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Background
Bioinformatics uses computer software and hardware technology to calculate, analyze 
and mine biological data, which greatly improves the efficiency of biological data infor-
mation solution, and is of great significance to more accurately grasp the operation law 
of biological structure [1, 2].

Protein molecules constitute the tissues and organs of the human body. The spatial 
structure of white matter determines the life function of protein, and then affects and 
even determines the life activities of the human body. Many diseases occur because the 
structure of protein molecules is destroyed or mutated, which makes the protein lose its 
stable state [3, 4].

According to the principle of thermodynamics, when the potential energy value of 
protein reaches the lowest, the protein structure is in the most stable state. Therefore, 
using computer algorithm to predict protein stable structure has become an important 
subject in the field of bioinformatics. The analysis methods of protein structure predic-
tion can be divided into three categories: comparative modeling method, reverse folding 
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method and ab initio prediction method [5–7]. The comparison modeling method and 
the reverse folding method need the known protein structure as the template, while the 
ab initio prediction method does not. Therefore, ab initio prediction method can predict 
the protein structure with unknown information on the premise of building a targeted 
energy function model [8].

For protein structure modeling, HP lattice model and ab non lattice model are the 
most commonly used. For HP model, Zhou uses Monte Carlo algorithm and genetic 
algorithm to solve it. Monte Carlo algorithm uses random number to generate a molecu-
lar structure, and then calculates the energy value of the molecular structure. Through 
continuous iteration, a molecular structure with the lowest energy value is obtained, 
which is regarded as the real structure of the protein sequence to be tested [9]. During 
the implementation of Monte Carlo method, due to the random generation of molecu-
lar structure, great uncertainty will be caused, which will consume a lot of calculation 
time and affect the efficiency of protein structure prediction. Therefore, pal added the 
idea of genetic algorithm to the Monte Carlo method, and the prediction efficiency 
was improved [10]. Biehn improved Monte Carlo method to chain growth algorithm 
by increasing and decreasing branches [11]. AB non lattice model can better reflect the 
real characteristics of protein, and consider the hydrophobicity and hydrophilicity of 
amino acids in protein structure. Based on AB non lattice model, a variety of intelligent 
algorithms are used to predict protein structure, including neural network, simulated 
annealing algorithm, tabu search algorithm, genetic algorithm, particle swarm optimi-
zation algorithm and so on. Ting used neural network to predict protein structure, and 
obtained the lowest energy value and corresponding spatial structure of each sequence 
[12]. Matsuno improved the simulated annealing algorithm to solve the protein struc-
ture prediction problem of two-dimensional AB non lattice model [13]. Makigaki mixed 
genetic algorithm and tabu search algorithm to calculate the protein structure predic-
tion problem of 3D AB non lattice model [14]. Rakhshani combined deep learning and 
numerical optimization methods to analyze the optimal morphology of protein struc-
ture [15]. Xia proposed a multi peak sampling method, which can also be used to study 
the stability of protein structure [16].

To sum up, there are many methods in the field of protein structure prediction, but 
the accurate prediction of the lowest potential energy point of protein stable structure is 
still a difficult problem. In addition, the amount of data corresponding to protein is huge, 
which requires high convergence speed and accuracy of the algorithm. Therefore, this 
paper improves the particle swarm optimization algorithm and integrates tabu search 
strategy to improve its performance in protein structure prediction.

Results
In order to verify the effectiveness of the protein structure prediction method proposed 
in this paper, the next experimental study is carried out. The computer CPU used in the 
experiment is Intel dual core, single core dominant frequency is 3.60ghz, memory size is 
16 GB. The operating system of the computer is windows 10.

In the experiment, the parameters of this algorithm are: the total number of particles 
is 260, and the upper limit of iterations is 800, two learning factors �1 = �2 = 2.0 , scale 
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factor K = 0.93 , number of neighborhood solutions L = 40 , number of candidate solu-
tions LC = 6.

In the experiment, in order to compare with the algorithm in this paper, particle 
swarm optimization algorithm and tabu search method are also selected as the control 
method in the experiment.

In the experiment, the experimental subjects selected the artificial protein sequences 
commonly used in the experimental standards, and were divided into four groups. The 
first group of artificial protein sequence is 13, which contains 5 hydrophilic amino acids 
(a) and 8 hydrophobic amino acids (b); The second group of artificial proteins is 21 in 
length, including 8 hydrophilic amino acids (a) and 13 hydrophobic amino acids (b); The 
length of the third group of artificial proteins is 34, including 13 hydrophilic amino acids 
(a) and 21 hydrophobic amino acids (b); The length of the fourth group of artificial pro-
teins is 55, including 21 hydrophilic amino acids (a) and 34 hydrophobic amino acids (b). 
The amino acid configuration of the four artificial protein sequences is as Fig. 1.

In simulation experiments, the stability of protein structure is generally judged by 
potential energy value. The lower the potential energy value, the more stable the protein 
structure is. Therefore, the comparison of potential energy becomes the key criterion for 
the stability of protein structure.

According to the above four groups of artificial protein sequences, the mathematical 
models were constructed according to tabu search method, particle swarm optimization 
algorithm and the algorithm in this paper, and the lowest potential energy value was pre-
dicted. The results are shown in Table 1.

It can be seen from the experimental results in Table 1 that the minimum potential 
energy values of the four groups of artificial protein sequences obtained by this algo-
rithm are significantly lower than those obtained by Tabu search method and particle 
swarm optimization algorithm. It also shows that more stable protein structure can be 
obtained by using this algorithm.

B A B A B A B AB B AB B AB B AB B AB B AB B AB B AB B AB B AB B AB B AB BB A B A B A B A B A B A

A B AB B AB B AB B AB B AB B AB B AB B AB BB A B A B A B A

B A B A B A B AB AB B AB B AB B AB B

A B AB B AB B AB BB A

Fig. 1 Four artificial protein sequences

Table 1 Minimum potential energy values obtained by three methods

Tabu search method Particle swarm optimization 
method

Our method

The first series − 1.456 − 3.083 − 3.301

The second series − 2.839 − 5.412 − 6.299

The third series − 4.851 − 8.709 − 10.021

The fourth series − 7.032 − 13.693 − 16.587
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Discussion
Furthermore, the stable structures of the above four artificial protein sequences were 
predicted, and the results are shown in Fig. 2.

Conclusions
The research on the stability of protein sequence structure is an important content 
in the field of bioinformatics. In order to solve this problem, a new protein structure 
prediction method is proposed by combining tabu search and particle swarm opti-
mization. This method fully considers the dependence of tabu search method on the 
initial solution. Firstly, particle swarm optimization algorithm is used to obtain the 
initial solution, and then tabu search method is used to construct neighborhood func-
tion, candidate solution set, tabu list and tabu criterion. The fusion of the two algo-
rithms is used to complete the prediction of protein structure. In the experiment, four 
groups of artificial protein sequences were selected. Firstly, the AB non lattice model 
was used to build the model, and then three methods were used to calculate the low-
est potential energy. Experimental results show that, compared with tabu search and 
particle swarm optimization, this algorithm can get lower potential energy value of 
protein sequence and predict more reasonable protein stable structure. Taking the 
first group of protein sequences as an example, the lowest potential energy calculated 
by this method is further reduced by 127% compared with tabu search method and 
7% compared with particle swarm optimization algorithm.

Methods
Protein structure prediction is actually a complex polynomial non deterministic prob-
lem, namely NP complete problem. In this paper, ab initio prediction is selected as a 
method to solve the problem of protein structure prediction. Therefore, it is neces-
sary to determine the simplified model of protein structure. By constructing a simpli-
fied model, the relationship between protein structure and energy is simulated as a 
potential energy function. Then, according to the thermodynamic hypothesis, when 
the potential energy function of protein is the lowest, it is the most stable structure of 
protein.

At present, there are two commonly used simplified protein structure models, one 
is HP lattice model, the other is AB non lattice model.

In the two-dimensional plane, the two-dimensional HP lattice model and the two-
dimensional AB non lattice model are used to simulate the protein folding structure. 
The structure is as Fig. 3:

Figure 3a shows a two-dimensional HP lattice model. In the HP model, the amino 
acids are divided into hydrophobic amino acids and hydrophilic amino acids, which 
are represented by the English letters h and P respectively. The black square is hydro-
phobic amino acid h, and the white square is hydrophilic amino acid P. the distance 
between each interconnected amino acid is 1. And each lattice point must be placed 
on the integral point of the two-dimensional plane, that is, the angle between the 
interconnected amino acid residues cannot be changed. The black squares gather 
together, that is, the hydrophobic amino acids are concentrated in the hydrophilic 
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(a) Prediction of the stable structure of the first group of artificial protein sequences

(b) Prediction of the stable structure of the second group of artificial protein 
sequences

(d) Prediction of the stable structure of the fourth group of artificial protein 
sequences

(c) Prediction of the stable structure of the third group of artificial protein sequences

Fig. 2 Prediction results of stable structure of four artificial protein sequences.
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amino acids, forming a hydrophobic core, which shows that the hydrophobic bond is 
used to maintain the stability of protein structure.

Figure 3b shows the two-dimensional AB non lattice model. Like HP lattice model, 
AB non lattice model also divides 20 kinds of amino acids into two categories, one is 
hydrophobic amino acids, which is represented by the letter A, the other is hydro-
philic amino acids, which is represented by the letter B. However, compared with the 
two-dimensional HP lattice model, the angle between adjacent amino acids in AB non 
lattice model is variable, rather than fixed on the integer point of the two-dimensional 
plane. This kind of structure is more similar to the real spatial structure of protein, 
so it is more suitable to be used as the simulation structure of protein. In Fig.  3b, 
the white squares with numbers represent amino acids, and there will be an angle 
between the residues of two adjacent amino acids which can be represented by α1 , α2 , 
α3…

The energy function of two-dimensional AB non lattice model is expressed as 
follows:

here, E represents the energy function; n represents the number of amino acids; E1 rep-
resents the potential energy function of the first part and expresses the energy contained 
in the folding of amino acid skeleton, which is related to each folding angle; E2 repre-
sents the potential energy function of the second part and expresses the energy between 
non adjacent amino acid residues, which is related to the distance and polarity between 
residues.

By comparing the advantages and disadvantages of HP lattice model and ab non lattice 
model, AB non lattice model is used to express protein structure.

The stable structure of protein corresponds to the lowest energy value of protein 
potential energy function, which makes the prediction of protein stable structure into 
the optimization of energy function. In this field, tabu search and particle swarm optimi-
zation are common methods.

Because of its good memory function, tabu search algorithm has strong local search 
ability. By using tabu list and recording the searched local optimal solution, tabu search 
algorithm can avoid circuitous search and jump out of local optimal solution. At the 
same time, the tabu search algorithm can avoid missing good individuals by spurning 
some better solutions.

(1)E =

n−1

i=2

E1(αi)+

n−2

i=1

n

j=i+2

E2(rij , ηi, ηj)

Fig. 3 Two dimensional HP model AB model.
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However, tabu search algorithm has a certain dependence on the initial solution. The 
better initial solution can make the tabu search algorithm find the better value, and the 
worse initial solution will reduce the convergence speed of tabu search algorithm.

Particle swarm optimization algorithm can get a better solution. Therefore, in this 
paper, the better solution obtained by particle swarm optimization algorithm is taken 
as the initial solution of tabu search algorithm, and then an optimization algorithm 
with both global search ability and local search ability is formed by using tabu strat-
egy and contempt criterion of tabu search algorithm.

(1) Generation of initial value

First, the particle swarm optimization algorithm is used to search globally. After 
converging to a certain extent, the better solution is used as the initial value of tabu 
search algorithm, so as to improve the search accuracy and efficiency of the algorithm.

The velocity and position of each particle are updated as shown in formula (2) and 
formula (3).

here, v is velocity; x is position; ϑ represents the inertia weight; �1 and �2 represents 
two learning factors; rand() represents a random function; pid represents the historical 
optimal position of the ith particle; pgd represents the historical optimal position of the 
whole particle swarm.

(2) Neighborhood function

The neighborhood solution of tabu search algorithm is realized by single point 
mutation. In order to ensure the diversity of neighborhood solutions, this paper uses 
the silk line of disturbance variation to generate neighborhood solutions. Here, the 
neighborhood function is designed as follows:

here q and Q represents random number; K  represents the scale factor; i denotes the 
generation times of neighborhood solutions. If the number of neighborhood solutions is 
L , then i is the interval value of [0, L-1]. Here, set K = 0.93 , L = 40.

(3) Candidate solution set

The candidate solution set is a subset of neighborhood solutions. In the algorithm, 
by calculating the fitness value of each of L neighborhood solutions, the first LC 

(2)vk+1

id = ϑ × vkid + �1 × rand()× (pid − xkid)+ �2 × rand()× (pgd − xkid)

(3)xk+1

id = xkid + vk+1

id

(4)xinew = xi + f (q)× π × Q × K

(5)f (q) =

{

1 q < 0.5

−1 q ≥ 0.5
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neighborhood solution with the lowest fitness value is selected as the candidate solu-
tion set. Here, set LC = 6.

(4) Taboo list

Tabu list is used to store the recently searched solutions, and its length is LT . After 
each iteration, the new tabu objects will enter the tabu list. At the same time, the term of 
office of each taboo object should be reduced by 1. Only when the term of office of the 
taboo object is 0 can the taboo be lifted, and the object who enters the taboo list first can 
be taboo out. The length of tabu list also has a certain influence on the search accuracy 
of the algorithm. If the length of tabu list is large, the search range of the algorithm is 
relatively wide, and a better solution can be found. But it also causes the search time of 
the algorithm to be longer and the convergence speed to be slower. If the length of the 
tabu list is too small, it can not play the role of the tabu list, and it is easy to make the 
algorithm into a circuitous search. Therefore, whether the length of tabu list is reason-
able or not has a great impact on the results of the algorithm. Here, set LT = 8.

(5) Taboo criterion

Let the fitness of the candidate solution z(α1,α2, · · · ,αn−2) be E(z) . There is a solution 
vector in tabu list y(α′

1
,α′

2
, · · · ,α′

n−2
) , and its fitness is E(y) . If the following conditions 

are met:

Then, the candidate solution z satisfies the tabu criterion, and the candidate solution 
is tabu.

Here, set E0 = 0.10 , r0 = 0.005.

Abbreviations
PSO  Particle swarm optimization
TS  Tabu search
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