutoCoV distin-
guished middle and late time points of SARS-CoV-2 (Fig. 3b and Additional file 1: Figs. 
S3c–d and S4c–d). Furthermore, temporal spreading patterns of SARS-CoV-2 were only 

Fig. 4 Spreading patterns on each embedding space by AutoCoV: a Spatial and b temporal. Solid dots 
represent train data and black-edged dots represent test data
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observed in the embedding space of AutoCoV. Figure  4b showed that the time points 
were well-separated in the AutoCoV temporal embedding space, and the temporal 
spread patterns of the virus could be inferred from the bottom center to the left and then 
to the right. Likewise, with learning spatial patterns, AutoCoV learned subclass char-
acteristics simultaneously without subclass labels (Additional file  1: Fig. S5b). Among 
the baselines, dna2vec showed a similar time trend but most of the sequences were 
extremely tightly clustered, which can hardly be interpreted as the spreading patterns of 
the virus. Again, the other baselines showed results such as all-time points being mixed 
or projecting test data into the wrong time points (e.g. t-SNE).

Quantitative measurements

AutoCoV outperformed the baselines in all three metrics on both spatial and tempo-
ral patterns (Table  2). In the context of spatial patterns, AutoCoV had 2.2 times, 1.7 
times, and 4.4% improvements in LHS, MI, and F 1 over the best baseline UMAP, respec-
tively. In the context of temporal patterns, AutoCoV had 2.4 times, 1.7 times, and 9.0% 
improvements in LHS, MI, and F 1 over the best baseline UMAP, respectively. Among 
the baselines, dimension reduction techniques showed better performances than unsu-
pervised and supervised learning methods. This is because the dimension reduction 
techniques captured local and global structures in both patterns and used k-mer fre-
quency matrix as input, like AutoCoV. For unsupervised and supervised learning that 
used raw sequences as input, rich information was available but it may contain redun-
dant information. Since most of the characters in the SARS-CoV-2 sequences were simi-
lar between the sequences, most of the rich information was uninformative and would 
result in the curse of dimensionality that hinders entire learning processes.

External dataset validation

To demonstrate the robustness and usefulness of AutoCoV, unannotated sequences in 
the GISAID as an external dataset, were mapped into the embedding space constructed 
from the NCBI dataset. To preserve the ratio of each label in the spatial and temporal 
classes, we performed the stratified sampling 10 times from the GISAID. Details on pro-
cessing the GISAID dataset are in the Additional file 1. Figure 5 shows the spatial and 
temporal embedding space results of the fold with median performances in the GISAID 
dataset. For spatial patterns, the F 1 score was about 0.813± 0.004 , and all continents 
were represented reasonably well in the embedding space (Fig. 5a). All continents spread 
more widely than those in the NCBI dataset, but this seemed to indicate the influx of 
mutant viruses by intercontinental migration, as mentioned in NextStrain [11]. For the 
temporal patterns, the F 1 score was about 0.739± 0.005 , slightly lower than the spatial 
case, but it reflected the time flow of the virus relatively well (Fig. 5b). These results are 
expected to help characterize fast-evolving pandemics in spatial and temporal embed-
ding space via AutoCoV.
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Discussion and conclusion
Effectiveness of encoding schemes of SARS‑CoV‑2 sequences using k‑mer

In general, supervised learning methods outperform unsupervised learning methods. 
Interestingly, however, the supervised learning methods (Seq2Seq+CF, BERT+CF) 
performed even worse than the unsupervised learning methods (dna2vec, seq2vec) or 
dimension reduction methods (PCA, t-SNE, UMAP) in most LHS, MI, and F1 evalu-
ations on both patterns. On the other hand, AutoCoV performed significantly better 
than unsupervised methods. We discuss why this happened in terms of the effective-
ness of encoding schemes of SARS-CoV-2 sequences using k-mer.

AutoCoV extracted k-mer information from the sequence and transformed one 
sequence as a k-mer frequency vector with entropy filtering. In the AutoCoV encod-
ing scheme, positional information of k-mers was lost. Meanwhile, Seq2Seq+CF and 
BERT+CF preserved the sentence structure with positional information of k-mers. 
Intuitively, keeping the positional information of k-mers seems more natural for bio-
logical sequences, but there is a good reason why the AutoCoV encoding scheme 
performed better. SARS-CoV-2 sequences are very similar to each other, and a small 
number of variants determine the pathogenic properties of the virus. The order of 
k-mers in the sequence is nearly identical, so it is not useful for distinguishing 
between SARS-CoV-2 sequences. Therefore, AutoCoV did not utilize the positional 
information and focused on k-mer count changes of the informative variants.

[Spatial]

[Temporal]

(a)

(b)

Fig. 5 Spreading patterns on each embedding space by AutoCoV in GISAID dataset: a Spatial ( 0.813± 0.004 ) 
and b Temporal ( 0.739± 0.005 ). F 1 score of KNN is described in the parenthesis (mean ± std)
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Limitations and further studies

In experiments on NCBI and GISAID datasets, it was shown that AutoCoV can effec-
tively model spatial or temporal patterns in the SARS-CoV-2 sequence. There are a 
number of limitations in our approach. While the k-mer encoding scheme of Auto-
CoV works well for SARS-CoV-2 sequences, this scheme may lose positional infor-
mation. We can interpret which k-mers are important, but it is hard to know exactly 
where the k-mer is in the sequence. Therefore, analysis through additional learning is 
required to know the exact location of the important k-mer in the sequence. In addi-
tion, more find-grained information has been lost because temporal labels were dis-
cretized in the experimental setup. There may also be sampling bias issues because the 
amount of data for each label was not adjusted to reflect the prevalence of diffusion.

To compensate for these shortcomings, future studies include improving the interpret-
ability of the model by adopting attention mechanisms [55] or analyzing saliency map 
of k-mer vectors like compute vision domain [56]. In addition, utilizing denoising tech-
niques will enhance the robustness of the model and mitigate the effects of sequence 
noises. It also seems possible to improve model structures so that more fine-grained 
label information can be modeled in the embedding space using continuous label repre-
sentation and unbiased manipulation of the label data.

Conclusion

In this paper, we proposed AutoCoV that learned 2D embedding spaces for modeling 
the spatial and temporal patterns in the early spread of COVID-19. To the best of our 
knowledge, AutoCoV is the first of its kind that learns virus spreading patterns from the 
genome sequences. The technical contribution of this paper is that AutoCoV can effec-
tively handle the long-length SARS-CoV-2 genome sequences using information theory 
and auto-encoder based deep learning model. The biological significance of AutoCoV is 
the ability to map SARS-CoV-2 genome sequences to 2D spaces that preserve the spa-
tial and temporal patterns without knowing subclass information of the SARS-CoV-2 
genome sequences. In extensive experiments, AutoCoV outperformed current embed-
ding spaces learning and visualization methods. The generalization power of the embed-
ding space was demonstrated in a cross validation experiment using the NCBI dataset 
and in another experiment with an independent GISAID dataset. The main contribution 
of our work is that a machine learning approach is shown to be capable of learning the 
spread of COVID-19. We expect that the embedding space that can reflect temporal and 
spatial features can potentially be useful to track spread dynamics between sequences.

In closing this paper, we emphasize the importance and significance of learning 
the sequence embedding space for spatial and temporal patterns of the virus spread. 
A virus evolves into new types often with more aggressive characteristics even in the 
quarantined countries. Furthermore, infection among people can make different types 
of viruses, which makes the understanding of virus evolution more complicated. As of 
now, we do not have computational methods to model these complex spreading patterns 
spatially and temporally from the virus genome sequences. Existing studies have mainly 
studied virus propagation by external control factors such as lockout policies based on 
demographic data or mobility data [28, 29, 57]. As we showed in this study, methods for 
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embedding or representation learning have potential for this important but challenging 
problem. We expect that comprehensive analysis of statistical methods based on demo-
graphic data and this type of embedding method will help characterize the rapidly evolv-
ing pandemics.

Methods
AutoCoV consists of four modules: Sequence Preprocessing, Auto-Encoder Network, 
Classifier Network, and Center Loss for learning spatial and temporal patterns of SARS-
CoV-2 sequences by constructing two dimensional (2D) embedding spaces.

Sequence preprocessing

Let X denote a n× d matrix where n is the number of sequences and d is the number 
of k-mers, d = 4k . In this work, we use k = 6 for learning embedding spaces of the 
sequences by k-mer approach, which can reflect the biological prior knowledge such as 
dicodon, i.e., two amino acids. Of course, 3-mers in the DNA sequence are also useful 
because they can be considered codons, but the number of features that can be expressed 
as 3-mers is limited than 6-mers. For this reason, d = 46 = 4, 096 is used for the input 
matrix X . Because most of the sequences are almost identical except for a few character 
mismatches, frequencies of most k-mers are the same and uninformative. An informa-
tion theory-based k-mer feature selection process is performed to distinguish subtly dif-
ferent sequences and to reduce the number of features. On each k-mer, an entropy value 
H(·) is calculated to measure the variance of X∗j , i.e.,

where X∗j = [x1j x2j . . . xnj]
T denotes the jth column vector of the input matrix X , Mj 

denotes the number of observed frequency count differently in X∗j , i.e., Mj = |Set(X∗j)| 
, φm denotes the observed frequency count in (Set(X∗j) ) and p(φm) denotes the prob-
ability of observation of φm in X∗j . As various k-mer frequency counts are observed, the 
entropy value increases. It means that the k-mer is likely to contribute to distinguishing 
the sequences. Using the entropy value H(X∗j) of each k-mer, we exclude uninformative 
k-mers that have entropy values smaller than 0.2, an empirically determined threshold. 
Using the cutoff, k-mers that show the same count in 99% of the entire sequences are 
discarded. Thus, the input matrix X is reduced to the smaller matrix X′ , a n× d′ matrix 
where d′ is the number of informative k-mers by the information theoretic filtering.

After the k-mer filtering step, two-level normalization steps are performed: sequence-
level and k-mer feature-level. We generated a k-mer vector of each sequence using pro-
tein-coding regions. However, there are slight differences in length for each sequence due 
to problems such as differences in sequencing techniques. To reduce the sequence-length 
dependency, as sequence-level normalization, the frequency count of a k-mer is divided by 
the total frequency count of the informative k-mers. After sequence-level normalization, 
the k-mer feature level normalization is done by the standardization on each k-mer fea-
ture. We used StandardScaler from scikit-learn library of Python. Finally, for the next deep 

(1)H(X∗j) = −

Mj∑

m=1

p(φm) log p(φm)
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learning modules, tanh activation function is applied to the normalized input matrix to 
adjust the scale of each k-mer feature. We denote the result of the preprocessing module as 
Xnorm.

Auto‑encoder network

We use an Auto-Encoder Network in AutoCoV to learn latent representations 
Z = {z1, z2, ..., zn} of SARS-CoV-2 sequences. As illustrated in Fig.  2, the Auto-Encoder 
Network is a core module of AutoCoV. It is widely used for encoding input features to 
smaller dimensional features to reconstruct input data as much as possible [58, 59]. Given 
the input matrix Xnorm , an encoder network generates a hidden representation matrix Z 
and a decoder network generates the reconstructed input matrix X̃norm via the following 
calculations:

• Single linear layer configuration: the layer f (·) takes xTi  as input and generates hTi  as 
output where xi is the row vector of input Xnorm , i.e., k-mer frequency vector of i-th 
sequence. To avoid overfitting and improve generalization performances, batch normal-
ization layer and dropout layer are applied on the layer as below: 

 where W and b are a weight matrix and a bias vector for the linear layer, respec-
tively, BN is the batch normalization layer, σ(·) is an activation function.

• Encoder network configuration: the goal of encoder network is generating the latent 
representation zTi  from the input xTi  . Let the encoder network consists of L single linear 
layers. Then, zTi  is calculated as below: 

 where the activation function σ(·) is tanh function in all layers and L-th layer has no 
dropout layer.

• Decoder network configuration: the goal of decoder network is to reconstruct the input 
data x̃Ti  from the latent representation zTi  . The structure of the decoder network is 
inversely same with that of the encoder network. Then, x̃Ti  is calculated as below: 

 where f −l is a corresponding decoding layer of l-th encoding layer f l and no tied 
weights are used for the network. The last layer f −1(·) has no batch normalization 
and dropout layer.

To measure reconstruction performance, mean squared error (MSE) loss Lrec is calculated 
between xi and x̃i as below:

(2)

hTi = f (xTi ) = Dropout(σ (BN(WxTi + b)))

(3)

zTi = f L ◦ · · · ◦ f 2 ◦ f 1(xTi )

(4)

x̃Ti = f −1 ◦ f −2 ◦ · · · ◦ f −L(zTi )

(5)

Lrec =
1

d′

d′∑

j=1

(xi,j − x̃i,j)
2
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Classifier network

In general, standard Auto-Encoder Network generates latent representations Z and recon-
structs input data well enough. In the case of SARS-CoV-2 sequences, however, it is hard 
to construct well-separated embedding spaces due to the high similarity of sequences. To 
achieve the distinct latent representations according to spatial and temporal patterns, we 
adopt an auxiliary Classifier Network on the Auto-Encoder Network. This auxiliary net-
work will predict spatial labels for learning spatial patterns or temporal labels for learning 
temporal patterns. Like multi-task learning, this can be considered as a guide to learning 
the representations for spatial or temporal patterns, while reconstructing input data by the 
Auto-Encoder network. Given the latent representation zTi  from the Auto-Encoder Net-
work, a predicted class label ỹi is calculated by L linear layers:

where the last layer f L has only fully connected layer. The Classifier Network is trained 
by minimizing the cross entropy loss Lclf  as below:

where C is the number of classes and c is the index of class labels.

Center loss

Cross entropy loss with softmax layer guides the model to learn features that distinguish 
classes. However, it is insufficient to learn compact representations of data belonging to the 
same class [60, 61]. For this reason, Wen et al. proposed a new loss function called center 
loss [60]. The basic concept of center loss is to minimize the distances between data within 
the same class. In this study, to learn compact embedding spaces for spatial or temporal 
patterns, label information of each sequence is utilized in the Center Loss module. Let µc 
denotes a mean vector of class c. The center loss for i-th sequence is measured as below:

where yi is the class of ith sequence. Using the center loss, model parameters are updated 
to bring latent representations closer to their mean vectors. Then, the mean vector for 
each class is re-calculated using the updated latent representations. That is, the latent 
representations and the mean vectors are updated simultaneously.

Loss function and training model

For learning spatial and temporal patterns of SARS-CoV-2 effectively, AutoCoV utilize 
three loss functions: MSE loss, cross entropy loss, and center loss. Then, a total loss function 
for a sequence is formulated in the following equation:

(6)

ỹi = Softmax(f L ◦ · · · ◦ f 2 ◦ f 1(zTi ))

(7)

Lclf = −

C∑

c=1

yi,clog(ỹi,c)

(8)

Lctr = ||zTi − µyi ||
2
2

(9)
Ltotal = Lrec + Lclf + Lctr
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For mini-batch training, the total loss is normalized by the size of the mini-batch. We 
used Adam optimizer with two different learning rates for learning AutoCoV [62]. The 
first learning rate controls the overall network of the model except the center loss mod-
ule. The second learning rate is used for the center loss module. In this study, to focus on 
generating compact and distinct latent representations, the learning rate for the center 
loss is larger than the overall learning rate.
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